Soumia CHQONDI | Interactions and fields | Best Researcher Award

Prof. Soumia CHQONDI | Interactions and fields | Best Researcher Award

Chouab Doukkali University | Morocco

Prof. Soumia CHQONDI is a Moroccan physicist and Assistant Professor at the Faculty of Sciences, El Jadida, affiliated with the Université Chouaib Doukkali. She is also an active member of the Laboratoire d’Innovation en Sciences, Technologies et Modélisation (ISTM). With a Doctorate in Physics obtained through a cotutelle program between Université Moulay Ismail (Morocco) and Université Pierre et Marie Curie (France), she has dedicated her academic journey to theoretical and computational studies of quantum systems. Her work on laser-atom interactions has earned her recognition through international publications, conference presentations, and collaborations across the physics community.

Profile

Scopus

Early Academic Pursuits

Soumia began her academic career with a Baccalauréat in Mathematical Sciences, followed by a DEUG in Physics and Chemistry at Université Moulay Ismail, Meknès. She pursued a Licence in Fundamental Physics (Electronics) and a Master in Applied Physics, specializing in Laser & Nanophysics. Her academic excellence led her to a doctoral program in cotutelle between two prestigious institutions in Morocco and France, where she explored quantum systems in intense laser fields. These early stages shaped her scientific rigor, developed her analytical thinking, and laid the foundation for a promising career in theoretical physics and simulation.

Professional Endeavors

Since October 2020, Prof. Chqondi serves as an Assistant Professor at the Faculty of Sciences of El Jadida, where she teaches and supervises research. From 2016 to 2020, she was a scientific researcher at the Laboratoire de Physique du Rayonnement et des Interactions Laser-Matière in Meknès, where she conducted numerical simulations of time-dependent atomic systems. Her career began in secondary education, teaching computer science from 2006 to 2019. Her multidisciplinary expertise, spanning informatics, applied physics, and quantum simulations, reflects a commitment to both pedagogical innovation and scientific advancement within and beyond the university environment.

Contributions and Research Focus

Prof. Chqondi’s research focuses on theoretical atomic physics, particularly laser-matter interactions, quantum ionization dynamics, and photoelectron angular distributions in atoms exposed to two-color and high-frequency laser fields. She has co-authored 8+ peer-reviewed articles, contributed to international book chapters, and presented at numerous conferences. Her work bridges fundamental quantum mechanics with advanced numerical modeling, offering insights into ultrafast electronic processes and photoionization phenomena. Using TDSE (time-dependent Schrödinger equation) and Floquet theory, she investigates non-linear laser interactions, essential for the development of next-generation optical technologies and quantum-based innovations.

Impact and Influence

Prof. Chqondi’s research has contributed to a deeper understanding of quantum systems in strong laser fields, impacting both theoretical frameworks and simulation techniques in laser physics. Her work has been featured in indexed journals such as Atoms, Modern Physics Letters A, and Turkish Journal of Physics. She collaborates with national and international scholars, notably Prof. Abdelkader Makhoute, enhancing scientific diplomacy between Moroccan and European institutions. Through her roles in teaching, publication, and mentoring, she inspires emerging researchers, helping bridge the gap between classical education and cutting-edge physics research in the Arab and African academic communities.

Academic Citations

Prof. Chqondi’s scientific publications are cited in peer-reviewed international journals, reflecting her contribution to specialized fields such as photoionization, laser-assisted electron dynamics, and numerical physics simulations. While exact citation metrics (e.g., h-index) are not provided, her consistent presence in indexed and impact-factor journals, including Nonlinear Dynamics and Systems Theory, underscores her academic credibility. Her co-authored articles are frequently referenced in studies exploring quantum dynamics, laser spectroscopy, and semi-classical theories. As her work gains further recognition and is integrated into broader research, its citation count and visibility are likely to grow substantially.

Research Skills

Prof. Chqondi demonstrates strong computational and theoretical skills. She is proficient in Fortran, Maple, LaTeX, and OriginPro, vital tools in quantum simulation and data analysis. Her research involves solving TDSE, modeling photoelectron spectra, and applying Floquet theory to atomic systems. She is skilled in Microsoft Office, Linux/Windows, and has experience with statistical analysis using Excel. Her scientific rigor is matched with literature review expertise, scientific writing, and effective use of academic databases. She also incorporates modern tools like Urkund for plagiarism detection, ensuring academic integrity in research and publishing.

Teaching Experience

Prof. Chqondi has over 15 years of experience in education, from secondary teaching in computer science to university-level physics instruction. Since 2020, she has taught undergraduate and graduate courses at Université Chouaib Doukkali, focusing on quantum physics, simulation techniques, and scientific computing. She also contributes to the mentorship of research students, supporting project development and thesis supervision. Her approach combines foundational theory with modern simulation practices, bridging gaps between classroom learning and applied physics research. She also integrates digital tools and interactive learning environments to enhance student engagement and scientific curiosity.

Awards and Honors

Although specific awards or fellowships are not listed, Prof. Chqondi’s selection for a cotutelle Ph.D. program between Morocco and France indicates early recognition of her potential. Her invited participation in prestigious international conferences and summer schools, such as in Paris and Tangier, highlights her academic merit. Her paper presentations at major events like SPIn2022 and Moroccan ADM 2023 also underline her standing in the field. Her contributions have earned her respect among scientific peers, and she remains a strong candidate for academic distinctions such as the Best Researcher Award, based on her consistent output and specialization.

Legacy and Future Contributions

Prof. Chqondi is poised to become a leading voice in theoretical physics and computational laser-matter interaction studies in Morocco and the MENA region. With a foundation in quantum dynamics and a commitment to scientific integrity, she continues to mentor students, publish impactful research, and build interdisciplinary collaborations. Her future work may extend into quantum control systems, ultrafast optics, or machine learning in physics simulations. As an educator and researcher, she is contributing to a new generation of Moroccan physicists, and her legacy will likely include pioneering simulation techniques and advancing quantum education in developing contexts.

Publications Top Notes

Controlling the Ionization Dynamics of Argon Induced by Intense Laser Fields: From the Infrared Regime to the Two-Color Configuration

  • Authors: Soumia Chqondi, Souhaila Chaddou, Ahmad Laghdas, Abdelkader Makhoute
    Journal: Atoms
    Year: 2025

Photoelectron angular distributions for photoionization of argon by two-color fields

  • Authors: Soumia Chqondi, Souhaila Chaddou, Abdelkader Makhoute
    Journal: Modern Physics Letters A
    Year: 2024

A New Feedback Control for Exponential and Strong Stability of Semi-Linear Systems with General Decay Estimates

  • Authors: M. Chqondi, S. Chqondi, K. Tigma, Y. Akdim
    Journal: Nonlinear Dynamics and Systems Theory
    Year: 2024

Theoretical description of the two-color photoelectron spectra process of hydrogen: comparison between TDSE calculation and Kroll and Watson approach

  • Authors: Souhaila Chaddou, Soumia Chqondi, Abdelmalek Taoutioui, Abdelkader Makhoute
    Journal: Turkish Journal of Physics
    Year: 2019

Numerical simulation of photoionization processes of the atomic hydrogen by a Ti: Saphir laser

  • Authors: S. Chaddou, S. Chqondi, A. Makhoute
    Journal: International Journal of Photonics and Optical Technology
    Year: 2017

 

 

Md. Rajibul Islam | High energy physics | Best Researcher Award

Dr. Md. Rajibul Islam | High energy physics | Best Researcher Award

Research Fellow at The Hong Kong Polytechnic University | Hong Kong

Md. Rajibul Islam is a distinguished Research Fellow in Photonics at The Hong Kong Polytechnic University. With over a decade of academic and research excellence, his expertise bridges the domains of photonics, optical sensors, and AI-driven biomedical solutions. Known for his interdisciplinary innovation, he holds a Ph.D. in Photonics Engineering, a Master’s in IT, and a Bachelor’s in Computer Applications. His scientific contributions are recognized globally through patents, international awards, and Q1 journal publications. He continues to champion healthcare technology innovation through cutting-edge research and collaborative ventures.

👨‍🎓Profile

Google scholar

Scopus

ORCID

📚 Early Academic Pursuits

Md. Rajibul Islam began his academic journey with a Bachelor of Computer Applications from IGNOU, India, laying a foundation in computing. His early interest in secure systems led him to pursue a Master of Science (by Research) in IT at Multimedia University (MMU), Malaysia, where he focused on fingerprint identification and verification technologies. Driven by a passion for physics and photonics, he earned a Ph.D. in Photonics Engineering from the University of Malaya, researching fiber Bragg grating-based Fabry-Perot resonators. His academic trajectory reflects a seamless blend of computational and physical sciences, underpinning his interdisciplinary research focus.

💼 Professional Endeavors 

Dr. Islam has held progressive academic positions, including Assistant Professor, Head of Department, and Associate Professor in Bangladesh’s top institutions such as UAP and BUBT. Internationally, he is engaged as a Research Fellow at The Hong Kong Polytechnic University, where he leads cutting-edge photonic sensor research for healthcare. His professional roles extend to industry consulting, software engineering, and research assistance across Malaysia and Ireland. These roles have shaped his ability to bridge theory and application, manage multidisciplinary teams, and contribute to the global research ecosystem. He consistently integrates teaching, innovation, and leadership in every position held.

🔬 Contributions and Research Focus

Dr. Islam’s core research revolves around fiber optic sensors, particularly fiber Bragg gratings (FBGs) and photonic devices for biomedical applications. He combines AI and photonics, enabling smart diagnostics and disease monitoring through enhanced sensor data analysis. His patent on few-mode fiber grating sensors showcases innovation in high-sensitivity sensing technologies. He has also contributed to vocal fold disorder detection, leaf disease identification, and high-speed optical communication systems. His work demonstrates versatility, spanning machine learning, image processing, and optoelectronics. Dr. Islam’s research is rooted in real-world relevance, bridging medical technology and photonics engineering.

🌍 Impact and Influence

Dr. Islam’s research has a measurable global impact, evidenced by peer-reviewed journal publications, international presentations, and a diverse citation base. His work is featured in Q1 and Q2 journals including Scientific Reports and Infrared Physics and Technology, ensuring high visibility within the scientific community. His contributions to biomedical photonics, AI-based diagnosis, and optical sensor design are used as reference frameworks by scholars and engineers globally. As a keynote speaker, panelist, and reviewer for top journals, he helps shape the scientific discourse. His interdisciplinary methods inspire research across AI, optics, and healthcare technologies.

📖 Academic Cites

Though citation metrics such as h-index are not provided here, Dr. Islam’s inclusion in SCOPUS-indexed journals, such as Scientific Reports, with an impact factor of 3.9, reflects research quality and relevance. His co-authored and first-authored works on deep learning architectures, fiber optic systems, and disorder classification are gaining academic traction. Cited in AI, photonics, and biomedical engineering domains, his papers contribute to emerging research trends. He has collaborated with international authors across Asia, Europe, and the Middle East, enhancing the citation diversity and reach of his work. His publications are considered valuable resources for ongoing applied research.

🧪 Research Skills

Dr. Islam possesses advanced experimental and computational skills across photonics, sensor design, and AI-based diagnostics. Technically adept in fiber Bragg grating fabrication, optical spectrum analysis, laser-based sensor development, and cleanroom processes, he couples this with Python, MATLAB, and COMSOL Multiphysics for simulation and analysis. He also develops AI pipelines using TensorFlow and PyTorch, particularly in image-based disease classification and signal processing. His skill in lab automation and data acquisition systems enhances experimental efficiency. Dr. Islam bridges engineering precision with computational intelligence, a rare blend that elevates the scope and accuracy of biomedical research.

👨‍🏫 Teaching Experience

With more than a decade in academia, Dr. Islam has taught both undergraduate and postgraduate courses in Data Communication, AI, Software Engineering, Database Systems, and Computer Architecture. His roles at UAP, BUBT, and North South University demonstrate a strong pedagogical presence. He fosters interactive learning and encourages research mentorship, having supervised numerous student theses in AI and medical applications. His curriculum design integrates latest industry trends and research breakthroughs, making learning application-focused. He leverages his international exposure to deliver globally relevant education, nurturing future innovators in computing and photonics.

🏅 Awards and Honors 

Dr. Islam is a recipient of prestigious accolades, including full sponsorships for events like the ACM-ICPC World Finals, ICTP Winter School, and PECIPTA Innovation Fair. His Bronze Medal for Few-Mode Fiber Sensor and Best Paper Award at ISCC-2011 highlight his technical ingenuity. Featured in Marquis Who’s Who and Stanford Who’s Who, he has earned national and international recognition. His multiple fellowships and research grants, including from Erasmus Mundus and IEERD, underscore sustained academic excellence. These honors reflect his research impact, scholarly leadership, and commitment to technological advancement in healthcare and photonics.

🌟 Legacy and Future Contributions

Dr. Islam is actively shaping a new frontier in biomedical sensing, where AI meets photonics. His legacy lies in developing cost-effective, high-accuracy optical sensors for early disease diagnosis and health monitoring. Looking ahead, he plans to expand collaborations across Asia and Europe, commercialize patented technologies, and establish AI-integrated photonics labs in developing countries. By mentoring future scientists, contributing to policy-making panels, and authoring advanced curricula, he is fostering a new generation of innovators and ethical researchers. His future contributions will undoubtedly influence medical technologies, academic reforms, and international research partnerships for decades to come.

Publications Top Notes

An Enhanced LSTM Approach for Detecting IoT-Based DDoS Attacks Using Honeypot Data

  • Authors: Arnob, A.K.B.; Mridha, M.F.; Safran, M.; Amiruzzaman, M.; Islam, M.R.
    Journal: International Journal of Computational Intelligence Systems
    Year: 2025

Low-Profile Reflective Metasurface for Broadband OAM Beam Generation at Ka-Band

  • Authors: Md. Rajibul Islam (Corresponding Author)
    Journal: Infrared Physics & Technology
    Year: 2025

FallVision: A Benchmark Video Dataset for Fall Detection

  • Authors: Nakiba Nuren Rahman; Abu Bakar Siddique Mahi; Durjoy Mistry; Shah Murtaza Rashid Al Masud; Aloke Kumar Saha; Rashik Rahman; Md. Rajibul Islam
    Journal: Data in Brief
    Year: 2025

An Evaluation of EVM-Compatible Blockchain Platforms for Trade Finance

  • Authors: Asif Bhat; Rizal Mohd Nor; Md Amiruzzaman; Md. Rajibul Islam; Munleef Quadir
    Journal: Journal of Advanced Research Design
    Year: 2025

A Machine Learning Approach for Vocal Fold Segmentation and Disorder Classification Based on Ensemble Method

  • Authors: Nobel, S.M.N.; Swapno, S.M.M.R.; Islam, M.R.; Safran, M.; Alfarhood, S.; Mridha, M.F.
    Journal: Scientific Reports
    Year: 2024

 

 

Bibhushan Shakya | High energy physics | Best Researcher Award

Dr. Bibhushan Shakya | High energy physics | Best Researcher Award

Staff Scientist at DESY | Germany

Dr. Bibhushan Shakya is a theoretical physicist specializing in particle physics and cosmology, currently serving as a Junior Staff Scientist at DESY, Hamburg. His research spans dark matter, gravitational waves, and early universe phenomena. With a Ph.D. from Cornell University, and professional stints at CERN, University of Michigan, and UCSC, he has emerged as a globally respected researcher. He has co-authored over 40 publications, supervised multiple graduate theses, and served in advisory and organizational roles within major international physics communities, including Snowmass and BCVSPIN. A native of Nepal, he actively contributes to science outreach across South Asia.

👨‍🎓Profile

Google scholar

Scopus

🎓 Early Academic Pursuits

Dr. Shakya’s academic journey began at Stanford University, where he earned three undergraduate degrees with distinction in Physics (Theoretical Concentration), Mathematics, and Philosophy. His passion for the fundamentals of the universe led him to Cornell University for doctoral studies under the mentorship of Prof. Maxim Perelstein. There, he specialized in theoretical particle physics, completing a Ph.D. thesis on dark matter phenomenology during a transformative period in experimental cosmology. His early academic years reflect a rare combination of depth in theoretical physics and breadth in interdisciplinary thought, laying the groundwork for his future contributions to cosmology and high-energy physics.

🧪 Professional Endeavors

Dr. Shakya has held prestigious research positions globally. After completing his Ph.D., he undertook postdoctoral fellowships at the University of Michigan, University of Cincinnati, and UC Santa Cruz, forming collaborative bridges across top U.S. institutions. He served as a Senior Fellow at CERN, Geneva, contributing to LISA cosmology initiatives, before joining DESY in 2021. His roles involve not just research but strategic leadership, including organizing seminars, leading selection committees, and mentoring Ph.D. students. He is recognized as a scientific community builder, contributing to international collaboration platforms like Snowmass 2022 and BCVSPIN in South Asia.

🔬 Contributions and Research Focus

Dr. Shakya’s research focuses on early-universe cosmology, dark matter, and gravitational wave signals from first-order phase transitions. His work addresses phenomena at the intersection of cosmology and high-energy physics, often exploring nonthermal origins of dark matter, tachyonic fields, and leptogenesis via bubble collisions. His publications in JCAP, JHEP, PRD, and PRL underscore both depth and originality. Notably, he collaborates with prominent physicists like Giudice, Kamionkowski, and Pomarol, positioning him at the forefront of phenomenological cosmology. His recent work with student co-authors further highlights his commitment to mentored discovery and academic development.

🌍 Impact and Influence

Dr. Shakya’s impact is global and multi-dimensional. Through publications, student mentorship, and international collaborations, he has significantly advanced the understanding of the early universe. As Chair of BCVSPIN, he champions particle physics in developing South Asian regions, fostering access to frontier research. His leadership role in the Snowmass 2022 Cosmic Frontier initiative helped shape the U.S. particle physics strategic roadmap. He regularly reviews for top-tier journals and major funding bodies like ERC and NSERC, reinforcing his influence on scientific standards. His lectures and outreach efforts have inspired young researchers and the general public across continents.

📚 Academic Cites and Publications

Dr. Shakya has authored over 40 peer-reviewed publications on arXiv, InspireHEP, and in leading journals like JCAP, JHEP, PRD, and PLB. His work is widely cited, with growing influence in cosmological phase transition physics, gravitational wave phenomenology, and non-thermal dark matter scenarios. Many of his papers involve cross-disciplinary ideas at the intersection of particle physics and cosmology, often co-authored with international experts and students. Some of his highly recognized works include those on dark photon production from cosmic strings, leptogenesis, and bubble collision dynamics. His research citations reflect a strong and growing academic footprint.

🧠 Research Skills and Expertise

Dr. Shakya exhibits exceptional analytical skills in quantum field theory, early-universe modeling, and beyond Standard Model physics. His ability to translate highly technical theory into observable cosmological predictions demonstrates deep understanding and creativity. He is proficient in phenomenological modeling, analytical methods, and scientific computation, making his work relevant to experimental data from CMB, LISA, and gravitational wave observatories. His collaborations across theory and experiment exemplify a rare blend of vision and rigor. He is also known for clear scientific communication, essential for both mentoring and outreach. These skills position him as a leading contributor to modern theoretical physics.

🧑‍🏫 Teaching and Mentorship

Dr. Shakya has contributed extensively to teaching and mentoring, both formally and informally. At University of Hamburg, he delivered guest lectures on supersymmetry and collider physics. He regularly teaches at international summer and winter schools (e.g., BCVSPIN, Hamburg Summer School) on topics like dark matter phenomenology and gravitational waves. He has supervised multiple Bachelor’s, Master’s, and Ph.D. students, many of whom have co-authored papers and moved on to prestigious research positions. His mentorship style encourages intellectual independence and scientific curiosity, making him an asset to any academic institution committed to excellence and training the next generation.

🏅 Awards and Honors

While Dr. Shakya has not yet been publicly recognized with individual awards, his appointment as Junior Staff Scientist at DESY, one of the world’s premier particle physics labs, underscores institutional recognition of his excellence. He has served as a referee for elite physics journals, a grant reviewer for the ERC and NSERC, and a strategic leader in international collaborations all clear acknowledgments of his scientific standing. His inclusion in roles like Snowmass 2022 liaison and chairing BCVSPIN reflects peer trust and leadership. These achievements serve as strong indicators of his eligibility for Best Researcher Award recognition.

🔮 Legacy and Future Contributions

Dr. Shakya’s legacy is already taking shape through his publications, mentorship, outreach, and scientific leadership in South Asia. In the future, he is well-positioned to become a principal investigator, lead independent grant-funded projects, and shape the field through interdisciplinary research. His ongoing involvement in gravitational wave cosmology, especially related to LISA, aligns with the next frontier in observational physics. By continuing to connect young scientists, global institutions, and frontier physics, he will play a pivotal role in both advancing science and making it more inclusive. His long-term influence will be felt across academia, policy, and outreach.

Publications Top Notes

📄 Particle Production from Phase Transition Bubbles
  • Authors: Henda Mansour, Bibhushan Shakya

  • Journal: Physical Review D

  • Year: 2025

📄 Aspects of Particle Production from Bubble Dynamics at a First Order Phase Transition
  • Author: Bibhushan Shakya

  • Journal: Physical Review D

  • Year: 2025

📄 Nonthermal Heavy Dark Matter from a First-Order Phase Transition
  • Authors: G. Giudice, H.M. Lee, A. Pomarol, B. Shakya

  • Journal: Journal of High Energy Physics (JHEP)

  • Year: 2024

📄 White Paper on Light Sterile Neutrino Searches and Related Phenomenology
  • Authors: Multiple authors (including Bibhushan Shakya)

  • Journal: Journal of Physics G: Nuclear and Particle Physics

  • Year: 2024

📄 Bouncing Dark Matter
  • Authors: L. Puetter, J.T. Ruderman, E. Salvioni, B. Shakya

  • Journal: Physical Review D

  • Year: 2024

 

Marilyn Bishop | Theoretical Advances | Best Researcher Award

Dr. Marilyn Bishop | Theoretical Advances | Best Researcher Award

Associate Professor at Virginia Commonwealth University | United States

Marilyn F. Bishop is a tenured Associate Professor of Physics at Virginia Commonwealth University since 1986. She earned her Ph.D. in Physics from the University of California, Irvine in 1976. With a strong foundation in mathematics and physics, she has developed a multifaceted academic career blending theoretical physics with biophysical research. Bishop’s extensive work spans decades, contributing to both scientific understanding and educational advancements, making her a respected figure in physics education and research communities.

👨‍🎓Profile

Scopus

ORCID

🎓 Early Academic Pursuits

Bishop’s academic journey began with dual Bachelor’s degrees in Physics (1971) and Mathematics (1972) from UC Irvine, followed by a Master’s (1973) and Ph.D. in Physics (1976) from the same institution. She started as a Research Assistant at UC Irvine, honing her skills in theoretical physics. Early postdoctoral work at Purdue University and a visiting scientist role at Technische Universität München reflect her deep engagement with surface physics and condensed matter topics, establishing a strong foundation for her future research and teaching career.

💼 Professional Endeavors

Since 1986, Marilyn Bishop has been a key faculty member at VCU, earning tenure in 1990. Her earlier roles include Assistant Professor at Drexel University and consulting for Purdue University’s Physics Department. She has also been a Fellow at the Center for the Study of Biological Complexity, integrating physics with biological applications. Her professional work balances academic research, collaborative projects, and consulting, emphasizing both theoretical and computational physics, alongside mentoring students and contributing to interdisciplinary scientific communities.

🔬 Contributions and Research Focus

Bishop’s research emphasizes surface polaritons, spatially dispersive materials, and light scattering phenomena, particularly relating to biophysical systems like sickle hemoglobin polymerization. She has published extensively on surface exciton polaritons, Raman scattering, and spin susceptibility in electron gases. Her interdisciplinary work bridges physics and biology, supported by NIH grants focused on computational modeling of cardiopulmonary physiology. Her innovative use of photonic band structure methods to study biological tissues, such as the eye’s cornea, marks a notable contribution to biophysics.

🌟 Impact and Influence

Marilyn Bishop’s impact is seen through her numerous publications, presentations, and invited talks at major physics conferences like the APS March Meetings. She has helped shape understanding in condensed matter physics and biophysics, fostering collaboration between physics and biological sciences. Her research has influenced studies on electron interactions, spin susceptibility, and optical properties of materials, inspiring new computational approaches. She is a mentor to students and colleagues, advancing physics education and encouraging interdisciplinary exploration.

📖 Academic Cites

Her scholarly work has been cited widely in condensed matter physics and biophysics, particularly her studies on surface polaritons and electron gas spin susceptibility. Papers published in prestigious journals like Physical Review B and Physical Review Letters demonstrate her research rigor and relevance. Participation in workshops such as the NSF’s Materials Theory and her role in presenting at over 50 conferences have further solidified her standing in the scientific community, influencing ongoing research in theoretical and applied physics.

🧠 Research Skills

Marilyn Bishop possesses advanced skills in theoretical modeling, computational physics, and light scattering techniques. She developed Mathematica programs for physics visualization and data analysis, pioneering online homework systems in physics education. Her expertise extends to Monte Carlo simulations, photonic band structure calculations, and modeling complex biological systems. Her research methodology combines rigorous mathematical frameworks with computational tools to explore physical phenomena at both micro and macro scales, enhancing interdisciplinary research capabilities.

👩‍🏫 Teaching Experience

Bishop has a rich teaching portfolio, delivering courses from introductory physics labs to advanced graduate seminars in quantum mechanics, electromagnetism, and theoretical mechanics. She created new courses like Physics of Sound and Music and integrated Mathematica visualization tools into the curriculum. Known for developing online homework and detailed instructional materials, Bishop has mentored numerous students and collaborated with colleagues to enhance physics pedagogy at VCU, combining research insights with effective teaching strategies.

🏆 Awards and Honors

Her accolades include the Drexel University Research Scholar Award, membership in Sigma Xi, and the VCU SEED Award (2022-2023) for innovative research proposals. She also earned recognition early in her career with the First Place in the Writer’s Division of the Advertiser-Press Awards (1969). Bishop has secured multiple NIH grants supporting research and education, as well as industry funding, underscoring her research’s impact and her commitment to scientific excellence and mentorship.

🔮 Legacy and Future Contributions

Marilyn F. Bishop’s legacy lies in her interdisciplinary research bridging physics and biology, innovative teaching methods, and mentorship. Her ongoing work on sickle-cell hemoglobin structure and computational biophysics continues to push boundaries. As a tenured professor and research fellow, she is poised to influence future generations through continued scholarship, course development, and collaborative projects. Her integration of computational tools and physical theory sets a strong foundation for future scientific and educational advancements.

Publications Top Notes

Entropies of the Classical Dimer Model

  • Authors: John C. Baker, Marilyn F. Bishop, Tom McMullen
    Journal: Entropy
    Year: 2025

An α-chain modification rivals the effect of fetal hemoglobin in retarding the rate of sickle cell fiber formation

  • Authors: E.H. Worth, M.K. Fugate, K.C. Grasty, P.J. Loll, Marilyn F. Bishop, F.A. Ferrone
    Journal: Scientific Reports
    Year: 2023

Entropy of Charge Inversion in DNA including One-Loop Fluctuations

  • Authors: M.D. Sievert, Marilyn F. Bishop, Tom McMullen
    Journal: Entropy
    Year: 2023

Superlinear increase of photoluminescence with excitation intensity in Zn-doped GaN

  • Authors: M.A. Reshchikov, A.J. Olsen, Marilyn F. Bishop, Tom McMullen
    Journal: Physical Review B – Condensed Matter and Materials Physics
    Year: 2013

The Sickle-Cell Fiber Revisited

  • Authors: Marilyn F. Bishop, Frank A. Ferrone
    Journal: Biomolecules
    Year: 2023

 

 

Bei Chen | High energy physics | Best Researcher Award

Ms. Bei Chen | High energy physics | Best Researcher Award

Tianjin University of Technology | China

Chen Bei is a dynamic Photoelectric Chip Engineer specializing in Condensed Matter Physics with a focus on inorganic semiconductor materials and devices. With solid academic roots and research training from prestigious institutions like Tianjin University of Technology and National University of Defense Technology, Chen Bei is known for his hands-on expertise in photoelectric device fabrication, characterization, and broadband photodetectors. His works contribute to both civilian innovations and defense technologies, demonstrating a rare blend of academic excellence and applied engineering acumen.

👨‍🎓Profile

Scopus

🎓 Early Academic Pursuits

Chen Bei began his academic journey in Physics at Inner Mongolia University for Nationalities, where he ranked Top 3 of 50 students and held a leadership role as Vice Minister in the student organization department. His undergraduate studies emphasized quantum mechanics, solid-state physics, and electrodynamics, laying the groundwork for a career in advanced material science. His academic excellence continued with a Master’s in Condensed Matter Physics at Tianjin University of Technology, where he consistently ranked in the top 5 and received competitive scholarships and teaching responsibilities.

💼 Professional Endeavors

Currently serving as a Photoelectric Chip Engineer at the Jiangtian Research Group (National University of Defense Technology), Chen Bei’s role includes testing photoelectric chip packaging, bare die analysis, and optical path construction. This position builds on his experience in device fabrication, gained through years of semiconductor research. His ongoing work explores integration strategies for military-grade silicon-based photonic systems, marking a critical step in real-world technological deployment. His engineering contributions are aligned with national priorities and show potential for both academic and industrial breakthroughs.

🔬 Contributions and Research Focus

Chen Bei’s research spans self-powered broadband photodetectors, artificial retina simulation, optically controlled logic, and device integration for defense. Notable among these is his published work in ACS Applied Materials & Interfaces, where he developed a CuInS₂/SnO₂-based detector for encrypted optical communication. His focus on interfacial engineering using TiO₂ layers and metal ion doping shows deep engagement with optimizing device sensitivity and functionality across UV–Vis–NIR bands. These contributions are not only novel but also have tangible technological applications.

🌐 Impact and Influence

Chen Bei’s research has already gained peer recognition, with publications in high-impact journals and ongoing projects that promise cross-disciplinary relevance in biophotonics, optoelectronics, and secure communications. His work on retina-inspired photodetectors and photoelectric logic systems can significantly influence medical imaging, wearable sensors, and neuromorphic computing. Within his research institutions, he is recognized as a bridge between theory and application, contributing meaningfully to team outcomes while enhancing national R&D capabilities in semiconductor optics.

📚 Academic Citations

Chen Bei’s primary publication in ACS Applied Materials & Interfaces has received early attention in the material sciences and applied physics community. His upcoming article in Materials Today Energy a high-impact journal will further solidify his standing in energy-sensitive optoelectronic applications. With growing citation potential and interdisciplinary value, his publications are expected to form reference points for future research in low-power photoelectronic systems and bio-inspired photonic devices.

🧪 Research Skills

Chen Bei possesses strong experimental proficiency, including semiconductor material synthesis (spin-coating, hydrothermal, chemical bath deposition) and advanced characterization (SEM, TRPL, XRD, UV-Vis spectroscopy). His fluency with electronic instrumentation like Keithley source meters, vector network analyzers, and electrochemical workstations enables accurate and nuanced analysis of device behavior. He also designs and fabricates devices independently skills that mark him as a complete researcher from concept to validation. His strong grip on Origin, JADE, and Layout software also facilitates precise data interpretation and device simulation.

👨‍🏫 Teaching Experience

As a graduate teaching assistant at Tianjin University of Technology, Chen Bei supported students in both practical laboratory sessions and coursework in advanced physics topics. His ability to explain complex concepts like semiconductor devices, photonic behavior, and materials characterization reflects his aptitude for mentorship. He played a pivotal role in connecting theoretical learning with lab-based exploration an experience that underlines his capacity to contribute in academic or training-focused environments.

🏅 Awards and Honors

Chen Bei has consistently ranked among the top students, earning Second-Class Scholarships during both his bachelor’s and master’s studies. His selection as Vice Minister of the student organization department reflects strong leadership and organizational abilities. Recognition as a graduate assistant also attests to his teaching competence and trust within the academic community. These accolades, coupled with peer-reviewed publications, position him as a rising talent in applied physics and engineering.

🌟 Legacy and Future Contributions

Chen Bei is positioned to become a thought leader in optoelectronic integration and semiconductor device engineering. His work has the potential to impact military-grade communication, biomimetic sensors, and self-powered IoT technologies. With growing experience in multidisciplinary collaborations, and exposure to real-world implementation scenarios, he is set to define the next wave of photoelectric innovation. As he continues to evolve, his blend of scientific insight, engineering rigor, and innovation-minded focus will be instrumental in shaping future technologies.

Publications Top Notes

UV-Vis-NIR Broad-Band Self-Powered CuInS₂/SnO₂ Photodetectors and the Application in Encrypted Optical Communication
  • Authors: Chen Be
    Journal: ACS Applied Materials & Interfaces
    Year: 2024

Insertion Layer of TiO₂ to Improve the UV−Vis−NIR Photoresponse Characteristics of CuInS₂/SnO₂ Self-Powered Photodetectors and Its Application in Artificial Retinas
  • Authors: Chen Bei
    Journal: Materials Today Energy
    Year: 2024

 

Lijun Wang | High energy physics | Best Researcher Award

Dr. Lijun Wang | High energy physics | Best Researcher Award

Changzhou University | China

Dr. Lijun Wang is a dynamic researcher and educator specializing in thermoelectric materials, currently a Research Fellow at the Queensland University of Technology and previously a Lecturer at Changzhou University. With a Ph.D. in Materials Science and Engineering from China University of Petroleum (Beijing) and a visiting Ph.D. experience at The University of Queensland, Dr. Wang brings a global perspective to advanced materials research. His expertise bridges energy materials, nanostructures, and thermal transport, underlined by over 28 peer-reviewed publications, 5 patents, and an impressive academic citation record.

👨‍🎓Profile

Scopus

Google scholar

🎓 Early Academic Pursuits

Dr. Wang began his academic journey with a Bachelor’s degree in Polymer Materials from Liaocheng University, followed by a Master’s in Textile and Material Engineering from Dalian Polytechnic University. His drive for deeper scientific exploration led to a Ph.D. in Materials Science and Engineering at China University of Petroleum-Beijing, supported by the China Scholarship Council. As a Visiting Ph.D. Researcher at The University of Queensland, he honed his skills in nanomaterials and thermoelectrics, laying the foundation for his future contributions in thermal conductivity engineering and energy conversion systems.

🧑‍🔬 Professional Endeavors

Dr. Wang’s professional career features a dual academic appointment—a Lecturer at Changzhou University since 2020 and a Research Fellow at Queensland University of Technology starting in 2024. At Changzhou University, he has taught and developed several key materials science and chemistry courses. His academic leadership also includes supervising Master’s and undergraduate research projects. His international experience and involvement in multi-institutional collaborations highlight his role in advancing research on SnTe-based and flexible thermoelectric systems, contributing to global energy solutions and academic excellence.

🔬 Contributions and Research Focus

Dr. Wang’s research is focused on thermoelectric materials, especially SnTe-based systems, thermal conductivity minimization, and nanostructure engineering. He has significantly contributed to the design of high-performance materials using doping strategies, phonon scattering mechanisms, and solution-based synthesis methods. His work addresses critical needs in flexible electronics, energy harvesting, and battery thermal management. Dr. Wang’s impactful studies have been published in prestigious journals like ACS Applied Materials & Interfaces, Chemical Society Reviews, and Nano Energy, where he frequently serves as first author or co-corresponding author.

🌏 Impact and Influence

Dr. Wang’s research has attracted over 700 Google Scholar citations, demonstrating significant scientific influence. His innovations in SnTe thermoelectric materials have received international recognition, contributing to advancements in green energy technologies and sustainable materials. He has co-authored in high-impact journals such as Advanced Science, ACS Nano, and Acta Materialia, influencing the academic and industrial communities alike. His patented technologies represent tangible outputs of academic research into real-world applications, particularly in energy-efficient electronic systems.

📚 Academic Citations

With 28 publications, including 10 first-author papers, 5 patents, and an H-index of 12, Dr. Wang’s work has achieved 704 citations to date. His most cited work on Se/Cd Co-doped SnTe has been referenced 56 times, highlighting its impact on thermoelectric research. Several of his publications in ACS Applied Materials, Nano Energy, and Chemical Engineering Journal are foundational to lattice thermal conductivity and nanostructuring techniques. His research continues to influence new generations of material scientists, both through citations and collaborative projects.

🛠️ Research Skills

Dr. Wang possesses a strong arsenal of experimental techniques, including microwave solvothermal synthesis, nanostructure design, and high-resolution microscopy. His work involves thermal property measurements, electronic transport analysis, and computational modeling of energy materials. He is skilled in collaborative research, project management, and multidisciplinary problem-solving, especially in the fields of thermoelectrics, photovoltaics, and membrane materials. His ability to translate fundamental science into technological innovation is reflected in both his patented methods and high-impact publications.

🧑‍🏫 Teaching Experience

At Changzhou University, Dr. Wang has taught and developed curriculum for four core undergraduate courses: Material Economy and Management, Organic Membrane Materials, Foundations of Crystallography, and Experimental Chemistry from 2020 to 2023. His innovative teaching approach integrates theoretical grounding with practical applications, inspiring students toward research excellence. As a certified higher education lecturer and Master’s thesis supervisor, he has mentored over 10 undergraduate and graduate students, many of whom have pursued advanced studies and research roles under his guidance.

🏆 Awards and Honors

Dr. Wang has received numerous prestigious awards including the Chinese Government Award for Outstanding Joint PhD Students Abroad (2017) and the National PhD Scholarship. He also won the Outstanding Poster Award at the Chinese Materials Conference 2017. His teaching and academic merits earned him the Higher Education Teaching Qualification Certificate and Master’s Supervisor Certification in China. His early academic excellence was recognized with multiple university scholarships and an Outstanding Graduate Award a testament to his consistent academic dedication and leadership.

🚀 Legacy and Future Contributions

Dr. Wang aims to pioneer the next generation of energy materials through advanced thermoelectric systems, flexible devices, and scalable synthesis methods. With his evolving role at Queensland University of Technology, he is poised to lead international collaborations, contribute to climate-conscious technologies, and mentor a new wave of materials scientists. His growing body of patented inventions and scholarly works will shape the future of energy conversion technologies. Dr. Wang’s legacy lies in his dedication to bridging fundamental research with real-world impact, paving a sustainable path forward.

Top Noted Publications

Zn/In dual doping enhances the thermoelectric performance of SnTe
  • Authors: Lijun Wang, Xiao-Lei Shi, Lvzhou Li, Cuicui Dong, Pengcheng Miao, Ziyi Shen, Ningyi Yuan, Jianning Ding, Shuqi Zheng, Zhi-Gang Chen
    Journal: Journal of Physics: Materials
    Year: 2024

Advances in solid-state and flexible thermoelectric coolers for battery thermal management systems
  • Authors: Lijun Wang, Xiao-Lei Shi, Yicheng Yue, Lvzhou Li, Cuicui Dong, Jianjun Guan, Jianning Ding, Ningyi Yuan, Zhi-Gang Chen
    Journal: Soft Science
    Year: 2024

Advancing flexible thermoelectrics for integrated electronics
  • Authors: Xiao-Lei Shi, Lijun Wang, Wanyu Lyu, Tianyi Cao, Wenyi Chen, Boxuan Hu, Zhi-Gang Chen*
    Journal: Chemical Society Reviews
    Year: 2024

Zinc Doping Induces Enhanced Thermoelectric Performance of Solvothermal SnTe
  • Authors: Lijun Wang, Xiao-Lei Shi*, Lvzhou Li, Min Hong, Bencai Lin, Pengcheng Miao, Jianning Ding, Ningyi Yuan, Shuqi Zheng*, Zhi-Gang Chen*
    Journal: Chemistry – An Asian Journal
    Year: 2024

Hierarchical Structuring to Break the Amorphous Limit of Lattice Thermal Conductivity in High-Performance SnTe-Based Thermoelectrics
  • Authors: Lijun Wang, Min Hong, Qiang Sun, Yuan Wang, Luo Yue, Shuqi Zheng*, Jin Zou*, Zhi-Gang Chen*
    Journal: ACS Applied Materials & Interfaces
    Year: 2020

 

 

 

 

Paolo Valtancoli | Particle physics and cosmology | Best Researcher Award

Dr. Paolo Valtancoli | Particle physics and cosmology | Best Researcher Award

Dipartimento di Fisica e Astronomia | Italy

Paolo Valtancoli is an accomplished physicist whose career has spanned over four decades, focusing on the intersections of gravitational physics, quantum field theory, and noncommutative geometry. He obtained his Laurea in Physics from the University of Florence in 1984 with a thesis on gravitational anomalies and earned his Ph.D. in Pisa in 1989, delving into chiral anomalies within field theory. Since 1991, he has been a researcher at the University of Florence, contributing prolifically with over 60 scientific publications in leading physics journals.

👨‍🎓Profile

Scopus

ORCID

🎓 Early Academic Pursuits

Paolo Valtancoli’s academic journey began in Florence, where he graduated with a degree in Physics in 1984, presenting a thesis on gravitational anomalies a field deeply tied to the foundations of quantum gravity. His intellectual rigor led him to pursue a Ph.D. in Pisa, completed in 1989, with groundbreaking research on chiral anomalies and their interpretation through the vacuum structure of field theory. These formative years were marked by a keen interest in theoretical consistency in quantum field models, laying the groundwork for his lifelong research focus.

🧑‍🔬 Professional Endeavors

Since May 1991, Paolo Valtancoli has served as a permanent researcher at the University of Florence, contributing consistently to the field of theoretical physics. His role includes affiliations with INFN (Istituto Nazionale di Fisica Nucleare), enhancing collaborative research. With over 60 peer-reviewed publications, Valtancoli has explored diverse theoretical domains including gravity in lower dimensions, minimal length theories, noncommutative geometry, and black hole physics. His career reflects a dedication to independent, high-quality scholarship, with a strong presence in both national and international physics communities.

🧠 Contributions and Research Focus

Valtancoli’s research spans several frontier areas in theoretical physics, notably: (2+1)-dimensional gravity, Chern-Simons supergravity, Snyder geometry, and noncommutative space-time models. His work on minimal length frameworks, such as those modifying the Heisenberg uncertainty principle, plays a pivotal role in connecting quantum mechanics and gravity. Publications like “Bumblebee gravity with cosmological constant” and “Dirac oscillator and minimal length” exemplify his ability to tackle complex mathematical structures in a physically meaningful way. His deep engagement with black hole thermodynamics, gravitational waves, and f(R) inflation models further highlight a broad, yet coherent, research trajectory.

🌍 Impact and Influence

Valtancoli’s impact lies in his sustained scholarly output and his early pioneering work on anomalies, which has influenced subsequent developments in quantum gravity. His detailed modeling of (2+1) dimensional systems has contributed to the mathematical understanding of spacetime singularities, especially in topologically nontrivial scenarios. His contributions to fuzzy geometry and noncommutative gauge theory are widely cited by theorists seeking to extend the Standard Model or quantize gravity. By merging rigorous formalism with conceptual depth, he has shaped theoretical directions for young researchers in both Italian and international contexts.

📚 Academic Citations

Across his 60+ works, Valtancoli has accumulated citations across key subfields such as quantum gravity, noncommutative geometry, and black hole physics. His early collaboration with figures like Luca Lusanna and Andrea Cappelli led to widely referenced papers on Dirac observables and topological anomalies. Articles like “Spontaneous symmetry breaking in the nonAbelian anyon fluid” and “Gravity on a fuzzy sphere” remain key references in niche but impactful areas. His citations reveal a consistent thematic alignment with advanced quantum field theories and a lasting presence in scholarly discourse.

🧪 Research Skills

Valtancoli demonstrates exceptional skills in analytical methods, particularly in path integrals, canonical quantization, and field-theoretic anomaly computations. His mathematical fluency extends to differential geometry, Lie algebra analysis, and noncommutative algebraic structures, essential for modeling quantum space-time. His ability to generate exact solutions in modified gravity theories, including f(R) and Bumblebee models, reflects a refined capacity for integrating formal mathematics into physical theory-building. His independence and precision make him a valuable contributor to any theoretical or interdisciplinary physics project.

👨‍🏫 Teaching Experience

Though primarily a researcher, Paolo Valtancoli has also contributed to the education of young physicists through graduate-level mentorship and supervision of theses at the University of Florence. His deep subject matter expertise enhances advanced instruction in general relativity, field theory, and quantum mechanics. By integrating his own research into teaching, he offers students firsthand insights into active research areas like noncommutative geometry and gravity models. His consistent academic presence since 1991 makes him a pillar of continuity for the university’s theoretical physics curriculum.

🏅 Awards and Honors

While no major international prizes are listed, Valtancoli’s career longevity, publication record, and continuous academic appointment since 1991 reflect institutional recognition and respect. His collaborations with prestigious institutions like INFN, CERN, and LBL Berkeley, and contributions to renowned conferences such as Rencontres de Moriond, show a high level of peer acknowledgment. Publishing regularly in journals like Annals of Physics, Nuclear Physics B, and International Journal of Modern Physics A, underscores his scholarly reliability and quality. These are honors earned through sustained academic excellence.

🧭 Legacy and Future Contributions

Paolo Valtancoli’s legacy lies in his rich and consistent body of theoretical work that will remain valuable as physics progresses toward quantum gravity and beyond. His models involving minimal length, noncommutative spaces, and gravitational anomalies anticipate many themes in emerging quantum spacetime theories. As theoretical physics increasingly intersects with mathematical rigor, Valtancoli’s contributions serve as a bridge between classical theory and quantum innovation. Looking ahead, his continued research now entering its fifth decade promises further insights into the foundations of space, time, and matter.

Top Noted Publications

Bumblebee gravity with cosmological constant

  • Author: P. Valtancoli
    Journal: Annals of Physics
    Year: 2025

Euclidean black holes and spin connection

  • Author: P. Valtancoli
    Journal: (Institutional Repository)
    Year: 2024

Translation in momentum space and minimal length

  • Author: P. Valtancoli
    Journal: International Journal of Modern Physics A
    Year: 2022

Generating perfect fluid solutions in isotropic coordinates

  • Author: P. Valtancoli
    Journal: Annals of Physics
    Year: 2020

Exactly solvable f(R) inflation

  • Author: P. Valtancoli
    Journal: International Journal of Modern Physics D
    Year: 2019

 

Joseph Brizar Okaly | Theoretical Advances | Best Researcher Award

Dr. Joseph Brizar Okaly | Theoretical Advances | Best Researcher Award

Researcher at GHS Minkama | Cameroon

Dr. Okaly Joseph Brizar is a distinguished physicist, educator, and academic leader. Holding a Ph.D. in Physics from the University of Yaounde I, he currently serves as the Vice-Principal and Physics Lecturer at Government High School Minkama, under the Ministry of Secondary Education, Cameroon. His research spans biophysics, statistical physics, and nonlinear systems, earning him international recognition. Married and a father of six, Dr. Okaly balances a robust academic career with administrative duties and remains committed to scientific excellence and educational reform in Cameroon.

👨‍🎓Profile

Scopus

ORCID

🎓 Early Academic Pursuits

Dr. Okaly’s academic journey began with a Baccalaureate in Mathematics and Physics in 2000 from GHS Obala. He pursued higher education at the University of Yaounde I, obtaining a Bachelor’s (2008), Master’s (2013), and ultimately a Ph.D. in Physics (2019). His training included teacher certification programs (Grades 1 & 2) from the High Teacher Training College, equipping him with both scientific acumen and pedagogical skills. His doctoral thesis, “Base pairs opening and bubble transport in DNA systems,” laid the foundation for his research in biological and condensed matter systems.

💼 Professional Endeavors

With over 20 years of professional experience, Dr. Okaly has held diverse academic and administrative roles. He has taught Physics across secondary schools and higher institutions, including Polytech d’Obala and the University of Yaounde I. Rising through the ranks, he served as Head of Department, Level Responsible, and now as Vice-Principal at GHS Minkama. His dual roles reflect strong leadership, strategic oversight, and dedication to education management. His career exemplifies the integration of academic rigor and institutional development in Cameroon’s education sector.

🔬 Contributions and Research Focus

Dr. Okaly’s research is rooted in nonlinear dynamics, particularly in DNA systems, earthquake modeling, and long-range interactions. He has authored 12 peer-reviewed publications in respected journals like Chaos, Phys. Rev. E, and Physica A. His work on bubble transport in DNA, damped systems, and statistical modeling demonstrates a deep commitment to biophysics and molecular simulations. He has collaborated extensively with notable researchers, exploring themes such as soliton dynamics, hydrodynamic friction, and external force interactions bridging theoretical physics with real-world biological and geological systems.

🌍 Impact and Influence

Dr. Okaly’s scholarly work significantly advances the understanding of complex physical systems, particularly in biomolecular physics and earthquake wave modeling. His contributions have improved theoretical models used in medical research and environmental studies. As a senior educator and administrator, he has mentored hundreds of students, fostering a new generation of physicists in Cameroon. His influence extends beyond the classroom into national science policy through curriculum reform and educational leadership. His research has gained international recognition, shaping the discourse in condensed matter and statistical physics communities.

📚 Academic Citations

Dr. Okaly’s research has been cited in global academic literature, underscoring its relevance in nonlinear science, biophysics, and geophysics. Articles such as “Nonlinear dynamics of damped DNA systems with long-range interaction” and “Base pair opening in damped helicoidal models” are often referenced by scholars exploring molecular dynamics and DNA stability. His 2025 publication in the European Physical Journal Plus reflects continued momentum in cutting-edge research. The increasing citation rate of his work showcases his growing impact on the international physics research community.

🧪 Research Skills

Dr. Okaly demonstrates exceptional skill in theoretical modeling, differential equations, numerical simulations, and interdisciplinary analysis. His expertise in simulating molecular systems, such as DNA, showcases a deep understanding of long-range interaction effects and damped dynamics. He skillfully integrates mathematical physics, statistical tools, and computational methods to model complex phenomena in biological and physical systems. This blend of skills allows him to contribute to a wide range of physics applications, from molecular biology to earthquake wave propagation a true reflection of scientific versatility and innovation.

👨‍🏫 Teaching Experience

A seasoned educator, Dr. Okaly has taught Physics at various academic levels since 2004. His experience ranges from secondary schools (GHS Guéré, GHS Niga, GTHS Ngaoundéré) to higher institutions like the University of Yaounde I. His teaching combines conceptual clarity, experimental insights, and technology-integrated learning. As Vice-Principal and Department Head, he has introduced pedagogical reforms, mentored junior teachers, and led curriculum innovations. His dedication to teaching has impacted thousands of students, many of whom have pursued STEM careers, thereby contributing to national development.

🏅 Awards and Honors

While formal awards are not explicitly listed, Dr. Okaly’s appointments to leadership positions (such as Vice-Principal and Head of Department) reflect institutional recognition of his academic excellence, integrity, and professionalism. His selection to collaborative research projects with senior physicists and publication in renowned international journals is a testament to his merit and contribution to science. He remains a strong candidate for future academic awards, especially in physics research, science education, and educational leadership, with a proven record of impactful scholarship and service.

🌟 Legacy and Future Contributions

Dr. Okaly Joseph Brizar is establishing a lasting legacy through his contributions to science, education, and community leadership. He is actively shaping the next generation of Cameroonian scientists while producing cutting-edge research on DNA dynamics and earthquake modeling. Looking ahead, he aims to expand international collaborations, secure research funding, and promote scientific innovation in Africa. His long-term vision includes bridging education and research, developing science policy, and enhancing Africa’s presence in the global scientific arena. His legacy will reflect knowledge, mentorship, and visionary leadership.

Top Noted Publications

Nonlinear dynamics of damped DNA systems with long-range interaction

  • Authors: J. B. Okaly*, A. Mvogo, R. L. Woulaché, T. C. Kofané
    Journal: Communications in Nonlinear Science and Numerical Simulation
    Year: 2018

Semi-discrete Breather in a Helicoidal DNA Double Chain-Model

  • Authors: J. B. Okaly*, A. Mvogo, R. L. Woulaché, T. C. Kofané
    Journal: Wave Motion
    Year: 2018

Nonlinear dynamics of DNA systems with inhomogeneity effects

  • Authors: J. B. Okaly*, A. Mvogo, R. L. Woulaché, T. C. Kofané
    Journal: Chinese Journal of Physics
    Year: 2018

Base pairs opening and bubble transport in damped DNA dynamics with transport memory effects

  • Authors: J. B. Okaly*, F. II Ndzana, R. L. Woulaché, C. B. Tabi, T. C. Kofané
    Journal: Chaos: An Interdisciplinary Journal of Nonlinear Science
    Year: 2019

Solitary wavelike solutions in nonlinear dynamics of damped DNA systems

  • Authors: J. B. Okaly*, F. II Ndzana, R. L. Woulaché, T. C. Kofané
    Journal: European Journal of Physics Plus
    Year: 2019

 

Hayriye SUNDU | High energy physics | Best Researcher Award

Prof. Hayriye SUNDU | High energy physics | Best Researcher Award

Professor at ISTANBUL MEDENIYET UNIVERSITY | Turkey

Assoc. Prof. Dr. Hayriye Sundu Pamuk is a seasoned theoretical physicist specializing in high energy physics and QCD sum rules, currently serving at Istanbul Medeniyet University. With over two decades of academic experience, she has made impactful contributions to the field of exotic hadrons, publishing extensively in high-impact journals. Her work spans theoretical predictions of heavy tetraquark states, hybrid mesons, and thermal properties of hadronic matter. She is recognized for her rigorous research, effective mentorship, and leadership roles in academia.

👨‍🎓Profile

Google scholar

Scopus

📘 Early Academic Pursuits

Dr. Hayriye Sundu Pamuk began her academic journey with a B.Sc. in Physics Education from Balıkesir University in 1998. Her passion for particle physics led her to Middle East Technical University (METU), where she completed both her M.Sc. and Ph.D. in High Energy Physics under the supervision of Prof. Dr. Erhan Onur İltan. Her graduate research focused on the Two Higgs Doublet Model (2HDM), addressing phenomena such as lepton flavor violation and the muon anomalous magnetic moment. These early explorations laid the theoretical groundwork for her future contributions in particle phenomenology and quantum field theory.

🧑‍🔬 Professional Endeavors

Her professional academic path includes notable roles at top institutions. From 2000 to 2007, she served as a research and teaching assistant at METU. In 2007, she joined Kocaeli University as a faculty member, advancing from Dr. Assistant to Associate Professor. Her tenure there spanned 16 years, enriched by administrative leadership and mentorship of graduate theses. In 2023, she transitioned to the Faculty of Engineering and Natural Sciences at Istanbul Medeniyet University, where she continues to lead innovative research and graduate instruction in advanced theoretical physics topics.

🔬 Contributions and Research Focus 

Dr. Sundu Pamuk’s primary research lies in the phenomenology of exotic hadrons, particularly tetraquarks and hybrid mesons, explored through QCD sum rules and thermal field theory. Her studies contribute to understanding the non-perturbative aspects of QCD, and she is often cited for theoretical analyses of fully-heavy quark systems such as bbcc and bcbc states. Her recent works  appearing in journals like Phys. Rev. D, Eur. Phys. J. C, and Phys. Lett. B are instrumental in predicting the mass spectra, decay constants, and thermal behaviors of these particles, bridging theory with potential experimental discovery.

🌍 Impact and Influence

Dr. Sundu Pamuk’s influence in high-energy physics is reflected in her collaborations across multiple institutions and countries, especially with leading researchers like K. Azizi and S.S. Agaev. Her papers are widely downloaded, cited, and reviewed within the theoretical particle physics community. As a graduate mentor, she has produced scholars contributing to academia and research. Her investigations are especially relevant in the era of LHC upgrades and heavy ion collisions, where her predictions guide experimental searches. Her administrative roles demonstrate her strategic vision for academic excellence and her commitment to building research capacity.

📈 Academic Citations

With more than 20 SCI-indexed publications in a short period (2023–2025), Dr. Sundu Pamuk has maintained a high publication density. Her articles in reputable journals such as Phys. Rev. D and Eur. Phys. J. C have garnered significant citations, particularly in areas involving exotic quark configurations. Her collaborative works on thermal properties of tetraquarks and decay mechanisms of hybrid mesons are frequently referenced by fellow theorists and computational physicists. Her academic footprint is steadily growing, with Google Scholar and ResearchGate profiles that reflect her influence, consistency, and scientific originality.

🛠️ Research Skills 

Dr. Sundu Pamuk demonstrates proficiency in computational techniques, particularly QCD sum rules, operator product expansion, and thermal field theory. She is adept at performing analytical derivations and numerical modeling, frequently applying them to predict hadron spectra, leptonic decay constants, and transition amplitudes. Her ability to bridge theoretical frameworks with real-world particle behavior makes her a sought-after collaborator. She also employs tools such as Mathematica, Maple, and other symbolic computation platforms. Her focus on rigor, reproducibility, and mathematical consistency has earned her strong credibility in quantum field theory and particle phenomenology.

👩‍🏫 Teaching Experience

An accomplished educator, Dr. Sundu Pamuk has taught a wide range of graduate and undergraduate courses, including Advanced Quantum Physics, Statistical Physics, Thermodynamics, and Electromagnetic Theory. She is noted for her clarity of explanation, student mentorship, and the ability to simplify complex physical concepts. At both Kocaeli University and Istanbul Medeniyet University, she has introduced innovative approaches in courses such as Numerical Methods in High Energy Physics. Her consistent engagement with students beyond lectures through thesis advising, research projects, and workshops reflects her commitment to fostering scientific curiosity and critical thinking.

🏆 Awards and Honors

Dr. Sundu Pamuk’s academic excellence has been formally recognized with multiple Scientific Achievement Prizes from Kocaeli University (2011, 2012, 2016, 2017, 2019, 2021). She also received the Honour Students Prize during her doctoral studies at METU in 2004, highlighting early promise. Her repeated honors reflect sustained research output, dedication to teaching, and service to the academic community. These accolades serve as evidence of institutional and peer recognition, affirming her status as a leading scholar in particle physics and a role model for younger scientists in Turkey and beyond.

🌟 Legacy and Future Contributions

As a leading figure in exotic hadron physics, Dr. Sundu Pamuk is poised to make lasting contributions to quantum chromodynamics and beyond-standard-model physics. Her future work is expected to delve into multi-quark dynamics at extreme conditions, relevant for astrophysical phenomena and collider experiments. Her legacy will also include her influence on physics education, as her former students continue to shape research in Turkey and globally. With a strong foundation and growing international collaborations, she is well-positioned to lead interdisciplinary initiatives, contribute to policy in science education, and inspire the next generation of physicists.

Top Noted Publications

Fully heavy asymmetric scalar tetraquarks

  • Authors: S.S. Agaev, K. Azizi, H. Sundu
    Journal: European Physical Journal A
    Year: 2025

Scalar fully-charm and bottom tetraquarks under extreme temperatures

  • Authors: A. Aydın, H. Sundu, J.Y. Süngü, E. Veli Veliev
    Journal: European Physical Journal C
    Year: 2025

Hidden charm-bottom structures bcb̄c̄: Axial-vector case

  • Authors: S.S. Agaev, K. Azizi, H. Sundu
    Journal: Physics Letters B
    Year: 2025

Properties of the tensor state bc b̄ c̄

  • Authors: S.S. Agaev, K. Azizi, H. Sundu
    Journal: Physical Review D
    Year: 2025

Decays of the light hybrid meson 1⁻⁺

  • Authors: G.D. Esmer, K. Azizi, H. Sundu, S. Türkmen
    Journal: Physical Review D
    Year: 2025

 

Ahmed Abdelsalam | Theoretical Advances | Best Researcher Award

Mr. Ahmed Abdelsalam | Theoretical Advances | Best Researcher Award

Teaching assistant at Cairo University | Egypt

Ahmed Gamal Abdelsalam is a passionate theoretical physicist and teaching assistant at Cairo University, with deep involvement in quantum mechanics, plasma physics, and high-energy particle research. Originating from Giza, Egypt, Ahmed has consistently combined academic excellence with community service, showing both intellectual and social commitment. His journey from volunteer educator to published researcher reflects a blend of discipline, leadership, and scientific rigor. Known for his multi-disciplinary expertise, he contributes actively to Egypt’s academic and scientific development, with a strong potential to make lasting international contributions in physics and data modeling.

👨‍🎓Profile

Google scholar

🎓 Early Academic Pursuits

Ahmed began his academic career with a B.Sc. in Science from Cairo University in 2016. He enhanced his learning through prestigious summer schools at Zewail University and hands-on training at the National Research Center. His pursuit of knowledge led him to complete a Pre-Master’s program in 2019 and an M.Sc. in Science in 2021, specializing in theoretical physics. Through these experiences, Ahmed demonstrated early interest in particle interactions and quantum potentials, setting the foundation for future research. His commitment to academic excellence is supported by continuous training in plasma physics and modern physical theories.

💼 Professional Endeavors

Ahmed’s professional journey began with volunteer teaching in a literacy project (2011–2012), where he rose to team leader. From 2016 to 2018, he served as a military officer, leading operations with precision. Since 2018, he has worked as a teaching assistant at Cairo University, supporting courses in physics, research guidance, and laboratory instruction. These roles exhibit his leadership, discipline, and mentorship capabilities. His seamless transition between education, national service, and academia reflects strong adaptability, professional responsibility, and a dedication to societal development alongside academic growth.

🔬 Contributions & Research Focus

Ahmed’s research spans quarkonium spectroscopy, spin splitting, and magnetic interactions in particle systems. His most cited work “Bound state of heavy quarks using a general polynomial potential”—proposes novel models in quantum chromodynamics. He also co-authored a paper on space plasma phenomena in Scientific Reports (2025), marking his entry into applied space physics. His work explores complex mathematical approaches using Nikiforov-Uvarov methods, Schrödinger equations, and analytical modeling. Through this, Ahmed contributes significantly to modern theoretical physics, bridging foundational theory with computational applications in quantum systems and astrophysical plasmas.

🌍 Impact and Influence

Ahmed’s research impact is evident through citations, interdisciplinary topics, and recognition in global journals. His 2018 publication has 35 citations, reflecting its academic reach. By addressing subjects like quark-antiquark systems and Venusian magnetospheric behavior, his work influences both particle physics and space research domains. His research contributions provide analytical tools and spectral data for understanding subatomic forces and cosmic interactions, fostering cross-disciplinary innovation. Ahmed’s influence is not just in numbers but in the applicability of his findings to future space exploration and high-energy experiments, paving paths for emerging physicists in Egypt and beyond.

📊 Academic Citations

Ahmed has co-authored six notable publications. His standout paper on heavy quarks (2018) is cited 35 times, while other works such as the meson spectra (2022) and spin splitting (2020) have also drawn attention. His arXiv preprint and additional contributions collectively amount to over 50 citations, underscoring a growing academic presence. Published in respected journals like Advances in High Energy Physics, Results in Physics, and Scientific Reports, his works are referenced in research related to quantum theory, plasma physics, and nuclear interactions, affirming his role as a rising voice in theoretical and applied physics research.

🧠 Research Skills

Ahmed possesses advanced research skills in mathematical modeling, data fitting, and simulation of physical systems. He is proficient in programming languages like Python, Fortran, C, C++, and analytical tools such as IDL, Matlab, and Origin software. He applies numerical methods and theoretical frameworks to solve quantum field problems and interpret experimental data. His expertise in problem-solving, statistical analysis, and computational physics allows him to work across multiple physics disciplines. Ahmed also leverages Google Drive, Microsoft Office, and scientific visualization tools to organize, communicate, and present his findings clearly and professionally.

👨‍🏫 Teaching Experience

Ahmed has served as a teaching assistant at Cairo University since 2018, supporting undergraduate and postgraduate physics courses. His role includes lab instruction, tutorial sessions, and student mentoring, making complex theories accessible to learners. His earlier experience as a literacy teacher (2011–2012) equipped him with communication and leadership skills, further honed during his military officer training. Ahmed is known for fostering student engagement, using both traditional and digital platforms. His ability to blend academic rigor with student support makes him a well-rounded educator and a role model for aspiring Egyptian physicists.

🏅 Awards and Honors

While Ahmed has not listed formal awards, his academic journey reflects prestigious participation in elite programs like Zewail University’s Theoretical Physics School and BUE’s Plasma Physics Courses. His publications in indexed journals and the 2025 article in Scientific Reports signify a high level of peer recognition. His promotion within volunteer work and successful completion of military service also indicate commendable leadership and integrity. With growing citation counts and participation in national research programs, Ahmed has laid the groundwork for future awards in physics research, education, and innovation.

🚀 Legacy and Future Contributions

Ahmed is poised to become a leading researcher in theoretical and plasma physics. With experience in quantum mechanics, space physics, and analytical modeling, he is well-positioned to contribute to cutting-edge discoveries in astrophysics and particle interactions. He envisions deeper involvement in international collaborations, contributing to Egypt’s academic global presence. By mentoring future students and publishing impactful work, he aims to leave a lasting legacy of excellence, innovation, and service. His future may include Ph.D. studies, grant-winning research, and expanding his influence across global scientific communities.

Top Noted Publications

  • Bound state of heavy quarks using a general polynomial potential
    Authors: H. Mansour, A. Gamal
    Journal: Advances in High Energy Physics
    Year: 2018

  • Meson spectra using Nikiforov-Uvarov method
    Authors: H. Mansour, A. Gamal
    Journal: Results in Physics
    Year: 2022

  • Spin splitting spectroscopy of heavy Quark and Antiquarks systems
    Authors: H. Mansour, A. Gamal, M. Abolmahassen
    Journal: Advances in High Energy Physics
    Year: 2020

  • Two body problems with magnetic interactions
    Authors: H. Mansour, A. Gamal
    Year: 2019

  • Spectroscopy of the Quarkonium Systems for Heavy Quarks
    Authors: H. Mansour, A. Gamal
    Year: 2020