Zhaocang Meng | Computational Methods | Best Researcher Award

Assist. Prof. Dr. Zhaocang Meng | Computational Methods | Best Researcher Award

Institute of Modern Physics, Chinese Academy of Sciences | China

Dr. Zhaocang Meng is a materials physicist specializing in first-principles simulations, irradiation damage modeling, and additive manufacturing of advanced materials. He earned his Ph.D. in Science through a joint program between the Institute of Modern Physics, Chinese Academy of Sciences (CAS) and Lanzhou University. His research spans the atomic-scale behavior of defects, mechanical property evaluation, and high-throughput screening for material optimization. Currently based at the Institute of Modern Physics, CAS, he is an integral contributor to strategic projects funded by both national and provincial Chinese foundations.

👨‍🎓Profile

Scopus

🎓 Early Academic Pursuits

Dr. Meng began his academic journey at Northwest Normal University, majoring in Physics and Electronic Engineering, where he laid the groundwork in material science and theoretical physics. He continued his master’s studies at the Institute of Modern Physics, CAS, focusing on radiation effects and material behavior. His intellectual curiosity and growing expertise led to a Ph.D. (2018–2021) in a joint doctoral program between CAS and Lanzhou University, where he honed his skills in density functional theory (DFT) and multi-scale simulations, preparing him for a robust career in theoretical and computational materials science.

💼 Professional Endeavors

Since July 2021, Dr. Meng has served as a researcher at the Institute of Modern Physics, Chinese Academy of Sciences, contributing to major national research initiatives, including the CAS Strategic Priority Program. His role encompasses both theoretical modeling and applied computation for nuclear-grade materials, ceramics, and metallic systems. He is actively involved in Grain Boundary Segregation Engineering for SiC and BeO, and supports the development of neural network potentials. His practical contributions extend to thermophotovoltaic energy systems and irradiation-resilient structural materials, demonstrating a bridge between computational insight and real-world application.

🔬 Contributions and Research Focus 

Dr. Meng’s primary contributions lie in the atomistic modeling of radiation-induced defects, grain boundary behavior, and mechanical performance of ceramics and metals. His first-principles investigations in materials like Ti₃AlC₂, BeO, SiC, and Be₁₂Ti have revealed novel insights into defect–impurity interactions, hydrogen/helium diffusion, and segregation phenomena under extreme environments. He has also made impactful strides in the development of neural network potentials for materials like SiC, allowing large-scale simulations with quantum-level accuracy. His work directly supports the advancement of materials for nuclear reactors, space missions, and extreme-condition engineering.

🌍 Impact and Influence

Dr. Meng’s work has influenced fields such as nuclear materials, condensed matter theory, and computational materials science. His articles in high-impact journals like Physical Chemistry Chemical Physics, Journal of Nuclear Materials, and RSC Advances have become key references in radiation material modeling. His collaborations across diverse domains, from hydrogen embrittlement to deep potential learning for FCC copper, highlight his versatility. The adoption of his findings in defect prediction and grain boundary design has practical implications for materials used in reactors and space technology, positioning him as a rising figure in next-generation material research.

📚 Academic Cites 

With a growing body of 14+ peer-reviewed publications, Dr. Meng’s research outputs have earned significant citations in domains like irradiation defect dynamics, machine-learned interatomic potentials, and grain boundary engineering. His work on Ti₃AlC₂ and Be₁₂Ti systems has been cited for its pioneering insights into defect clusters and transmutation effects, while his 2023 papers on SiC doping and neural network-based modeling have gained traction among materials engineers and computational physicists. His interdisciplinary footprint, combining physics, chemistry, and mechanical engineering, enhances his recognition across both academic and applied research networks.

🛠️ Research Skills 

Dr. Meng demonstrates mastery in first-principles methods (DFT), molecular dynamics, machine learning potentials, and multi-scale simulation frameworks. His computational toolkit includes VASP, Quantum ESPRESSO, LAMMPS, and deep learning platforms like DeePMD-kit. He excels in automated high-throughput screening, grain boundary structure prediction, and radiation damage modeling. His ability to link atomic-level processes to macroscopic properties allows him to tackle engineering problems with atomic precision. He is adept at designing simulation protocols that align with experimental validations, ensuring a feedback loop between theory and practice a critical skill in today’s data-driven research environment.

👨‍🏫 Teaching Experience 

While primarily a researcher, Dr. Meng has informally mentored junior scientists and graduate students during his tenure at the Institute of Modern Physics. He has contributed to internal training modules and simulation workshops focusing on first-principles methods and materials modeling software. As his academic journey matures, he is well-positioned to engage in formal teaching or curriculum development, especially in computational material science, AI-driven simulations, and solid-state physics. His clarity in technical writing and collaborative style suggest strong potential as a future university lecturer or postgraduate supervisor.

🏅 Awards and Honors 

Although specific awards are not mentioned, Dr. Meng’s selection for national strategic research programs (e.g., CAS Grant No. XDA0410000) and provincial funding initiatives like Guangdong Basic Research Foundation reflect institutional recognition of his capabilities. His consistent publication record in top-tier international journals underscores his scientific credibility. Being chosen to lead studies involving Grain Boundary Engineering and deep learning potentials in cutting-edge materials confirms his reputation among peers and senior collaborators. With this trajectory, formal honors such as Young Scientist Awards or Outstanding Researcher Fellowships are highly likely in the near future.

🔮 Legacy and Future Contributions 

Dr. Zhaocang Meng is poised to leave a lasting legacy in predictive materials design. His work in irradiation resistance, grain boundary tailoring, and AI-driven material exploration sets a solid foundation for next-gen energy systems, including fusion reactors, radioisotope thermoelectric generators, and space propulsion materials. Future contributions may include cross-disciplinary collaboration with AI scientists, sustainable materials discovery, and experimental validation partnerships. His potential to transition from a leading researcher to a thought leader and educator is evident. Dr. Meng represents a new era of materials scientists who bridge theory, computation, and practical innovation.

Top Noted Publications

Segregation and aggregation behavior of impurity atoms at grain boundaries of BeO: A first-principles study

  • Authors: Xuejie Wang, Teng Shen, Canglong Wang, Kai He, Zhaocang Meng*, et al.
    Journal: Journal of Nuclear Materials
    Year: 2025

Screening and manipulation by segregation of dopants in grain boundary of Silicon carbide: First-principles calculations

  • Authors: Z.C. Meng, C.L. Wang, Y.L. Wang, et al.
    Journal: Ceramics International
    Year: 2023

First-principles investigations of oxygen interaction with hydrogen/helium/vacancy irradiation defects in Ti₃AlC₂

  • Authors: Zhaocang Meng, Canglong Wang, Jitao Liu, Yinlong Wang, Xiaolu Zhu, Lei Yang, Liang Huang
    Journal: Physical Chemistry Chemical Physics
    Year: 2021

New insight into the interaction between divacancy and H/He impurity in Ti₃AlC₂ by first-principles studies

  • Authors: Zhaocang Meng, Canglong Wang, Jitao Liu, Yinlong Wang, Xiaolu Zhu, Lei Yang, Liang Huang
    Journal: Physical Chemistry Chemical Physics
    Year: 2020

Deep potential for a face-centered cubic Cu system at finite temperatures

  • Authors: Y.Z. Du, Z.C. Meng, Q. Yan, et al.
    Journal: Physical Chemistry Chemical Physics
    Year: 2022

 

Vivek Kumar Jain | Computational Methods | Best Researcher Award

Assoc. Prof. Dr. Vivek Kumar Jain | Computational Methods | Best Researcher Award

Associate Professor at Career Point University Kota | India

Dr. Vivek Kumar Jain is an accomplished Associate Professor of Physics at the School of Basic and Applied Sciences, Career Point University, Kota, Rajasthan. With a Ph.D. from Mohanlal Sukhadia University, he specializes in electronic structure, magnetic properties, and material science. He actively participates in academic committees including IQAC, NAAC, and IPR Cell. Dr. Jain’s academic journey reflects dedication to both teaching and research, contributing significantly to physics education and innovative materials research.

👨‍🎓Profile

Google scholar

Scopus

ORCID

📚 Early Academic Pursuits

Dr. Jain’s academic foundation was laid in Rajasthan, completing his B.Sc. and M.Sc. in Physics from Dayanand Saraswati University, Ajmer. He earned his Ph.D. in 2018 focusing on the electronic and magnetic properties of intermetallic alloys. Alongside physics, he gained certifications in Information Technology (RSCIT) and a Diploma in IT, showcasing a versatile skill set. His early accolades in science and cultural competitions highlight a strong academic and extracurricular background from school through college.

💼 Professional Endeavors

Dr. Jain has over 15 years of teaching experience, beginning as an assistant professor at premier institutes like Poornima College of Engineering and Swami Keshwanand Institute. He currently serves as an Associate Professor at Career Point University since 2022. Throughout his career, he has held roles such as admission counselor, examination coordinator, and committee member for NAAC and BOS, reflecting his deep engagement in academic governance and student mentoring.

🔬 Contributions and Research Focus

His research primarily focuses on the first-principles computational studies of Heusler alloys and spintronic materials, investigating their structural, magnetic, elastic, and optical properties. Dr. Jain has authored numerous publications in prestigious journals like Journal of Electronic Materials and Journal of Superconductivity and Novel Magnetism. He has also contributed to studies on nanomaterials and electronic devices, further enriching materials science research.

🌟 Impact and Influence

Dr. Jain’s work has made significant strides in advancing the understanding of spin gapless semiconductors and half-metallic materials vital for spintronics and electronic applications. His research outputs have influenced both theoretical frameworks and experimental approaches in the field. Additionally, his active participation in patent publications demonstrates his commitment to applied sciences and innovation, bridging academic research with practical technologies.

📈 Academic Cites

With numerous publications in renowned international journals by publishers such as Springer and Elsevier, Dr. Jain’s research has garnered wide academic recognition. His collaborative work with experts and students has resulted in over 20 impactful journal papers and several conference proceedings. This body of work has contributed to the scientific community’s knowledge on electronic materials and inspired ongoing research in magnetism and material science.

🛠️ Research Skills

Dr. Jain excels in first-principles calculations, density functional theory (DFT), and computational material science. His expertise includes electronic structure analysis, magnetic property evaluation, and optical behavior studies of intermetallic and Heusler alloys. Complementing his theoretical skills, he is proficient in academic writing, data analysis, and research supervision, mentoring Ph.D. scholars in cutting-edge materials research.

👩‍🏫 Teaching Experience

With over 15 years as a dedicated physics educator, Dr. Jain has taught undergraduate and postgraduate students across multiple institutions. His roles span laboratory coordination, admission counseling, and academic mentorship, fostering student engagement in science. He emphasizes a practical and research-oriented approach to teaching, integrating his research insights into the curriculum to enhance learning outcomes in material physics and computational methods.

🏆 Awards and Honors

Dr. Jain has earned multiple accolades from early schooling days, including first positions in science and essay competitions at district and college levels. He was awarded the prestigious UGC Basic Science Research Fellowship (BSR), reflecting his academic excellence. His recognition spans debate competitions and research fellowships, underpinning a well-rounded profile of scholarly achievements and extracurricular distinction.

🔮 Legacy and Future Contributions

Dr. Vivek Kumar Jain continues to impact the scientific community through cutting-edge research, academic leadership, and innovative teaching. His future plans include expanding work on spintronic devices, nanomaterials applications, and fostering interdisciplinary collaborations. With ongoing patents and book publications, he is poised to contribute significantly to next-generation materials science and physics education, inspiring future researchers and students.

Top Noted Publications

  • First principles investigations of Fe₂CrSi Heusler alloys by substitution of Co at Fe site
    Authors: Rakesh Jain, N. Lakshmi, Vivek Kumar Jain, Aarti R. Chandra
    Journal: AIP Conference Proceedings
    Year: 2018

  • Study of the electronic structure properties in Co₂NbIn/Sn Heusler alloys
    Authors: Aarti R. Chandra, Vishal Jain, N. Lakshmi, Rakesh Jain, Vivek Kumar Jain
    Journal: AIP Conference Proceedings
    Year: 2018

  • Structural, Electronic and Optical Properties of ZnO material using first principle calculation
    Authors: Jaiveer Singh, Vivek Kumar Jain
    Journal: Journal of Polymer and Composites
    Year: 2023

  • Effects of channel length and gate dielectric material on electrical properties of an IGZO TFT
    Authors: Archana Jain, Vivek Kumar Jain, Lalit Kumar Lata, Abhinandan Jain
    Journal: Materials Today: Proceedings
    Year: 2022

  • Effect of temperature and Co-addition on phase stability, magnetic and electronic properties of Fe₂₋ₓCoₓMnAl quaternary Heusler alloys for spintronics devices
    Authors: Ashok Yadav, Vivek Kumar Jain, Vinesh Attatappa, N. Lakshmi, Arun Sharma, Sarvesh Kumar Pandey, Shikha Awasthi
    Journal: Journal of Alloys and Compounds
    Year: 2025

 

 

Mansur Mustafaoğlu | Computational Methods | Academic Achievement in Physics Award

Dr. Mansur Mustafaoğlu | Computational Methods | Academic Achievement in Physics Award

Atatürk University | Turkey

Dr. Mansour Nasiri Khalaji is a seasoned mechanical engineer and researcher, currently affiliated with the Department of Mechanical Engineering at Atatürk University, Erzurum, Turkey. With a profound commitment to thermal sciences, Dr. Khalaji has developed an international academic presence, particularly in the domains of heat transfer, fluid mechanics, and computational modeling.

👨‍🎓Profile

Google scholar

ORCID

📘 Early Academic Pursuits

Dr. Khalaji began his academic journey with a passion for mechanical systems and thermal processes. His Master’s thesis, titled “Experimental and Numerical Investigation of Heat and Flow in a Cross Heat Exchanger System”, laid a strong foundation in both experimental methods and numerical simulations. Building on this, his PhD research focused on “Flow and Heat Transfer in Newtonian and Non-Newtonian Flows in Different Bifurcation Models”, showcasing early specialization in complex fluid behaviors.

🏢 Professional Endeavors

Dr. Khalaji currently works in the Heat Laboratory at Atatürk University, where his main responsibilities include monitoring, mechanical engineering analysis, and the application of CFD tools. As a researcher in the Department of Thermodynamics, he applies his technical expertise to advance energy-efficient solutions and thermal system designs.

🔬 Contributions and Research Focus

Dr. Khalaji’s research spans various critical areas, including computational fluid dynamics (CFD), heat exchangers, photovoltaic systems, and thermal performance optimization. He is proficient in ANSYS-FLUENT, SOLIDWORKS, MATLAB, and the Taguchi method, enabling him to model and simulate highly accurate thermal systems. His collaborative works also explore carbon nanotubes, bifurcation models, and plate-fin heat exchangers, bridging the gap between applied physics and mechanical engineering.

🌍 Impact and Influence

His published work in journals like Applied Thermal Engineering, Journal of Heat Transfer, and Mechanics of Advanced Materials and Structures has significantly contributed to advancements in energy systems and thermal design. His research has implications for renewable energy, industrial cooling systems, and sustainable engineering practices, reinforcing his position as a thought leader in applied thermodynamics.

📈 Academic Citations

Dr. Khalaji has co-authored over a dozen high-impact journal articles, many of which are widely cited in the fields of mechanical engineering, heat transfer, and energy systems. While his h-index and total citations are not explicitly mentioned here, the breadth and depth of his contributions suggest a growing scholarly influence.

🛠️ Research Skills

His technical toolkit includes expertise in CFD modeling, heat exchanger design, thermal-fluid analysis, and parametric optimization using statistical tools. His work reflects a blend of hands-on experimentation and advanced computational analysis, making him a well-rounded researcher in both theoretical and applied mechanics.

👨‍🏫 Teaching Experience

While not elaborated in detail, his role at Atatürk University likely includes academic supervision, undergraduate and graduate instruction, and laboratory mentoring. His multilingual ability (Persian, English, Azeri, and Turkish) further enhances his effectiveness as an educator in diverse academic environments.

🏅 Awards and Honors

Although specific awards are not listed, Dr. Khalaji has been involved in nationally funded projects such as the TÜBİTAK Project and BAP Project, which support cutting-edge research in thermal systems design. His peer-reviewed publications and collaborative work with prominent researchers indicate recognition from the academic and engineering community.

🌟 Legacy and Future Contributions

Looking ahead, Dr. Khalaji is poised to make impactful contributions to next-generation energy systems, high-efficiency heat exchangers, and innovative cooling technologies. His multidisciplinary approach positions him as a potential leader in academic research, industrial innovation, and global energy sustainability efforts.

Top Noted Publications

Numerical Investigation of Changes in Heat Transfer Coefficient of Water-Aluminum Oxide Nanofluid Cooling in Nuclear Reactors

  • Authors: Mansur Mustafaoglu
    Journal: Nuclear Technology
    Year: 2025

Numerical analysis of the three-dimensional model of pulsatile and non-Newtonian blood flow in a carotid artery with local occlusion

  • Authors: Mansur Mustafaoğlu, İsak Kotçioğlu, Muhammet Kaan Yeşilyurt
    Journal: Mathematical Modelling and Numerical Simulation with Applications
    Year: 2025

Numerical thermal analysis of armchair (6,6) and zig-zag (12,0) carbon nano-tubes (CNTs)

  • Authors: I. Kotcioglu, M. Mustafaoglu, N. Dogan
    Journal: Mechanics of Advanced Materials and Structures
    Year: 2024

Heat transfer analysis of armchair (5,5) and zigzag (10,0) carbon nanotubes

  • Authors: Isak Kotcioglu, Mansour Nasiri Khalaji, Nihat Dogan
    Journal: Mechanics of Advanced Materials and Structures
    Year: 2021

 

 

Sathish Panneer Selvam | Theoretical Advances | Best Scholar Award

Dr. Sathish Panneer Selvam | Theoretical Advances | Best Scholar Award

Assistant Professor at Gachon university | South Korea

Dr. Sathish Panneer Selvam is a dynamic Assistant Professor at Gachon University, South Korea, specializing in electrochemical biosensors, nanomaterials, and density functional theory (DFT). With a strong foundation in experimental chemistry and computational modeling, Dr. Selvam’s interdisciplinary research bridges the gap between biomedical diagnostics and renewable energy catalysis, contributing significantly to next-generation sensor technologies.

👨‍🎓Profile

Google scholar 

Scopus

ORCID

🎓 Early Academic Pursuits

Dr. Selvam began his academic journey with a Master’s degree in Electrochemical Sensing and Water Splitting under Prof. Kyusik Yun, where he focused on DNA-based nanomaterials and self-assembled sensors. He pursued his PhD (2020–2024) under Prof. Sungbo Cho, contributing to sensor development for disease diagnostics and reaction mechanism analysis via DFT. This formative period laid the groundwork for his future breakthroughs in smart diagnostics.

💼 Professional Endeavors

Starting as a Quality Control Executive at Biocon Biopharmaceutical Ltd., Dr. Selvam transitioned seamlessly into academia. His current role as an Assistant Professor (2024–2025) at Gachon University involves leading advanced biosensing projects, such as cancer diagnostics, enzyme activity detection, and nanocomposite development. His hands-on expertise spans fabrication, characterization, and computational modeling.

🔬 Contributions and Research Focus

Dr. Selvam’s research is distinguished by its interdisciplinary depth and real-world relevance. He has designed single-atom catalyst biosensors for detecting pancreatic and breast cancer. Additionally, he has explored molecularly imprinted polymers for biomarker detection and utilized DFT and molecular dynamics to simulate reaction pathways. His development of triboelectric nanogenerators for self-powered bacterial detection reflects his ability to address critical challenges in medical diagnostics, environmental monitoring, and energy applications.

🌍 Impact and Influence

Dr. Selvam has authored 16+ peer-reviewed publications, many in high-impact journals such as Chemical Engineering Journal, Small Methods, and Biosensors and Bioelectronics, with impact factors ranging from 8 to 23. His contributions to cancer biosensing, H2 evolution, and COVID-19 detection have attracted international collaborations with researchers from UK, France, and India, solidifying his global influence.

📊 Academic Cites & Recognition

Dr. Selvam’s work is increasingly cited by peers in the fields of biosensors, nanotechnology, and theoretical chemistry. With several publications already gaining traction in the academic community, he is on track for significant citation growth and thought leadership in applied quantum chemistry and nanomedicine.

🧪 Research Skills

Dr. Selvam demonstrates a robust technical skill set that seamlessly bridges experimental techniques with computational modeling. He excels in electrochemical characterization using systems like Iviumstat, Biologics, and PARSTAT. His expertise in structural analysis includes SEM, TEM, XRD, EXAFS, and Raman spectroscopy. Additionally, he is proficient in High-Performance Liquid Chromatography (HPLC) and a variety of spectroscopic tools. On the theoretical side, he utilizes DFT simulations, molecular docking, and molecular dynamics, allowing for deep insights into complex reaction mechanisms.

🎓 Teaching Experience

As an Assistant Professor, Dr. Selvam is engaged in mentoring undergraduate and graduate students. He fosters a research-driven learning environment that encourages critical thinking, scientific writing, and interdisciplinary collaboration, essential for shaping future scientists.

🌟Patents

Dr. Selvam holds several patents, including the Chalcogenide Loaded Cobalt MOF for Patulin Mycotoxin Detection (KR Patent 10-2437215), an Electrochemical Biosensing Platform for Rheumatoid Arthritis Biomarker detection (KR Patent 10-2381031), and a Nanocomposite modified electrode for Etidronic acid detection (KR Patent 10-2475238), co-authored with Sungbo Cho and Kyusik Yun. These innovations demonstrate his expertise in biosensing, electrochemical platforms, and biomarker detection.

📘 Legacy and Future Contributions

Dr. Selvam has a strong portfolio of patents, a growing reputation in academic publishing, and a unique ability to synthesize experimental and computational insights. As a thought leader in smart biosensing and energy catalysis, his future contributions are expected to include the development of scalable diagnostic tools for global health, AI-integrated sensor platforms, and further exploration of quantum chemistry for bio-interfaces. His work promises significant advances in both healthcare and energy solutions.

Publications Top Notes

EXAFS and spectroscopic insights into Mn, Tc, and Re-doped phthalocyanines: A multifaceted DFT study of electronic and optical properties

  • Authors: Sathish Panneer Selvam, Zeeshan, Sungbo Cho
    Journal: Surfaces and Interfaces
    Year: 2025

Cerium single atom anchored silver selenide: A high-performance catalyst for hydrogen evolution reaction with ultra-low activation energy and enhanced stability

  • Authors: Sathish Panneer Selvam, Sungbo Cho
    Journal: Surfaces and Interfaces
    Year: 2024

Experimental insights and DFT analysis of metal-free DNA nanocatalyst with enhanced hydrogen evolution via phosphate-mediated proton acceptance

  • Authors: Sathish Panneer Selvam, Shanmugasundaram Kamalakannan, K. Rudharachari Maiyelvaganan, Muthuramalingam Prakash, Sivalingam Gopi, Hansa Mahajan, Kyusik Yun, Sungbo Cho
    Journal: International Journal of Hydrogen Energy
    Year: 2024

Highly Synergistic Co3+ and Pyridinic‐N‐Rich Bifunctional Electrocatalyst for Ultra‐Low Energy-Driven Effective Hydrogen Production and Urea Oxidation

  • Authors: Sathish Panneer Selvam, Sungbo Cho
    Journal: Advanced Sustainable Systems
    Year: 2022

Novel SeS2-loaded Co MOF with Au@PANI comprised electroanalytical molecularly imprinted polymer-based disposable sensor for patulin mycotoxin

  • Authors: Sathish Panneer Selvam
    Journal: Biosensors and Bioelectronics
    Year: 2021

 

Hoc Nguyen | Computational Methods | Best Researcher Award

Assoc. Prof. Dr. Hoc Nguyen | Computational Methods | Best Researcher Award

Senior Lecturer at Hanoi National University of Education | Vietnam

Nguyen Quang Hoc D, Assoc. Prof. PhD, is a distinguished academic and researcher in the field of Theoretical Physics. He currently holds the position of High-ranking Lecturer at the Department of Theoretical Physics, Faculty of Physics, at the Hanoi National University of Education, where he has contributed extensively to both teaching and research since 2009. His academic journey reflects a deep commitment to physics, spanning over decades of study and experience in solid-state physics, theoretical physics, and mechanical properties of materials.

👨‍🎓Profile

ORCID

Early Academic Pursuits 🎓

Nguyen Quang Hoc D embarked on his academic career with a solid foundation in solid-state physics, earning his Engineer degree from Hanoi University of Technology in 1982. His deep interest in theoretical physics led him to pursue advanced studies at the Hanoi National University of Education, where he completed his Master’s degree in Theoretical Physics in 1989 and later achieved his PhD in 1994, further honing his expertise in the field.

Professional Endeavors 💼

His professional career began in 1983 at the College of Teacher Training (now Haiphong University), where he served as a Lecturer and Head of the Physical Laboratory until 1994. Later, he joined the Institute of Nuclear Science and Technique, VINATOM in 1994, contributing as a Researcher. In 1997, he transitioned to the Department of Scientific Management, Faculty of Physics at Hanoi National University of Education, where he took on roles as an Expert and Principal Lecturer until he became an Associate Professor in 2009. Since 2016, he has remained in his current capacity as a High-ranking Lecturer at the university.

Contributions and Research Focus 🔬

Prof. Nguyen Quang Hoc D has focused much of his research on mechanical and thermodynamic properties of metals and interstitial alloys, particularly through the statistical moment method. His work has provided valuable insights into the transport properties of superconductors and how artificial nanostructures can influence these properties. His research has significant implications in materials science, particularly in understanding how nanostructures can improve the performance of superconductors in real-world applications.

Impact and Influence 🌍

With a career spanning more than three decades, Assoc. Prof. Nguyen Quang Hoc D has made lasting contributions to both academic research and teaching. His work on superconductors and nanostructure materials has advanced our understanding of the mechanical and thermodynamic properties of advanced materials. His findings have opened the door for further studies in nanotechnology and material science, positioning him as a leading figure in the development of advanced materials in the Vietnamese academic community.

Academic Citations 📚

Prof. Nguyen Quang Hoc D has earned recognition for his work, resulting in numerous academic citations and publications in international journals related to materials physics. His contributions to the field of theoretical physics have significantly impacted the understanding of interstitial alloys, superconductivity, and the behavior of metals under extreme conditions, making him a respected authority in his field.

Research Skills 🧠

Assoc. Prof. Nguyen Quang Hoc D possesses advanced research skills in statistical methods, materials characterization, and nanotechnology. His expertise includes the application of the statistical moment method to study the thermodynamic behavior of materials, allowing him to analyze and predict the mechanical properties of metals and alloys under various conditions. He has also worked on superconductivity, making contributions to transport properties and the influence of nanostructure pinning on type-II superconductors.

Teaching Experience 👨‍🏫

Assoc. Prof. Nguyen Quang Hoc D has a wealth of teaching experience, spanning over two decades at the Hanoi National University of Education. He has taught a range of undergraduate and graduate courses in theoretical physics and solid-state physics, providing students with foundational knowledge while also challenging them with cutting-edge concepts in the field. His role as a mentor and principal lecturer has helped shape the next generation of physicists and scientists in Vietnam.

Awards and Honors 🏅

Throughout his career, Assoc. Prof. Nguyen Quang Hoc D has been the recipient of various awards and honors in recognition of his contributions to the field of physics. His dedication to both research and teaching has earned him respect within the academic community, and he continues to inspire those around him with his innovative research and commitment to excellence.

Legacy and Future Contributions 🌱

As Assoc. Prof. Nguyen Quang Hoc D continues his work at Hanoi National University of Education, his legacy remains rooted in his innovative research, teaching dedication, and academic leadership. Moving forward, he is expected to continue influencing the field of material science, particularly in the realms of superconductivity and nanotechnology. His future contributions will undoubtedly lead to advancements in the understanding of metals, alloys, and superconductive materials, strengthening the scientific community in Vietnam and beyond.

Publications Top Notes

On the Melting of Crystal Under Compression: SMM Fundamental Theory and its Application to Laser Materials Processing

  • Authors: Nguyen Quang Hoc, Le Hong Viet
    Journal: Transactions of the Indian Institute of Metals
    Year: 2025

Theoretical predictions of thermodynamic properties, elastic deformation, HCP-FCC structural phase transition and melting of iron at high temperatures up to 18000 K and high pressures up to 4000 GPa

  • Authors: Nguyen Quang Hoc, Nguyen Duc Trung, Hua Xuan Dat, Le Thu Lam
    Journal: Physics Letters A
    Year: 2025

Correction: Thermodynamic properties of perovskite MgSiO3 with cubic structure under extreme conditions

  • Authors: Quang Hoc Nguyen, Nhi Quynh Ngo, Thi Mai Dao, Cong Vien Tran, Thi Thu Tra Lai, Thi Van Anh Le, Thi Thuy An Nguyen
    Journal: The European Physical Journal B
    Year: 2024

Thermodynamic properties of perovskite MgSiO3 with cubic structure under extreme conditions

  • Authors: Hoc Quang Nguyen, Nhi Quynh Ngo, Mai Thi Dao, Vien Cong Tran, Tra Thi Thu Lai, Anh Thi Van Le, An Thi Thuy Nguyen
    Journal: The European Physical Journal B
    Year: 2024

Study on Remelting of Crystal Under Extreme Conditions

  • Authors: Hoc Quang Nguyen, Huyen Thanh Thi Tran, Nhi Quynh Ngo, Mai Thi Dao, Phong Khac Nguyen
    Journal: Transactions of the Indian Institute of Metals
    Year: 2024

 

 

Muhammad Yar Khan | Computational Methods | Best Researcher Award

Assoc. Prof. Dr. Muhammad Yar Khan | Computational Methods | Best Researcher Award

Associate Professor at Qilu institute of Technology | China

Dr. Hafiz Muhammad Yar Khan is an accomplished Materials Scientist and Associate Professor in Physics, with an extensive background in Density Functional Theory (DFT) Materials Modeling. He completed his Ph.D. in Materials Science Engineering at Zhejiang University, China (2023), which is ranked 41st in the QS World University Rankings (2022). His research is focused on novel 2D materials, energy storage materials, and the optical and magnetic properties of advanced materials, with significant contributions to the fields of spintronics, energy storage, and 2D magnetic materials.

👨‍🎓Profile

Google scholar

Scopus

ORCID

Early Academic Pursuits 🎓

Dr. Khan’s academic journey began with a Master of Science in Physics (M. Phil) from Hazara University Mansehra, Pakistan, in 2011, where he developed his passion for solid-state physics and computational material science. His dissertation focused on the first-principles study of perovskite-type oxides, laying the foundation for his later work in computational materials research. His focus on quantum mechanics, electrodynamics, and applied research techniques during his M.S. equipped him with a solid theoretical and experimental base.

Professional Endeavors 💼

Dr. Khan has held various teaching and administrative roles across prominent institutions in both Pakistan and China. His career includes serving as Lecturer in Physics at Kohat University of Science and Technology and The University of Haripur, Pakistan. His current position as Associate Professor at Qilu Institute of Technology, China, reflects his rising prominence in academia. Dr. Khan has also contributed to academic committees, such as being a member of the Academic Council at Kohat University and organizing events like sports day and international cultural day, showing his leadership in academic and extracurricular spheres.

Contributions and Research Focus 🔬

Dr. Khan’s research spans several cutting-edge areas in materials science. His Ph.D. dissertation on “First-Principles Study of Tuning Magnetic and Optical Properties of Novel 2D-Materials” focuses on materials such as transition metal carbon trichalcogenides and 2D magnetic materials. He has also explored energy storage technologies, such as Na and Li-ion batteries, providing insights into anode and cathode materials. His work also delves into optoelectronics and spintronics devices, underscoring his interdisciplinary approach.

Notable research topics include:

  • Magnetic and optical properties of 2D materials.

  • Energy storage materials (batteries, cathodes, and anodes).

  • Spintronics and optoelectronics for device applications.

Impact and Influence 🌍

Dr. Khan’s research has had significant implications in both academia and industry, especially in 2D materials and energy storage technologies. His publications in prestigious journals like Journal of Superconductivity and Novel Magnetism, Physics Letter A, and Nanoscale demonstrate his ability to contribute to high-impact research. His work is highly regarded in the scientific community, and he has collaborated with leading universities and institutions such as the New Jersey Institute of Technology (NJIT), Quaid-i-Azam University, University of Ulsan, and King Saud University.

His influence extends beyond materials science into academic collaboration, where he serves as a bridge between global research hubs in Pakistan, China, South Korea, and Saudi Arabia.

Research Skills 🧠

Dr. Khan is proficient in various computational software critical to materials science research, including:

  • WIEN2K

  • VASP

  • FLAPW

His ability to independently formulate research questions, conduct empirical research, and analyze data systematically has been key to his success. His first-principles approach has made him a leading figure in DFT-based materials modeling and theoretical materials science.

Teaching Experience 🍎

Dr. Khan has taught a variety of physics courses at undergraduate and postgraduate levels. He has mentored students in subjects such as Quantum Mechanics, Solid-State Physics, and Electrodynamics. He has also demonstrated his administrative skills in his role as Assistant Manager ORIC and member of the departmental admission committee, helping shape the academic landscape at institutions like Kohat University of Science and Technology and The University of Haripur. His teaching philosophy emphasizes the importance of research-driven education, encouraging students to engage with cutting-edge topics in material science and computational physics.

Awards and Honors 🏅

Dr. Khan has been recognized for his academic achievements with prestigious scholarships and fellowships, including:

  • Chinese Government Scholarship for his Ph.D. studies.

  • Brain Korea 21 (BK21) Fellowship by the Korean Government.

  • Pioneer Research Center Program through the National Research Foundation of Korea.

These awards underscore his commitment to academic excellence and his ability to secure competitive funding for his research endeavors.

Legacy and Future Contributions 🌟

Dr. Khan’s legacy is built on a solid foundation of innovative research, interdisciplinary collaborations, and a commitment to teaching. His future contributions are poised to make an impact not only in materials science but also in the energy sector, with further exploration into battery technologies, spintronics, and 2D materials. His ongoing work on defect-engineered materials and multiferroic hetero-structures is expected to push the boundaries of materials science in the coming years.

Publications Top Notes

“Computational insights into optoelectronic and magnetic properties of V(III)-doped GaN”

  • Authors: Muhammad Sheraz Khan, Muhammad Ikram, Li-Jie Shi, Bingsuo Zou, Hamid Ullah, Muhammad Yar Khan
    Journal: Journal of Solid-State Chemistry
    Year: 2021

“A highly selective nickel-aluminum layered double hydroxide nanostructures based electrochemical sensor for detection of pentachlorophenol”

  • Authors: Khan, Mir Mehran, Huma Shaikh, Abdullah Al Souwaileh, Muhammad Yar Khan, Madeeha Batool, Saima Q. Memon, and Amber R. Solangi
    Journal: Arabian Journal of Chemistry
    Year: 2024

“Exploring the structural stability of 1T-PdO2 and the Interface Properties of 1T-PdO2/Graphene Heterojunction”

  • Authors: Muhammad Yar Khan, Arzoo Hassan, Xiao-Qing Kelvin Tian, Abdus Samad
    Journal: ACS OMEGA
    Year: 2024

“Experimental Investigation of the Structural, Electrical, and Magnetic Properties of AgNbO3 Silver Nanobytes”

  • Authors: Junaid Khan, Shah Khalid, Pagunda3, Farhan Ahmad, Abdul Jabbar5, Rabah Khenata, Muhammad Yar Khan, and Heba G. Mohamed
    Journal: Journal of Materials Science

“Fabrication of nanofiltration membrane with enhanced water permeability and dyes removal efficiency using tetramethyl thiourea-doped reduced graphene oxide”

  • Authors: Sehrish Qazi, Huma Shaikh, Amber R. Solangi, Madeeha Batool, Muhammad Yar Khan, Nawal D. Alqarni, Sarah Alharthi, and Nora Hamad Al-Shaalan
    Journal: Journal of Materials Science

Sanae ZRIOUEL | Computational Particle Physics | Women Researcher Award

Prof. Dr. Sanae ZRIOUEL | Computational Particle Physics | Women Researcher Award

Cadi Ayyad university | Morocco

Professor Dr. Sanae Zriouel is an esteemed Associate Professor of Physics at the Faculty of Sciences and Technology, Cadi Ayyad University in Marrakech, Morocco. With a deep passion for Mathematical Physics and cutting-edge research in nanomaterials, Dr. Zriouel has made significant contributions in various areas of condensed matter physics. Her academic journey spans multiple prestigious institutions in Morocco, and she has established herself as a key figure in the academic and scientific communities.

👨‍🎓Profile

Google scholar

Scopus

Early Academic Pursuits 📚

Dr. Zriouel’s journey began with a Bachelor’s degree in Physical Science from Ibn Tofail University, Morocco, followed by a Master’s degree in Mathematical Physics at Mohammed V University, Morocco. Her academic prowess was evident from early on, as she earned the highest distinctions in her Master’s and later in her PhD in Mathematical Physics from the same institution. She furthered her education with an Engineer’s degree in Electro-mechanics from ENSMR, Rabat, Morocco.

Professional Endeavors 🌍

Dr. Zriouel’s career in academia includes various teaching and research roles. She is currently an Associate Professor at Cadi Ayyad University, where she has been since 2022. Prior to this, she held positions as an Assistant Professor at Sultan Moulay Slimane University, Beni Mellal, and worked as a Dr. Researcher at Mohammed V University, where she developed a profound interest in nanomaterials and theoretical physics. Her roles are not limited to academia; she has been actively involved in multiple administrative responsibilities, serving as an elected member of university councils and commissions that contribute to the growth and development of scientific research and academic programs.

Contributions and Research Focus 🔬

Dr. Zriouel’s research interests include Graphene and related materials, the physics of 2D nanostructures, topological insulators, and chalcopyrite semiconductors. She has worked extensively on quantum dots, ab-initio calculations, and Monte Carlo simulations. Her work on spintronic properties, magnetocaloric effects, and the phase transitions of new materials has been instrumental in advancing our understanding of the physical properties of materials at the nano-scale. She has authored over 10 impactful scientific papers, contributing significant knowledge to materials science and theoretical physics.

Impact and Influence 🌟

Dr. Zriouel has had a far-reaching impact on both research and education. Her work has influenced various collaborations with institutions such as the Institut Néel, CNRS, Yildiz Technical University, and Abdus Salam International Centre for Theoretical Physics. Additionally, she has received recognition as a scientific visitor to prestigious institutions across the globe, including in Turkey, Italy, and France. Her leadership roles, including coordinating projects like the Extended African Network for Advanced 2D Materials, demonstrate her commitment to scientific collaboration and her efforts to foster an international exchange of ideas.

Academic Cites 📑

Dr. Zriouel’s research papers have been widely cited in the scientific community. Her work on half-metallic ferromagnetic properties, phase transitions in graphene, and DFT-based materials simulations has paved the way for significant advancements in spintronics and quantum materials. Notable publications include her contributions to Computational Condensed Matter and Modern Physics Letters. Her research continues to be cited globally, influencing the fields of nanotechnology, magnetism, and advanced materials.

Research Skills 🧠

Dr. Zriouel possesses a remarkable set of research skills that span theoretical physics and computational simulations. She is proficient in C++, Fortran, MATLAB, and other programming languages used for numerical simulations and ab-initio calculations. Her expertise includes tools like Quantum Espresso, LAMMPS, Wien2k, and SPRKKR, which she uses to explore the properties of advanced graphene-based materials, quantum dots, and other nanomaterials.

Teaching Experience 🎓

Dr. Zriouel is a dedicated educator, teaching a wide array of courses in physics at both the undergraduate and graduate levels. She teaches courses such as Quantum Mechanics, Electromagnetism, and Thermodynamics. Over the years, she has supervised more than 30 students, including Bachelor’s, Master’s, and PhD candidates. Her mentorship extends beyond coursework, as she is involved in guiding students in their research projects and helping them navigate the world of theoretical physics and computational modeling.

Awards and Honors 🏆

Dr. Zriouel has been recognized for her academic excellence with several prestigious awards. Notable honors include being awarded Full Membership of the Organization for Women in Science for the Developing World (OWSD) in 2020, and receiving the Award of Excellence from the National Center of Scientific Research of Morocco in 2014. In addition, she was the Valedictorian of both her Engineering program and her Physics graduate program. These accolades underline her exceptional academic achievements and her dedication to the advancement of science.

Legacy and Future Contributions 🔮

Dr. Zriouel’s legacy lies not only in her groundbreaking research but also in the impact she has had on the next generation of scientists. She has inspired and mentored numerous students, guiding them toward their own successful academic and research careers. Her contributions to the field of nanomaterials and quantum physics are set to influence future developments in green energy, quantum computing, and material science.

Publications Top Notes

In-depth study of double perovskite Sr₂NiTaO₆: Structural, electronic, thermoelectric, and spintronic properties for sustainable and high-performance applications

  • Authors: JU Ahsan, MR Rather, K Sultan, S Zriouel, E Hlil
    Journal: Computational Condensed Matter
    Year: 2025

Investigating thermodynamic and magnetic behavior of graphullerene-like nanostructure using Monte Carlo techniques

  • Authors: S Zriouel, A Mhirech, B Kabouchi, L Bahmad, Z Fadil, FM Husain
    Journal: Philosophical Magazine
    Year: 2025

Magnetic properties and magnetocaloric effects of the graphullerene-like 4-(Mg₄C) nanostructure: A Monte Carlo study

  • Authors: N Saber, S Zriouel, A Mhirech, B Kabouchi, L Bahmad, Z Fadil
    Journal: Modern Physics Letters B
    Year: 2024

Phase transitions and critical dielectric phenomena of janus transition metal oxides

  • Authors: S Zriouel
    Journal: Materials Science and Engineering: B
    Year: 2021

Effect of p–d hybridization on half metallic properties of some diluted II–IV–V₂ chalcopyrites for spintronic applications

  • Authors: S Zriouel, B Taychour, B Drissi
    Journal: Physica Scripta
    Year: 2020

 

 

Ali Zaoui | Computational Methods | Computational Science Excellence Award

Prof. Ali Zaoui | Computational Methods | Computational Science Excellence Award

Djillali Liabes University of SIDI BELI ABBES | Algeria

Ali Zaoui is a Professor and Team Leader at the Physics Computational Materials Laboratory at the University of Sidi Bel Abbes, Algeria. With a distinguished career spanning several decades, he has made significant contributions to the field of computational materials science. Zaoui holds a PhD in Material Sciences and has taught in various capacities, progressing from General Physics to Nanotechnology at the University of Sidi Bel Abbes.

👨‍🎓Profile

Google scholar

Scopus

Early Academic Pursuits 🎓

Zaoui’s academic journey began with a B.Sc. in Physics from the University of Sidi Bel Abbes (1991-1996). He then pursued a M.Sc. in Solid State Physics (1998-2000), focusing on the electronic structure of BSb compounds using the FP-LAPW method. Zaoui continued his academic pursuit with a Ph.D. in Material Sciences (2000-2005), conducting groundbreaking research on TiCxN1−x, ZrxNb1−xC, and HfCxN1−x alloys through first-principles calculations. His early work established a foundation in ab-initio methods for studying the electronic structures of complex materials.

Professional Endeavors 🧑‍💼

Zaoui’s professional career includes roles as a Professor at the University of Sidi Bel Abbes, where he has been an influential faculty member since 2005. Additionally, he has held leadership roles, such as Team Leader and Director of various computational material science laboratories. His contributions extend beyond teaching, as he has also served in prominent positions such as Dean of the Faculty of Exact Sciences at the Djillali Liabes University and President of the Doctoral Formation Committee.

Contributions and Research Focus 🔬

Zaoui’s research focus spans a range of topics, with particular emphasis on computational physics, material science modeling, and condensed matter physics. His expertise lies in studying strongly correlated systems, magnetism, and superconductivity in atomic and condensed matter physics. His contributions in first-principles calculations have advanced the understanding of alloy properties, nanostructures, and electronic behaviors of various materials. Notable works include research on Hf3N4 and Zr3N4 compounds, as well as RE2Ni2Pb (R=Er, Ho), contributing to the advancement of material science through simulation and modeling techniques.

Impact and Influence 🌐

Zaoui’s impact in the field of computational material science is substantial, with significant influence in educating future generations of physicists. As a team leader, he has guided a range of research projects that continue to shape the field. His involvement in summer schools, conferences, and workshops on DFT, simulation methods, and materials modeling has contributed to international collaborations and the sharing of knowledge on an international scale. His research has shaped the academic landscape of materials science, particularly in Algeria and North Africa.

Academic Cites 📚

Zaoui’s academic works have gained significant recognition and have been cited in a wide array of material science journals. His research on Hf3N4 and Zr3N4 compounds, along with his contributions to optical properties of semiconductors and first-principles simulations, has been referenced widely in the scientific community. His work is highly regarded for its accuracy, innovation, and practical application in understanding the electronic structures of materials.

Research Skills 🧑‍🔬

Zaoui’s research is known for the depth of computational analysis and precision in applying first-principles calculations. He is highly skilled in using DFT, LDA+U methods, and ab-initio techniques to model complex material properties, from magnetism to superconductivity. His computational techniques allow for predictive modeling of material behaviors, an essential aspect in the development of new materials for various applications. Zaoui’s research is marked by his ability to bridge theory with practical outcomes, bringing computational insights into real-world scenarios.

Teaching Experience 📖

Zaoui has a rich and diverse teaching experience, spanning from general physics to specialized subjects like magnetism, thermodynamics, and nanotechnology. He has taught at both undergraduate and graduate levels, including at institutions like the Higher School of Computer Science of Sidi Bel Abbes. His teaching extends beyond the classroom, having led seminars, summer schools, and research conferences. His commitment to educating the next generation of physicists has made a lasting impact on the scientific community in Algeria.

Awards and Honors 🏆

While detailed awards are not listed in the provided information, Zaoui’s significant contributions to computational material science, his leadership in education, and his influential research undoubtedly position him for recognition in various academic circles. His leadership role in organizing scientific committees and overseeing doctoral training programs reflects his contribution to the academic excellence in material science.

Legacy and Future Contributions 🌱

Zaoui’s legacy is deeply rooted in his research, teaching, and leadership in computational materials science. His future contributions are expected to continue influencing the advancement of computational tools and material science innovations. With his focus on nanotechnology, superconductivity, and magnetism, Zaoui is well-positioned to make future breakthroughs in the understanding of next-generation materials. As his work continues to inspire the global research community, Zaoui’s legacy will likely shape the future of computational materials science and nanotechnology for many years to come.

Publications Top Notes

Impact of polymer binders on the aggregation modes of two-pieces CSH composites

  • Authors: J., Jia, Jiwei; A., Zaoui, Ali; W., Sekkal, Wassila
    Journal: Cement and Concrete Research, Year: 2025

Molecular modeling of clay minerals: A thirty-year journey and future perspectives

  • Authors: A., Zhou, Annan; J., Du, Jiapei; A., Zaoui, Ali; W., Sekkal, Wassila; M.S., Sahimi, Muhammad Syamim
    Journal: Coordination Chemistry Reviews, Year: 2025

Crystal structure and magnetic properties of lithium nitridoferrate: Density functional theory calculations

  • Authors: M.R., Aced, Mohammed Reda; N., Benayad, Nawel; F., Drief, F.; S., Kacimi, Salima; M., Djermouni, Mostefa
    Journal: Journal of Magnetism and Magnetic Materials, Year: 2025

Exploring superconducting signatures in high-pressure hydride compounds: An electronic-structure analysis

  • Authors: C., Mohammed Krarroubi; N., Benayad, Nawel; F., Benosman, Fayssal; S., Kacimi, Salima; A., Zaoui, Ali
    Journal: Physica C: Superconductivity and its Applications, Year: 2025

Influence of particle size distribution and normal pressure on railway ballast: A DEM approach

  • Authors: Z., Yan, Zhu; A., Zaoui, Ali; W., Sekkal, Wassila
    Journal: High-speed Railway, Year: 2025

Discrete-Element Method Study of the Effect of Ballast Layer Depth on the Performance of Railway Ballast Bed

  • Authors: Z., Yan, Zhu; A., Zaoui, Ali; W., Sekkal, Wassila
    Journal: International Journal of Geomechanics, Year: 2025

 

 

 

Quynh Anh Thi Nguyen | Computational Methods | Best Researcher Award

Dr. Quynh Anh Thi Nguyen | Computational Methods | Best Researcher Award

Researcher at University of Ulsan | South Korea

Quynh Anh Thi Nguyen is a doctoral researcher at the University of Ulsan (UOU), South Korea, where she is pursuing a Ph.D. in physics under the supervision of Prof. Sung Hyon “Sonny” Rhim. Her research primarily focuses on spintronics and first-principles calculations in tungsten (W) alloys. With a strong academic background, she has excelled in her field, maintaining a GPA of 4.17/4.5 during her doctoral studies and a similar academic achievement in her undergraduate studies.

👨‍🎓Profile

Google scholar

Scopus

🎓 Early Academic Pursuits

Nguyen’s academic journey began at Hanoi National University of Education (HNUE), Vietnam, where she completed her Bachelor’s degree in Physics with a thesis on the melting behavior of substitution alloys under pressure. During her undergraduate years (2013-2017), she was consistently ranked as an excellent student and earned recognition in scientific conferences. Her academic foundation set the stage for her future exploration in computational physics and materials science.

💼 Professional Endeavors

Since 2017, Nguyen has been pursuing her Doctoral degree at the University of Ulsan (UOU), South Korea. Under the mentorship of Prof. Sung Hyon Rhim, her research is centered on the study of spintronics in W alloys and the magnetic properties of Heusler compounds. She has delved into critical aspects of spin Hall conductivity, orbital Hall conductivity, and magnetism, contributing to the understanding of materials used in next-generation electronic devices like spintronic sensors and memory devices.

Contributions and Research Focus 🔬

Quynh Anh’s research mainly explores the Spin Hall conductivity and orbital Hall effects in various materials, including transition metals, Heusler compounds, and tetragonal alloys. Her work on spintronics—specifically related to the spin-orbit torque efficiency of materials like β-W heterojunctions—has led to several high-impact publications. One of her major contributions is the study of the spin Hall conductivity in W-Si alloys, which has significant implications for spintronic devices and energy-efficient electronics.

Her current research includes W-N alloys, and the impact of Ti substitution on β-W, both of which are preparing for publication.

Impact and Influence 🌍

Quynh Anh’s work is making a significant impact on the field of spintronics and material physics, especially with her first-principles calculations on the properties of W alloys. By exploring magnetism and conductivity in alloys, she is contributing to the development of advanced materials with better performance in electronics and magnetic devices. Her research aids in the creation of energy-efficient technologies and high-performance electronic components, positioning her as a leading researcher in her field.

Research Skills 💻

Quynh Anh possesses a strong set of technical skills that aid her research, including expertise in software such as Photoshop, Origin, Matlab, Python, and advanced tools like VASP, Wannier90, and OpenMx for computational physics. These skills have enabled her to conduct first-principles calculations and detailed simulations, giving her a deep understanding of material properties and quantum phenomena.

Awards and Honors 🏆

Quynh Anh’s work has been widely recognized:

  • Best Poster Award at the International Conference on Magnetic and Superconducting Materials (2018) in Seoul, Korea.
  • Multiple Excellent Student awards during her undergraduate years.
  • Third Prize at the Student Conference Science Research (2017).

These honors underscore her exceptional academic performance and research contributions.

Legacy and Future Contributions 🌟

With her expertise in spintronics and material physics, Quynh Anh is set to continue making groundbreaking contributions to the field of advanced materials. Her research on spin Hall conductivity, orbital Hall effects, and magnetism will likely pave the way for future innovations in energy-efficient electronics and next-generation magnetic devices. Quynh Anh’s legacy will undoubtedly inspire future scientists to explore the untapped potentials of transition metal alloys and spintronic materials, ensuring her lasting impact in the world of physics and material science.

Publications Top Notes

Ti-alloyed β-W heterojunctions exhibiting spin-orbit torque switching at a wide operating temperature range

  • Authors: J. Lee, Q. A. T. Nguyen, D. Kim, S. H. Rhim, Y. K. Kim
    Journal: Applied Surface Science
    Year: 2025

Synergetic Modulation of Electronic Properties of Cobalt Oxide via “Tb” Single Atom for Uphill Urea and Water Electrolysis

  • Authors: S. Ajmal, A. Rasheed, W. Sheng, G. Dastgeer, Q. A. T. Nguyen, P. Wang, …
    Journal: Advanced Materials
    Year: 2025

Unlocking electrocatalytic dynamics with anti-MXene borides monolayers for nitrate reduction

  • Authors: T. H. Ho, Q. A. T. Nguyen, B. T. T. Le, S. G. Kim, W. Q. Bui
    Journal: Applied Surface Science
    Year: 2024

Spin Hall Conductivity of W100-xSix Alloys in A15 Structure: A Comprehensive Study

  • Authors: Q. A. T. Nguyen, S. H. Rhim
    Journal: Journal of Magnetics
    Year: 2024

Orbital-engineered anomalous Hall conductivity in stable full Heusler compounds: a pathway to optimized spintronics

  • Authors: Q. A. T. Nguyen, T. H. Ho, S. G. Kim, A. Kumar, V. Q. Bui
    Journal: Journal of Materials Chemistry C
    Year: 2024

 

 

 

Shuxia Zhao | Theoretical Advances | Best Researcher Award

Assoc. Prof. Dr. Shuxia Zhao | Theoretical Advances | Best Researcher Award

Associate Professor at Dalian University of Technology, China

Dr. Shuxia Zhao is an Associate Professor at the Dalian University of Technology, with a specialization in electronegative and inductively coupled plasmas. She has an extensive academic background, with degrees in Physics, Materials Science, and Plasma Physics from Hebei Normal University and Dalian University of Technology, followed by Postdoctoral Research at the University of Antwerp. Dr. Zhao’s expertise lies in exploring the complex discharge structures of plasma and establishing interdisciplinary links across various fields of plasma physics.

👨‍🎓Profile

Early Academic Pursuits 🎓

Dr. Zhao began her academic journey at Hebei Normal University in 2000, where she completed her Bachelor’s degree in Physics. She continued her studies at the same institution, earning her Master’s degree in Physics and Chemistry of Material in 2007. Further refining her expertise, she pursued her Doctorate at Dalian University of Technology, specializing in Plasma Physics. Dr. Zhao also enriched her research experience as a Postdoctoral Researcher at the University of Antwerp, focusing on fluorocarbon inductively coupled plasmas.

Professional Endeavors 💼

Dr. Zhao has contributed to various significant research projects funded by the National Natural Science Foundation of China. In her current role as Associate Professor at DUT since 2013, she continues to advance knowledge in electronegative plasmas and inductively coupled plasmas. Dr. Zhao has led industry collaborations, notably with North microelectronics base, enhancing plasma source technologies.

Contributions and Research Focus 🔬

Dr. Zhao’s research explores the discharge mechanism and etching processes of fluorocarbon plasmas, as well as the complex discharge structures of electronegative plasmas. She is particularly interested in low-temperature plasmas and their potential connections with high-temperature fusion plasmas and astrophysical plasmas. Her work on mode transition and hysteresis in inductively coupled plasma sources has provided critical insights into plasma behavior and interactions.

Impact and Influence 🌍

Dr. Zhao’s groundbreaking work in plasma science has impacted both the academic community and the industry. Her research has provided important theories and models that enhance the understanding of plasma behaviors and their applications in various fields, including microelectronics and fusion energy. Her published books and articles have been well-cited, showcasing her role in advancing plasma physics.

Academic Citations 📊

Dr. Zhao’s research contributions are widely recognized, with a Web of Science ResearcherID of AFT-8684-2022. She has published 39 journals in renowned international databases like SCI and Scopus. Her work is highly cited and continues to shape plasma science research globally.

Research Skills 🧑‍🔬

Dr. Zhao is skilled in fluid modeling, plasma diagnostics, and theoretical plasma physics. She has developed innovative software for modeling argon inductively coupled plasmas and ionic species transport coefficients in low-pressure RF plasmas, securing patents for these developments. Her expertise extends to data analysis, numerical simulations, and plasma characterization.

Teaching Experience 🍎

Dr. Zhao has been an educator at Dalian University of Technology for over a decade. She is deeply invested in nurturing the next generation of plasma scientists and engineers. Dr. Zhao’s commitment to teaching and mentoring extends beyond the classroom, as she actively supervises graduate students and postdoctoral researchers in their own academic pursuits.

Legacy and Future Contributions 🌱

As Dr. Zhao continues to explore the complexities of inductively coupled plasmas, her future work will likely further advance the field of plasma physics, especially in the context of microelectronics and fusion energy. Her research legacy is one of interdisciplinary collaboration, innovative discoveries, and educational excellence, contributing to both scientific advancements and technological applications.

Publications Top Notes

Simulation of mode transitions in capacitively coupled Ar/O2 plasmas

  • Authors: X. Liu, S. Zhang, S. Zhao, H. Li, X. Ren
    Journal: Plasma Science and Technology
    Year: 2024

Self-Coagulation Theory and Related Comet- and Semi-Circle-Shaped Structures in Electronegative and Gaseous Discharging Plasmas in the Laboratory

  • Authors: Y. Tian, S. Zhao
    Journal: Applied Sciences (Switzerland)
    Year: 2024

Effect of gas flow on the nanoparticles transport in dusty acetylene plasmas

  • Authors: X. Liu, W. Liu, X. Zhang, X. Dong, S. Zhao
    Journal: Plasma Science and Technology
    Year: 2023