Rohit Yadav | High energy physics | Best Researcher Award

Mr. Rohit Yadav | High energy physics | Best Researcher Award

National Institute of Technology Warangal | India

Rohit Yadav is a Research Scholar at the National Institute of Technology (NIT), Warangal, India, specializing in hybrid supercapacitors and electrode materials for energy storage systems. His research focuses on designing and developing high-performance, eco-friendly supercapacitors aimed at advancing electric vehicles (EVs) and promoting green energy solutions. Rohit’s work is essential for the sustainable energy revolution and has already contributed significantly to renewable energy storage and smart grid applications.

👨‍🎓Profile

Google scholar

Scopus

Orcid

Early Academic Pursuits 🎓

Rohit completed his M.Sc. in Physics in 2020 from the Malviya National Institute of Technology, Jaipur, India. His dissertation focused on studying cathode materials for metal-air batteries, laying a strong foundation for his later work in advanced energy storage systems. His academic journey provided a deep understanding of material science and electrochemical processes, which continues to shape his innovative approach to supercapacitor research.

Professional Endeavors 🔬

As a Program Committee Member for the IEMDST 2024 Conference, Rohit played a crucial role in organizing and overseeing a global scientific event. Additionally, he served as the General Secretary of the Physics Society at NIT Warangal in 2023, organizing scientific talks and coordinating weekly research presentations. His leadership and collaboration in these roles underscore his commitment to fostering scientific dialogue and promoting academic growth in the scientific community.

Contributions and Research Focus 🔍

Rohit’s research interests span across the development of hybrid supercapacitors, focusing on the synthesis and characterization of novel electrode materials. His work directly impacts the advancement of energy storage systems for electric vehicles and renewable energy solutions. By enhancing the performance of supercapacitors with eco-friendly materials like mesoporous strontium titanate and activated carbon derived from natural biomass, he contributes to sustainable, efficient energy storage solutions. His dedication to green energy applications marks a crucial intersection of technology and environmental impact.

Research Skills 🛠️

Rohit is highly skilled in synthesis techniques such as sol-gel and hydrothermal methods for creating novel electrode materials. His expertise includes electrochemical characterization, materials optimization, and nanomaterial design, which are key in developing high-performance energy storage systems. Additionally, he is proficient in advanced analytical techniques, ensuring that his materials meet the rigorous demands of sustainable energy solutions.

Awards and Honors 🏆

Rohit’s dedication and hard work have been recognized through several accolades:

  • Best Paper Award – 2023: For his exceptional paper presented at an international conference.
  • Position Certificate in Mini Marathon – 2024: A testament to his balanced and disciplined approach to both academic and personal growth.

These honors highlight his outstanding contributions to the field of energy storage and his commitment to excellence in both academic and extracurricular endeavors.

Legacy and Future Contributions 🚀

Rohit’s long-term vision is to push the boundaries of hybrid supercapacitor technology and advanced electrode materials to further enhance energy storage systems for electric vehicles and renewable energy grids. His work is poised to play a crucial role in the global transition to sustainable energy solutions, and he aspires to continue contributing to green technologies that benefit both society and the environment.

Publications Top Notes

Synthesis and Electrochemical characterization of activated porous Carbon Derived from Walnut shells as an Electrode material for symmetric Supercapacitor Application

  • Authors: R Yadav, N Macherla, K Singh, K Kumari
    Journal: Engineering Proceedings 59 (1), 175
    Year: 2024

Structural-Morphological Insights into Optimization of Hydrothermally Synthesized MoSe2 Nanoflowers for Improving Supercapacitor Application

  • Authors: P Yadav, R Yadav, J Pani, RM Singh, D Singh, K Kusum, H Borkar, …
    Journal: Dalton Transactions
    Year: 2025

Temperature-dependent hydrothermal processing of WS2 nanorods with controlled growth morphology, crystallography and optical properties

  • Authors: DS Ahlawat, D Singh, R Yadav, K Kumari, H Borkar, J Gangwar
    Journal: Materials Letters 377, 137386
    Year: 2024

Electrochemical analysis of sol-gel and hydrothermal synthesized mesoporous strontium titanate spherical nanoparticles as electrode material for high-performance flexible supercapacitors

  • Authors: R Yadav, R Banoth, K Singh, H Borkar, K Kumari
    Journal: Materials Chemistry and Physics 328, 130004
    Year: 2024

Novel industrial biomass derived materials for super capacitor application in powering up electronic gadgets

  • Authors: P Yadav, PA Azeem, S Patel, G Mahar, R Yadav, H Borkar
    Journal: Journal of Energy Storage 97, 112653
    Year: 2024

 

 

Varun Kumar Singh | Experimental methods | Best Researcher Award

Mr. Varun Kumar Singh | Experimental methods | Best Researcher Award

Madan Mohan Malaviya University of Technology, Gorakhpur | India

Varun Kumar Singh is a dedicated Ph.D. candidate at Madan Mohan Malaviya University of Technology, Gorakhpur, where he is advancing his research in Energy Technology and Management. He has an impressive academic track record, having completed his M.Tech in Energy Technology and Management with an 8.09 CGPA. Prior to his graduate studies, he obtained his B.Tech in Mechanical Engineering from MJP Rohilkhand University, Bareilly. His academic pursuits reflect his passion for renewable energy systems and sustainable technologies.

👨‍🎓Profile

Google scholar

Scopus

Orcid

Early Academic Pursuits 📚

Varun Kumar Singh’s academic journey began at M.G. Inter College, Gorakhpur, where he excelled in both High School (71%) and Intermediate (78.2%) exams, establishing a strong foundation for his future studies. His curiosity for mechanical engineering led him to pursue a B.Tech in Mechanical Engineering from MJP Rohilkhand University, Bareilly. Motivated by the potential of sustainable energy solutions, he later advanced his studies with a M.Tech and is currently in the process of earning his Ph.D..

Professional Endeavors 💼

Varun’s professional growth includes valuable summer training in CATIA and workshop processes at the Central Tool Room and Training Centre, Bhubaneswar. Additionally, he gained practical exposure during an industrial training at Parbati H.E. Project Stage-II, NHPC Limited. These professional experiences have enhanced his ability to apply theoretical knowledge to real-world energy systems, particularly in energy storage and thermal management.

Contributions and Research Focus 🔬

Varun Kumar Singh’s research is centered on nano-enhanced Phase Change Materials (PCMs) for solar desalination and thermal energy storage systems. His publications, including in prestigious journals like Materials Today Sustainability and Heat Transfer, focus on the thermo-economic performance of solar distillation systems. He explores the role of nano-additives like TiO2 and CuO in enhancing thermal storage materials for renewable energy solutions, aiming to improve efficiency in energy storage and thermal management.

Impact and Influence 🌍

Varun’s contributions have made significant strides in sustainable energy research. His studies have had a measurable impact on enhancing the performance of solar energy systems, which is critical for promoting green technologies and combating climate change. By working on nano-enhanced energy storage solutions, he is contributing to the global shift towards more sustainable and efficient energy resources. His research influences both academia and industry, with a focus on practical applications in real-world energy systems.

Research Skills 🔧

Varun has developed advanced research skills in the areas of thermo-economic analysis, solar thermal systems, and energy storage materials. He is proficient in experimental setups, simulation tools, and analytical techniques, allowing him to evaluate nano-enhanced PCMs and their thermal properties. His expertise in solar energy systems and thermal storage positions him as an expert in the field of renewable energy research.

Legacy and Future Contributions 🌱

Varun’s legacy lies in his ongoing commitment to improving energy storage and solar technologies. As a Ph.D. candidate, his future contributions are expected to drive innovations in renewable energy solutions, with a particular focus on energy-efficient systems. His work on nano-enhanced PCMs and solar desalination will likely lead to advancements in energy sustainability, ensuring that his impact on the field of energy management continues to grow.

Publications Top Notes

Multi-objective optimization of novel phase change material-based desalination system using genetic algorithms

  • Authors: Singh, V.K., Kumar, D., Tripathi, R.J.
    Journal: Journal of Energy Storage
    Year: 2024

Heat transfer analysis of solar distillation system by incorporating nano-enhanced PCM as thermal energy-storage system

  • Authors: Singh, V.K., Kumar, D.
    Journal: Heat Transfer
    Year: 2024

Development, characterization and thermo-physical analysis of energy storage material doped with TiO2 and CuO nano-additives

  • Authors: Singh, V.K., Kumar, D.
    Journal: Journal of the Indian Chemical Society
    Year: 2024

An experimental investigation and thermo-economic performance analysis of solar desalination system by using nano-enhanced PCM

  • Authors: Singh, V.K., Kumar, D.
    Journal: Materials Today Sustainability
    Year: 2024

Experimental Analysis of the Performance of Indirect Evaporative Cooling System with Water and Nano-fluid

  • Authors: Kumar, A., Kumar, D., Tripathi, R.J., Singh, V.K., Kumar, P.
    Journal: NanoWorld Journal
    Year: 2023

 

 

Parveen A | Experimental methods | Best Researcher Award

Dr. Parveen A | Experimental methods | Best Researcher Award

AVS College of Arts & Science, Salem | India

Dr. A. Parveen is a passionate physicist and educator with a Ph.D. in Physics from Periyar University, India. Her research primarily focuses on nanomaterials, vibrational studies, and spectroscopy. With over 8 years of experience in academia, she is dedicated to advancing the field of environmental applications through photocatalysis and nanocomposites. Dr. Parveen combines her strong academic background with extensive teaching and research contributions, earning recognition for her work in material science.

👨‍🎓Profile

Google scholar

Scopus

Early Academic Pursuits 🎓

Dr. Parveen’s academic journey began at Sri Sarada College for Women, Salem, where she completed her B.Sc., M.Sc., and M.Phil. in Physics, all with distinction. Her deep interest in material science and physics led her to pursue a Ph.D. from Government Arts College, Salem, under Periyar University. The focus of her Ph.D. thesis was on the synthesis of metal oxide nanoparticles and their applications as visible light-active photocatalysts for environmental applications.

Professional Endeavors 🏢

Dr. Parveen currently holds the position of Assistant Professor at AVS College of Arts & Science, Salem, where she imparts knowledge to undergraduate and postgraduate students. She has previously served as an Assistant Professor at Shri Sakthikailassh Women’s College and Salem Polytechnic College. Her teaching expertise spans across multiple areas in physics, including nano materials, spectroscopy, and environmental science. Dr. Parveen is committed to mentoring students and fostering their passion for research and scientific inquiry.

Contributions and Research Focus 🔬

Dr. Parveen’s research is centered around nanomaterials, their synthesis, characterization, and applications in photocatalysis for environmental remediation. Some of her major works include:

  • V2O5/Ppy composites for hydrogen evolution and organic pollutant degradation.
  • MnO2/PPy hybrid catalysts designed for visible light photocatalytic activity.
  • ZrO2-based catalysts coupled with PPy to enhance photocatalytic performance.

These contributions have significantly advanced the field of material science, with applications in renewable energy and environmental sustainability.

Academic Cites 📑

Her research is gaining significant recognition, with several of her articles cited by peers in the scientific community. This reflects the growing influence of her work in the field of nanomaterials and photocatalysis. Dr. Parveen’s ability to contribute novel solutions to environmental challenges through innovative material designs has made her a promising figure in sustainable energy research.

Research Skills ⚙️

Dr. Parveen is proficient in nanomaterial synthesis, characterization techniques such as spectroscopy, and vibrational studies. She has hands-on experience with a range of material characterization techniques and works with complex computational models in density functional theory (DFT). Her research skills also extend to the evaluation of photocatalytic performance in various systems, positioning her as an expert in this area.

Teaching Experience 🎓

With over 8 years of teaching experience, Dr. Parveen has honed her skills in delivering quality education. She has taught at prominent institutions and has participated in various workshops and seminars to further enhance her pedagogical approaches. Her expertise in nanomaterials and spectroscopy is shared with students in both undergraduate and postgraduate programs.

Legacy and Future Contributions 🌟

Dr. Parveen’s work has the potential to lead to significant breakthroughs in the development of environmentally friendly energy solutions. Her photonics research on visible light photocatalysis and nanocomposites could pave the way for sustainable technology in the future. Through continuous research, teaching, and mentorship, Dr. Parveen is well-positioned to make lasting contributions to both science and education in the years to come.

Publications Top Notes

A dual-purpose photocatalytic reaction for hydrogen evolution and simultaneous organic pollutant degradation of V2O5/Ppy based composite photocatalyst

  • Authors: Parveen, A., Surumbarkuzhali, N., Meeran, M.N., BoopathiRaja, R., Parthibavarman, M.
    Journal: Chemical Physics Impact
    Year: 2024

Design of SnO2 nanorods/polypyrrole nanocomposite photocatalysts for photocatalytic activity towards various organic pollutants under the visible light irradiation

  • Authors: Parveen, A., Surumbarkuzhali, N., Shkir, M., Ahn, C.-H., Park, S.-H.
    Journal: Inorganic Chemistry Communications
    Year: 2022

Spatial separation of photo-generated carriers and enhanced photocatalytic performance on ZrO2 catalysts via coupling with PPy

  • Authors: Parveen, A., Surumbarkuzhali, N.
    Journal: Inorganic Chemistry Communications
    Year: 2020

Strategies and insights towards the high performance visible light photocatalytic activity of MnO2/PPy hybrid catalysts: challenges and perspectives

  • Authors: Parveen, A., Surumbarkuzhali, N.
    Journal: Journal of Materials Science: Materials in Electronics
    Year: 2020

 

 

Jia Guo | Experimental methods | Best Researcher Award

Prof. Jia Guo | Experimental methods | Best Researcher Award

University of South China | China

Jia Guo, Ph.D., is an accomplished academic and researcher specializing in optical engineering, with a deep focus on the development of photonic and photoelectronic devices. He currently serves as a Professor at the School of Mathematics and Physics at the University of South China in Hengyang, China. Over the years, his research has contributed significantly to the fields of 2D materials and nonlinear optics, exploring their potential in groundbreaking technologies like ultrafast lasers and photodetectors.

👨‍🎓Profile

Google scholar

Scopus

Early Academic Pursuits 🎓

Dr. JiaGuo’s academic journey began with a Bachelor’s degree in Physics from Liaocheng University, followed by a Master’s in Optics from Shandong Normal University. His passion for optical science led him to pursue a Ph.D. in Optical Engineering at Shenzhen University, where he conducted advanced research under the guidance of Professor Han Zhang. It was during these formative years that he developed a strong foundation in optics, setting the stage for his future endeavors.

Professional Endeavors 💼

Dr. JiaGuo has made significant strides in both his academic and professional careers. Since 2023, he has been a Professor at the University of South China, where he continues to mentor and inspire the next generation of scientists. Prior to that, he served as a Postdoctoral Fellow at the College of Electronics and Information Engineering, Shenzhen University, where he worked closely with leading professors in the field, including Prof. Wenlong He and Prof. Han Zhang. His professional background also includes key roles in research and development in photonics and optics.

Contributions and Research Focus 🔬

Dr. JiaGuo’s research contributions are centered around the development of photonic devices like ultrafast lasers, photodetectors, and modulators, with particular emphasis on 2D materials such as graphene and black phosphorus. He has explored nonlinear optical properties, saturable absorption, and optical carrier dynamics through cutting-edge femtosecond laser systems. Recently, his focus has shifted to the mid-infrared and terahertz ultrafast lasers, with applications in metasurfaces and nonlinear optical effects. His work is advancing new ways to manipulate light and optimize photonic applications.

Academic Cites 📚

Dr. JiaGuo’s work has received international recognition through highly cited papers, including those published in prominent journals like Laser Photonics Review, Advanced Optical Materials, and Nanoscale. His contributions to these journals have solidified his standing as a key figure in the study of nonlinear optics and 2D materials.

Research Skills 🛠️

Dr. JiaGuo is skilled in several advanced research techniques and tools, such as COMSOL, Z-scan, and pump-probe experiments. He is also proficient in 2D material preparation techniques, including CVD (chemical vapor deposition) and liquid-phase exfoliation. His extensive technical skillset allows him to investigate the optical properties and ultrafast dynamics of new materials with precision.

Teaching Experience 🧑‍🏫

As a Professor at the University of South China, JiaGuo imparts his knowledge of optics, photonics, and 2D materials to students. His experience as a mentor and educator enhances his ability to foster the next generation of optical engineers and photonics researchers.

Awards and Honors 🏆

Dr. JiaGuo’s contributions to the field of optics have been recognized through a variety of prestigious awards. Among them are the National Scholarship for Master Postgraduates (2017), the Tencent Founder Innovation Scholarship (2020), and the Student Optical Award of the Wang Daheng Optical Award from the China Optical Society (2021). These accolades highlight his excellence both in research and academic performance.

Legacy and Future Contributions 🌟

Dr. JiaGuo’s legacy is rooted in his innovative research and his role as a mentor in the optical sciences community. As he continues to push the boundaries of metasurfaces and nonlinear optics, he is likely to shape the future of photonic technologies. His future work promises to influence the development of next-generation laser systems, with applications in industries ranging from medical imaging to telecommunications.

Publications Top Notes

Optimization of Erbium-Doped Fiber to Improve Temperature Stability and Efficiency of ASE Sources

  • Authors: Jia Guo, Hao Zhang, Wenbin Lin, Wei Xu
    Journal: Photonics
    Year: 2025

Nonlinear Optical Response of Niobium Telluride and Its Application for Demonstrating Pulsed Fiber Lasers

  • Authors: X. Shang, Y. Zhang, T. Li, H. Zhang, X. Zou, S. Wageh, A.A. Al-Ghamdi, et al.
    Journal: Journal of Materiomics
    Year: 2024

Broadband Nonlinear Response and Ultrafast Photonics Applications in Few-Layer MBene

  • Authors: Jia Guo, Hao Y., A.V. Kuklin, et al.
    Journal: ACS Photonics
    Year: 2023

Ta2C MXene: Nonlinear Optical Properties and Application in Femtosecond Fiber Laser

  • Authors: Jia Guo, Z. Liu, S. Wageh, et al.
    Journal: Optics and Laser Technology
    Year: 2023

Niobium Telluride Absorber for a Mode-Locked Vector Soliton Fiber Laser

  • Authors: X.X. Shang, N.N. Xu, Jia Guo, et al.
    Journal: Science China: Physics, Mechanics and Astronomy
    Year: 2023

 

 

Yang Tan | Interactions and fields | Best Researcher Award

Prof. Dr. Yang Tan | Interactions and fields | Best Researcher Award

Shandong University | China

Professor Yang Tan is a distinguished academic leader and researcher in the field of integrated photonics, specializing in microcavity lasers, crystalline films, and optical signal amplification. Born in March 1984, he has risen through the ranks of Shandong University to become a Professor at the School of Physics. His impressive career includes significant contributions to photonics and laser technologies, having published more than 60 peer-reviewed papers in top-tier journals such as Advanced Functional Materials, ACS Nano, and Optics Letters. His ongoing research focuses on advancing ultrafast lasers, micro-nano optical field manipulation, and single crystal thin films.

👨‍🎓Profile

Google scholar

Orcid

Early Academic Pursuits 🎓

Professor Tan began his academic journey in 2006, pursuing a PhD in Physics at Shandong University, where he honed his skills in optics and material sciences. He earned his doctorate in 2011 and subsequently advanced to postdoctoral research at the University of Calgary in Canada, where he deepened his expertise in laser technologies and optical materials. These early academic experiences laid the foundation for his groundbreaking research in integrated photonics and microcavity lasers.

Professional Endeavors 💼

After completing his postdoctoral studies, Professor Tan returned to Shandong University as a Lecturer in 2012, eventually progressing to Associate Professor in 2015, and later Professor in 2018. His career at Shandong University has been marked by his leadership in research and teaching, overseeing numerous National Natural Science Foundation projects and contributing significantly to the development of innovative optical technologies. He has also served as a PhD supervisor, mentoring the next generation of physicists and engineers.

Contributions and Research Focus 🔬

Professor Tan’s research focus lies at the intersection of integrated photonics, laser physics, and material science. His innovative work explores the manipulation of micro-nano optical fields, the development of single crystal thin films, and the interaction between energetic ions and solids. His research on microcavity lasers has led to significant breakthroughs, such as the development of mid-infrared laser emissions, enhanced thermal stability of microdisk lasers, and heterogeneous integration of on-chip lasers. These contributions have placed him at the forefront of photonics research, with direct applications in telecommunications, sensing technologies, and quantum optics.

Impact and Influence 🌍

Professor Tan’s work has had a profound impact on the fields of photonics and material sciences. His publications in high-impact journals have advanced the understanding of microcavity laser technologies, optical waveguide systems, and crystalline film integrations. His interdisciplinary approach has influenced researchers not only in optics but also in fields like nanoelectronics, quantum information, and bio-optics. His research has led to tangible technological advancements, pushing the boundaries of laser efficiency, thermal management, and nanophotonic integration.

Academic Citations 📑

With more than 60 academic papers and several highly cited works, Professor Tan’s research has earned substantial recognition within the scientific community. His papers have been cited in leading journals such as Light: Science & Applications, ACS Nano, and Nano Letters, underlining the wide influence and importance of his contributions. His research has been cited extensively for its innovation in microcavity lasers and integrated photonics, demonstrating the global impact of his work.

Research Skills 🔍

Professor Tan possesses a comprehensive set of research skills, including expertise in photonics, nanotechnology, material synthesis, and ultrafast laser technologies. His ability to merge fundamental physics with applied technologies has enabled him to address challenges in optical signal amplification, microlaser emissions, and material integration. His innovative approach to defect engineering in van der Waals heterostructures and the development of whispering-gallery mode lasers is a testament to his creative and analytical prowess.

Teaching Experience 📚

As a PhD supervisor and Professor, Professor Tan has taught a wide range of courses in optics, photonics, and material science. He is known for his engaging teaching style, which encourages critical thinking and hands-on experimentation. His mentoring extends beyond the classroom, where he has guided numerous graduate students and postdoctoral researchers, helping them develop into independent researchers and experts in their fields. His leadership in education reflects his commitment to fostering future generations of scientists.

Awards and Honors 🏆

Professor Tan’s outstanding research has been recognized by several prestigious awards. In 2022, he received the National Excellent Young Scientists Fund, acknowledging his significant contributions to integrated photonics. Additionally, his achievements have earned him the Shandong Provincial Natural Science Award (Second Prize) twice. These honors reflect the impact of his work on both the scientific community and society at large.

Legacy and Future Contributions 🔮

Professor Yang Tan’s legacy is built on his pioneering work in the development of microcavity lasers and integrated photonic systems, which continue to influence the evolution of photonics and nanotechnology. Looking ahead, Professor Tan aims to expand his research into quantum photonics and biomedical applications, which will likely have far-reaching effects in the fields of quantum communication, biomedical imaging, and sensing. His continued exploration of novel materials and laser technologies promises to shape the future of photonics and related industries, making him a key figure in the ongoing technological revolution.

Publications Top Notes

Hopping transfer optimizes avalanche multiplication in molybdenum disulfide

  • Authors: Xiaofan Cai, Ruichang Chen, Yushui Tian, Xu Gao, Meili Yuan, Haixia Hu, Hang Yin, Yuanyuan Qu, Yang Tan, Feng Chen
    Journal: Materials Today Nano
    Year: 2025

Human-friendly semitransparent organic solar cells achieving high performance

  • Authors: Zonghao Wu, Beibei Shi, Jiangsheng Yu, Mengzhen Sha, Jiangkai Sun, Dongcheng Jiang, Xin Liu, Wenxiao Wu, Yang Tan, Huiyuan Li et al.
    Journal: Energy & Environmental Science
    Year: 2024

Enhancing thermal stability of Nd:GGG WGM microdisk lasers via silica integration

  • Authors: Huiqi Li, Zhaocong Wang, Lei Wang, Yang Tan, Feng Chen
    Journal: Nanophotonics
    Year: 2024

Free-space laser emission from Nd:YAG elliptical microdisks

  • Authors: Huiqi Li, Zhaocong Wang, Qingming Lu, Lei Wang, Yang Tan, Feng Chen
    Journal: Optics Letters
    Year: 2024

Selective 1.3 μm Laser Emission via Coupled Microlaser for Laser Resonance Tuning

  • Authors: Huiqi Li, Zhaocong Wang, Lei Wang, Yang Tan, Feng Chen
    Journal: ACS Photonics
    Year: 2024

 

 

Ramesh Sharma | Experimental methods | Best Researcher Award

Dr. Ramesh Sharma | Experimental methods | Best Researcher Award

DRDO | India

Dr. Ramesh Chand Sharma is a highly respected Group Director & Outstanding Scientist at DRDO (Defence Research and Development Organisation), with a vast array of experience in Laser Physics, Spectroscopy, LiDAR Technologies, and Bio-Photonics. His expertise spans over 25 years of pioneering work in research, development, and technology transfer. He has served in key leadership roles across international institutions and governmental organizations, contributing significantly to national security, environmental science, and defense technologies.

👨‍🎓Profile

Google scholar

Scopus

📚 Early Academic Pursuits

Dr. Sharma’s academic journey started with a Bachelor’s degree in Physics from the University of Garhwal, Srinagar (1989). He continued his education by completing a Master’s degree (1991) in Physics with a specialization in Electronics from the University of Garhwal, and later pursued his Ph.D. in Laser Physics from Banaras Hindu University and IIT Kanpur (1995). His academic foundation laid the groundwork for his future innovative contributions in Laser Spectroscopy and Advanced Technology Development.

💼 Professional Endeavors

Dr. Sharma’s career has been marked by his international exposure and leadership in R&D roles. He has held prestigious positions at world-renowned institutions such as IIT Kanpur, University of California, NASA, and Academia Sinica (Taipei, Taiwan). Over the years, he has advanced to top roles in DRDO, including Project Director, Technical Director, and Group Director. His leadership extends beyond national boundaries, having led significant international collaborations in laser technologies, LiDAR systems, and bio-agent detection technologies.

🧑‍🔬 Contributions and Research Focus

Dr. Sharma’s research spans several cutting-edge fields, with a primary focus on Laser Physics, LiDAR, Spectroscopy, and Bio-Photonics. His pioneering work in Laser DEW (Directed Energy Weapons), LiDAR sensing, and explosive detection has led to breakthroughs in defense technologies and environmental monitoring. He has also contributed to the development of photoacoustic sensors, which have been demonstrated for bio-agent detection from 1 km standoff distance.

🌍 Impact and Influence

Dr. Sharma’s work has had a far-reaching impact, especially in the fields of national security, defense, and environmental protection. His role in developing LiDAR technologies for the detection of chemical and biological warfare agents has been crucial for India’s defense preparedness. His technologies have been transferred to industries, and they are now being used for hazardous material detection, explosive detection, and bio-threat identification. Through his research and innovation, Dr. Sharma continues to influence the scientific community, government agencies, and industry leaders.

📰 Academic Citations

Dr. Sharma’s academic works have been widely cited across the globe, with publications in renowned journals such as Optics Letters, Spectroscopy Letters, and J Laser Optics and Photonics. Notable works include papers on multi-anode PMT Bio-LiDAR systems, quantum laser sensors for defense, and ultra-sensitive detectors for explosive chemicals. His works are regularly cited for their significant advancements in laser-based sensing, detection technologies, and bio-safety applications.

🧑‍🏫 Research Skills

Dr. Sharma is a leader in experimental physics and applied research. His expertise spans laser technology, nonlinear optics, chemical dynamics, and biosensors. He is proficient in laser spectroscopy, THz spectroscopy, and LiDAR systems, and he is instrumental in the development and integration of complex systems. His role in product development and technology transfer showcases his skill in bridging the gap between cutting-edge research and practical, deployable solutions.

🎓 Teaching Experience

Dr. Sharma’s contributions extend to mentoring the next generation of scientists and engineers. He has served as the course director for continuing education programs (CEP) on Lasers, Spectroscopy, and LiDAR for defense applications. As a lecturer and trainer, he has played a pivotal role in developing curricula and workshops that bridge theory with practical applications for emerging technologies in defense and industrial sectors.

🏆 Awards and Honors

Dr. Sharma’s contributions to science and technology have been widely recognized through various prestigious awards:

  • Technology Award (LiDAR for Chemical & Biological Agent Detection) by DRDO (2011).
  • Commendation Certificate for Laser Photoacoustic Sensor Technology for explosive detection (2012).
  • Science Day Lecturer Oration Award (2019).
  • Indian Scientist Award, selected for Best Researcher Award (2022).

These accolades reflect his outstanding achievements and continued excellence in research and technology development.

🏅 Legacy and Future Contributions:

Dr. Sharma’s career is marked by groundbreaking achievements and continued contributions to science and technology. His innovative work in laser-based sensing technologies has already made an impact on national defense and environmental protection. Looking ahead, he aims to expand into quantum technologies, AI-enabled sensing systems, and advanced bio-threat detection systems. As he continues his work at FACET, DRDO, his legacy of scientific leadership and technological innovation will no doubt inspire future generations of researchers.

Publications Top Notes

Temporal evolution of opto-galvanic effect in normal glow discharge of argon

  • Authors: Sharma, R.C., Das, B.K., Sharma, G., Saraswat, V.K., Thakur, S.N.
    Journal: Spectroscopy Letters
    Year: 2024

Early detection and warning of standoff bio-threats using ultraviolet laser wavelengths

  • Authors: Kumar, S., Vats, R., Parmar, A., Das, B.K., Sharma, R.C.
    Journal: Journal of Laser Applications
    Year: 2023

Photomechanical detection of bioaerosol fluorescence free-from solar background

  • Authors: Sharma, R.C., Kumar, S., Parmar, A., Singh, K.P., Thakur, S.N.
    Journal: Optics and Laser Technology
    Year: 2022

Remote mid IR Photoacoustic Spectroscopy for the detection of explosive materials

  • Authors: Mann, M., Rao, A.S., Sharma, R.C.
    Journal: Chemical Physics Letters
    Year: 2021

Standoff pump-probe photothermal detection of hazardous chemicals

  • Authors: Sharma, R.C., Kumar, S., Parmar, A., Prakash, S., Thakur, S.N.
    Journal: Scientific Reports
    Year: 2020

 

 

 

Harshita Srivastava | Quantum Computing | Best Researcher Award

Ms. Harshita Srivastava | Quantum Computing | Best Researcher Award

Deen Dayal Upadhyaya Gorakhpur University | India

Harshita Srivastava is an accomplished Ph.D. researcher currently pursuing her doctoral studies on Computational Studies of Novel Superalkali Clusters at D.D.U.G.U Gorakhpur. With a robust academic background in Physics and Mathematics, Harshita has made significant strides in computational chemistry and material science, focusing on superalkali clusters and their applications in areas like energy storage, drug design, and carbon dioxide activation.

👨‍🎓Profile

Scopus

Early Academic Pursuits 🎓

Harshita’s academic journey began in the Science Group at the CBSE Board, where she graduated from high school in 2012 and later completed her Intermediate studies in Mathematics in 2014. She earned her B.Sc. in Physics and Mathematics from D.D.U.G.U Gorakhpur in 2017, followed by a Master’s degree in Physics in 2019. Her keen interest in computational studies led her to pursue Ph.D. research at the same institution, where she continues to delve into the world of superalkali clusters.

Professional Endeavors 🔬

Throughout her career, Harshita has demonstrated a commitment to advancing scientific knowledge and contributing to the field of computational chemistry. Her research experience spans a wide array of topics, from superalkalis to the inhibition of SARS-CoV-2, highlighting her ability to apply computational methods to a diverse range of scientific challenges. Her work in understanding the electronic structures of clusters and exploring new materials for applications in energy storage and drug design has established her as an emerging expert in her field.

Contributions and Research Focus 🔍

Harshita’s research is centered around the study of superalkali clusters and their chemical properties, which has implications for a variety of applications. She has contributed to significant publications in top-tier journals like Frontiers in Physics, Chemical Physics Letters, and Journal of the Indian Chemical Society. Her work also extends to material science, specifically studying molecular dynamics, quantum chemistry, and their potential applications in sustainable development. By investigating the interaction of molecules with superalkalis, Harshita has helped to enhance our understanding of nonlinear optical responses, hydrogen storage, and energy-efficient materials.

Impact and Influence 🌍

Harshita’s research is influencing the scientific community, particularly in the realms of superalkalis and nanomaterials. Her work has applications in carbon dioxide activation, hydrogen storage, and the design of strong bases and superbases, which could significantly contribute to addressing global energy and environmental challenges. Additionally, her book chapter contributions on superalkalis, which were published by Taylor & Francis/CRC Press, further demonstrate her scientific influence and commitment to advancing knowledge in her field.

Research Skills 🔧

Harshita possesses advanced research skills, particularly in computational modeling, ab initio studies, and quantum chemical simulations. She is proficient in using a variety of simulation tools such as the Amsterdam Modelling Suite and has experience in docking studies and molecular dynamics simulations. These skills have enabled her to tackle complex scientific problems and make meaningful contributions to the study of novel materials and superalkali chemistry. Her expertise in data analysis and theoretical modeling also positions her as a leader in her research area.

Awards and Honors 🏆

While Harshita is still in the early stages of her career, she has already received significant recognition for her work. Her participation and presentation at conferences such as the International Conference on Nanotechnology and Materials for Energy & Sustainable Development have been well-received. She has also been acknowledged for her contributions to research with certificates and awards from renowned institutions, showcasing her growing reputation in the scientific world.

Legacy and Future Contributions 🔮

Harshita Srivastava’s future in research is bright. With her ongoing work in computational chemistry and superalkali clusters, she is poised to make even more significant contributions to material science, nanotechnology, and sustainability. As she continues to expand her research portfolio, Harshita has the potential to leave a lasting legacy in the scientific community, driving innovations in clean energy, drug design, and environmental solutions. Her work has already laid the foundation for future breakthroughs, and her career is one to watch closely as she continues to push the boundaries of scientific understanding.

Publications Top Notes

BH6+: Revisiting borohydride cation with negatively charged boron and its possible implications for hydrogen storage

  • Authors: Srivastava, A.K., Das, P., Srivastava, H., Chattaraj, P.K.
    Journal: Chemical Physics, 2024

Interaction of N2, O2 and H2 Molecules with Superalkalis

  • Authors: Srivastava, H., Kumar Srivastava, A., Misra, N.
    Journal: ChemistryOpen, 2024

Engineering novel alkalides with superalkali clusters: Ab initio insights into nonlinear optical responses

  • Authors: Srivastava, H., Srivastava, A.K.
    Journal: Molecular Simulation, 2024

Superalkalis in the Design of Strong Bases and Superbases

  • Authors: Srivastava, H., Srivastava, A.K.
    Book Title: Superhalogens and Superalkalis: Bonding, Reactivity, Dynamics and Applications, 2024

Effect of Methyl Substitutions on the Ionization Energy of OH3−n(CH3)n+

  • Authors: Srivastava, H., Tripathi, J.K., Srivastava, A.K.
    Book Title: Springer Proceedings in Materials, 2024

 

 

 

Sajitha N. M | Interactions and fields | Women Researcher Award

Ms. Sajitha N. M | Interactions and fields | Women Researcher Award

GOVT. COLLEGE MADAPPALLY, VADAKARA | INDIA

Sajitha N. M. is an Assistant Professor of Physics at Government College, Madappally, with 7 years of teaching experience. She is currently pursuing a Ph.D. in Nonlinear Physics, with a focus on nematicons—a type of solitary wave in nonlinear optical systems. Her expertise lies in the interplay of potentials, thermal effects, and diffractive radiation in uniaxial nematic liquid crystals (NLCs). Sajitha is passionate about advancing scientific research and has contributed significantly to the field through her publications and conference presentations.

👨‍🎓Profile

Scopus

Orcid

Early Academic Pursuits 🎓

Sajitha’s academic journey began at the University of Calicut, where she completed her B.Sc. in Physics with exceptional marks (96.7%). She continued her education with an M.Sc. in Physics, graduating with First Class honors. She further pursued a Bachelor of Education in Physical Science from the same university. Her academic excellence is evident in her achievements, including NET (UGC-JRF) qualification with an outstanding rank of 62/449 in Physical Science.

Professional Endeavors 🔬

Sajitha has been an Assistant Professor at Government College, Madappally for the past seven years. Throughout her career, she has been dedicated to not only teaching but also actively engaging in research. She has presented her work at several international conferences and is involved in cutting-edge research in Nonlinear Physics, particularly in the study of nematicons.

Contributions and Research Focus 🔍

Sajitha’s research focuses on nonlinear optics and nematicons, particularly their propagation, thermal response, and interactions with potentials. She has explored the generation of higher harmonics of nematicons under various conditions, such as parabolic potentials and periodic potentials. Her research also investigates the thermal response of single-peak and multi-peak nematicons, making significant strides in understanding thermal dynamics in nonlinear optical systems.

 

Impact and Influence 🌍

Sajitha’s work is beginning to make an impact on the field of Nonlinear Physics and optics. Her 5 published papers and 3 conference presentations in the last three years demonstrate her growing influence in the research community. By focusing on nematicons, she has contributed valuable insights into the stability, formation, and thermal response of these optical structures, which are pivotal in fields like photonics and material science.

Research Skills 🔧

Sajitha has demonstrated a strong command of theoretical physics, particularly in the domain of nonlinear optics. Her expertise extends to mathematical modeling, simulation techniques, and the analysis of complex systems like nematicons in different potential fields. Her ability to apply nonlinear dynamics principles to real-world problems in materials science and photonics is a testament to her research skills.

Teaching Experience 📚

With 7 years of teaching experience, Sajitha has been a dedicated educator, imparting physics knowledge to students at the undergraduate level. Her role as an Assistant Professor at Government College Madappally has allowed her to inspire and guide students in understanding the fundamentals of physics while also encouraging them to pursue research in emerging areas such as nonlinear physics.

Legacy and Future Contributions 🔮

Sajitha N. M.’s research legacy is still unfolding, and her contributions to the study of nematicons and nonlinear optics are likely to have a lasting impact on optical science and photonics. Moving forward, her focus on thermal dynamics, solitary waves, and nonlinear effects positions her as a promising researcher in the nonlinear physics community. As she continues to publish and present her findings, Sajitha will likely shape the future direction of research in nonlinear optics and quantum technologies.

Publications Top Notes

 

 

Moteb Alqahtani | Quantum Information | Best Researcher Award

Dr. Moteb Alqahtani | Quantum Information | Best Researcher Award

King Khalid University | Saudi Arabia

Dr. Moteb Mojeb G. Alqahtani is an Associate Professor of Physics at King Khalid University (KKU) in Abha, Saudi Arabia. With a PhD from Sussex University (UK) and a MSc from the University of New South Wales (Australia), his academic journey is marked by a deep commitment to the advancement of quantum physics. His teaching and research expertise centers around atom-light interactions, quantum information processing, and quantum optics, making him a leading figure in his field. Throughout his career, he has demonstrated both academic excellence and leadership in various university roles.

👨‍🎓Profile

Google scholar

Scopus

Orcid

Early Academic Pursuits 🎓

Dr. Alqahtani’s academic journey began at King Khalid University, where he earned his BSc in Physics in 2004. His curiosity and passion for the field led him to pursue graduate studies at the University of New South Wales in Sydney, Australia, where he obtained his MSc in Physics in 2009. Building upon this foundation, he completed his PhD in Physics at Sussex University in 2014. His PhD thesis, titled “Multi-photon Processes in Cavity QED”, laid the groundwork for his future contributions to quantum optics and quantum information theory.

Professional Endeavors 🔬

Dr. Alqahtani’s professional journey includes diverse roles in both teaching and administration. He began as a Teaching Assistant at KKU in 2004, progressing through roles as Assistant Professor (2015–2020) and then Associate Professor in 2020. He has also demonstrated leadership as the Head of the Physics Department multiple times and as the Research Center Director at KKU. His expertise has extended to serving as Vice Dean in several capacities, including Vice Dean of Graduate Studies. His administrative roles underscore his commitment to enhancing both academic quality and research culture at KKU.

Contributions and Research Focus 🔍

Dr. Alqahtani’s research focus centers on the intersection of quantum optics, cavity quantum electrodynamics (QED), and quantum information processing. His work on atom-light interactions and multi-photon processes has advanced the understanding of quantum gates, quantum computation, and quantum coherence. His research also explores quantum optics in hybrid systems, such as metal nanoparticles, graphene nanodisks, and quantum dots, which have important implications for future technologies in quantum communication and quantum computing.

Impact and Influence 🌍

Dr. Alqahtani’s work has had a significant impact on both academic research and practical applications in quantum technology. His publications in leading journals like Quantum Information Processing and Nanomaterials have contributed to expanding knowledge in areas such as quantum phase gates, quantum information theory, and quantum optics. His research is highly regarded by the scientific community and is regularly cited in works on quantum computing and quantum communication. His leadership roles at KKU, particularly as Research Center Director and Vice Dean, have allowed him to shape the university’s research environment, fostering collaboration and innovation. As an academic mentor, he has guided numerous students through their research projects and theses, impacting the next generation of physicists.

Academic Cites 📚

Dr. Alqahtani has established himself as a leading figure in quantum optics and quantum information. His research has been widely cited across various high-impact journals, attesting to the relevance and importance of his work. Key papers include his publications on quantum gates, multi-photon processes in cavity QED, and optical multistability in hybrid systems, with a growing citation record reflecting his ongoing influence in the field.

Research Skills 🛠️

Dr. Alqahtani possesses a broad range of research skills that make him an expert in quantum mechanics, quantum computation, and quantum optics. He is skilled in mathematical modeling, simulation techniques, and the application of advanced quantum theories to real-world systems. His work involves a deep understanding of atom-light interactions and quantum coherence, which he applies to the development of quantum gates and other quantum technologies.

Teaching Experience 👨‍🏫

Dr. Alqahtani has extensive teaching experience at both the undergraduate and graduate levels. He has taught a wide range of courses, including Quantum Mechanics, Quantum Optics, Light and Lasers, and Modern Physics. His diverse teaching portfolio reflects his deep knowledge of both theoretical and experimental physics. His teaching philosophy emphasizes active learning, critical thinking, and the importance of research-oriented education, preparing students for both academic and professional success in the field of physics.

Legacy and Future Contributions 🔮

As Dr. Alqahtani continues to advance his research in the field of quantum optics and quantum information processing, his legacy is being solidified through both his research publications and his leadership in academia. His work is at the forefront of quantum computation and quantum communication, areas with immense potential for future technologies. His ongoing research, mentorship, and leadership will continue to influence both the scientific community and the development of cutting-edge technologies.

Publications Top Notes

Huanqin Wang | Experimental methods | Best Researcher Award

Prof. Huanqin Wang | Experimental methods | Best Researcher Award

Hefei Institutes of Physical Science, Chinese Academy of Sciences | China

Professor Huanqin Wang is a distinguished researcher and educator currently serving as a professor at the Hefei Institutes of Physical Science, Chinese Academy of Sciences. He specializes in ultrafine particle sensing and environmental detection technologies. With a strong academic background, including a Ph.D. in microelectronics and solid-state electronics from the University of Science and Technology of China, he has made substantial contributions to improving environmental quality and addressing pollution through innovative technological solutions.

👨‍🎓 Profile

Scopus

Early Academic Pursuits 🎓

Professor Wang earned his B.S. degree in applied physics in 2004, followed by a Ph.D. in microelectronics and solid-state electronics in 2009 from the University of Science and Technology of China. His academic journey laid the foundation for his future research and expertise in environmental sensing technologies, leading to his role as a professor at the State Key Laboratory of Transducer Technology, part of the Institute of Intelligent Machine.

Professional Endeavors 💼

Currently, Wang is a professor at the Chinese Academy of Sciences, where he also manages research projects funded by prestigious national programs such as the National Key Research and Development Program of China and the National Natural Science Fund of China. Over his career, he has been instrumental in driving several projects aimed at pollution control and sensing technologies that address real-world environmental issues.

Contributions and Research Focus 🌱

Professor Wang’s primary research interest lies in the development of new technologies for mobile pollution source emission detection, with a particular focus on ultrafine particle sensing. He has developed key equipment such as the miniature atmospheric ultrafine particle size spectrometer and an on-board particulate matter emission testing system, which have been mass-produced and successfully applied in urban air quality evaluations and vehicle emission retrofits.

Impact and Influence 🌍

Wang’s work has made significant impacts on pollution control efforts, especially in the areas of diesel vehicle emissions and urban particulate monitoring. His devices are now used to assess the effectiveness of diesel vehicle particulate filter retrofits and are deployed in cities such as Tianjin and Tangshan. With over 70 published articles and 60 patents, Wang’s research has shaped how we understand and address air quality and emissions in modern cities.

Academic Cites 📚

Professor Wang’s publications have been widely recognized, with a citation index of 828. His peer-reviewed articles in SCI, Scopus, and other respected journals have become critical resources for the scientific community, showcasing the high relevance and impact of his research on environmental science and technology.

Research Skills 🛠️

Professor Wang excels in various research methodologies, particularly in sensor technology and environmental detection systems. His expertise spans from conceptualization and design to the implementation of cutting-edge sensing devices. Additionally, his experience in consultancy and industry projects further demonstrates his ability to translate academic research into practical, real-world solutions.

Teaching Experience 👨‍🏫

As a professor with the Institute of Intelligent Machine, Professor Wang has also contributed to graduate-level education in the fields of microelectronics, sensor technology, and environmental science. His teaching influences future generations of researchers and engineers who will continue to address global environmental challenges.

Legacy and Future Contributions 🔮

Looking forward, Professor Wang’s continued research promises to push the boundaries of environmental monitoring technologies. His development of more advanced sensing devices will play a pivotal role in addressing global pollution and contributing to sustainable urban development. His legacy will undoubtedly influence both the scientific community and policy makers in the fight against environmental degradation and climate change.

  Publications Top Notes

Electrostatic vehicle exhaust particle sensor for the evaluation of the diesel particulate filter (DPF)

  • Authors: Sun, Q., Wang, H., Liu, J., Yu, F., Gui, H.
    Journal: Instrumentation Science and Technology
    Year: 2025

Simulation of electrostatic particulate matter sensor regeneration based on the particulate deposition patterns

  • Authors: Liu, J., Wang, H., Sun, Q., Yu, F., Feng, B.
    Journal: Sensor Review
    Year: 2024

Analysis of excessive NOx emission from tampered heavy-duty vehicles based on real-time data and its impact on air pollution

  • Authors: Li, Y., Wang, H., Fu, M., Yang, Y., Gui, H.
    Journal: Atmospheric Pollution Research
    Year: 2024

Structural simulation and performance evaluation of self-priming electrostatic diesel vehicle emission particle sensor

  • Authors: Sun, Q., Wang, H., Huang, G., Gui, H., Chen, D.-R.
    Journal: Instrumentation Science and Technology
    Year: 2024

Beijing Heavy-Duty Diesel Vehicle Battery Capacity Conversion and Emission Estimation in 2022

  • Authors: Fu, M., Yang, Y., Li, Y., Yu, F., Liu, J.
    Journal: Sustainability (Switzerland)
    Year: 2023