Muhammad Yar Khan | Computational Methods | Best Researcher Award

Assoc. Prof. Dr. Muhammad Yar Khan | Computational Methods | Best Researcher Award

Associate Professor at Qilu institute of Technology | China

Dr. Hafiz Muhammad Yar Khan is an accomplished Materials Scientist and Associate Professor in Physics, with an extensive background in Density Functional Theory (DFT) Materials Modeling. He completed his Ph.D. in Materials Science Engineering at Zhejiang University, China (2023), which is ranked 41st in the QS World University Rankings (2022). His research is focused on novel 2D materials, energy storage materials, and the optical and magnetic properties of advanced materials, with significant contributions to the fields of spintronics, energy storage, and 2D magnetic materials.

👨‍🎓Profile

Google scholar

Scopus

ORCID

Early Academic Pursuits 🎓

Dr. Khan’s academic journey began with a Master of Science in Physics (M. Phil) from Hazara University Mansehra, Pakistan, in 2011, where he developed his passion for solid-state physics and computational material science. His dissertation focused on the first-principles study of perovskite-type oxides, laying the foundation for his later work in computational materials research. His focus on quantum mechanics, electrodynamics, and applied research techniques during his M.S. equipped him with a solid theoretical and experimental base.

Professional Endeavors 💼

Dr. Khan has held various teaching and administrative roles across prominent institutions in both Pakistan and China. His career includes serving as Lecturer in Physics at Kohat University of Science and Technology and The University of Haripur, Pakistan. His current position as Associate Professor at Qilu Institute of Technology, China, reflects his rising prominence in academia. Dr. Khan has also contributed to academic committees, such as being a member of the Academic Council at Kohat University and organizing events like sports day and international cultural day, showing his leadership in academic and extracurricular spheres.

Contributions and Research Focus 🔬

Dr. Khan’s research spans several cutting-edge areas in materials science. His Ph.D. dissertation on “First-Principles Study of Tuning Magnetic and Optical Properties of Novel 2D-Materials” focuses on materials such as transition metal carbon trichalcogenides and 2D magnetic materials. He has also explored energy storage technologies, such as Na and Li-ion batteries, providing insights into anode and cathode materials. His work also delves into optoelectronics and spintronics devices, underscoring his interdisciplinary approach.

Notable research topics include:

  • Magnetic and optical properties of 2D materials.

  • Energy storage materials (batteries, cathodes, and anodes).

  • Spintronics and optoelectronics for device applications.

Impact and Influence 🌍

Dr. Khan’s research has had significant implications in both academia and industry, especially in 2D materials and energy storage technologies. His publications in prestigious journals like Journal of Superconductivity and Novel Magnetism, Physics Letter A, and Nanoscale demonstrate his ability to contribute to high-impact research. His work is highly regarded in the scientific community, and he has collaborated with leading universities and institutions such as the New Jersey Institute of Technology (NJIT), Quaid-i-Azam University, University of Ulsan, and King Saud University.

His influence extends beyond materials science into academic collaboration, where he serves as a bridge between global research hubs in Pakistan, China, South Korea, and Saudi Arabia.

Research Skills 🧠

Dr. Khan is proficient in various computational software critical to materials science research, including:

  • WIEN2K

  • VASP

  • FLAPW

His ability to independently formulate research questions, conduct empirical research, and analyze data systematically has been key to his success. His first-principles approach has made him a leading figure in DFT-based materials modeling and theoretical materials science.

Teaching Experience 🍎

Dr. Khan has taught a variety of physics courses at undergraduate and postgraduate levels. He has mentored students in subjects such as Quantum Mechanics, Solid-State Physics, and Electrodynamics. He has also demonstrated his administrative skills in his role as Assistant Manager ORIC and member of the departmental admission committee, helping shape the academic landscape at institutions like Kohat University of Science and Technology and The University of Haripur. His teaching philosophy emphasizes the importance of research-driven education, encouraging students to engage with cutting-edge topics in material science and computational physics.

Awards and Honors 🏅

Dr. Khan has been recognized for his academic achievements with prestigious scholarships and fellowships, including:

  • Chinese Government Scholarship for his Ph.D. studies.

  • Brain Korea 21 (BK21) Fellowship by the Korean Government.

  • Pioneer Research Center Program through the National Research Foundation of Korea.

These awards underscore his commitment to academic excellence and his ability to secure competitive funding for his research endeavors.

Legacy and Future Contributions 🌟

Dr. Khan’s legacy is built on a solid foundation of innovative research, interdisciplinary collaborations, and a commitment to teaching. His future contributions are poised to make an impact not only in materials science but also in the energy sector, with further exploration into battery technologies, spintronics, and 2D materials. His ongoing work on defect-engineered materials and multiferroic hetero-structures is expected to push the boundaries of materials science in the coming years.

Publications Top Notes

“Computational insights into optoelectronic and magnetic properties of V(III)-doped GaN”

  • Authors: Muhammad Sheraz Khan, Muhammad Ikram, Li-Jie Shi, Bingsuo Zou, Hamid Ullah, Muhammad Yar Khan
    Journal: Journal of Solid-State Chemistry
    Year: 2021

“A highly selective nickel-aluminum layered double hydroxide nanostructures based electrochemical sensor for detection of pentachlorophenol”

  • Authors: Khan, Mir Mehran, Huma Shaikh, Abdullah Al Souwaileh, Muhammad Yar Khan, Madeeha Batool, Saima Q. Memon, and Amber R. Solangi
    Journal: Arabian Journal of Chemistry
    Year: 2024

“Exploring the structural stability of 1T-PdO2 and the Interface Properties of 1T-PdO2/Graphene Heterojunction”

  • Authors: Muhammad Yar Khan, Arzoo Hassan, Xiao-Qing Kelvin Tian, Abdus Samad
    Journal: ACS OMEGA
    Year: 2024

“Experimental Investigation of the Structural, Electrical, and Magnetic Properties of AgNbO3 Silver Nanobytes”

  • Authors: Junaid Khan, Shah Khalid, Pagunda3, Farhan Ahmad, Abdul Jabbar5, Rabah Khenata, Muhammad Yar Khan, and Heba G. Mohamed
    Journal: Journal of Materials Science

“Fabrication of nanofiltration membrane with enhanced water permeability and dyes removal efficiency using tetramethyl thiourea-doped reduced graphene oxide”

  • Authors: Sehrish Qazi, Huma Shaikh, Amber R. Solangi, Madeeha Batool, Muhammad Yar Khan, Nawal D. Alqarni, Sarah Alharthi, and Nora Hamad Al-Shaalan
    Journal: Journal of Materials Science

SHARJEEL AHMED | Particle Experiments | Best Researcher Award

Dr. SHARJEEL AHMED | Particle Experiments | Best Researcher Award

PhD Researcher at University of Science and Technology China (USTC), Chinese Academy of Science,Institute of Metal Research (CAS, IMR) | China

Dr. Sharjeel Ahmed is a PhD Researcher at the University of Science and Technology China (USTC), Chinese Academy of Science, Institute of Metal Research (CAS, IMR), China. He completed his master’s degree from Donghua University (DHU), China, and earned his PhD from USTC. His research specializes in photoresponsive nanomaterials and smart fluorescence coatings, focusing on oxygen-deficient nanomaterials for photocolorswitching properties and early-stage corrosion detection.

👨‍🎓Profile

Scopus

ORCID

Early Academic Pursuits 🎓

Dr. Ahmed’s academic journey began at Donghua University (DHU), where he obtained his master’s degree. Building on this foundation, he continued his research at USTC, a leading institution in nanotechnology and materials science. His early academic work laid the groundwork for his specialization in nanomaterials and coating technologies that can respond to environmental triggers like light, opening new avenues in corrosion detection and smart materials.

Professional Endeavors 🏢

Throughout his professional career, Dr. Ahmed has collaborated with eminent scholars, such as Prof. Liu Fuchun from Northwestern Polytechnical University, and has contributed significantly to research projects focused on the preparation technology of micro-nano structures and self-repair mechanisms for coatings. His work bridges academic research and industry applications, ensuring his contributions are impactful both in laboratories and in practical solutions.

Contributions and Research Focus 🔬

Dr. Ahmed’s main research interests lie in photoresponsive nanomaterials, particularly in smart fluorescence coatings and early-stage corrosion detection. He has developed oxygen-deficient nanomaterials for photocolorswitching properties, which react to light stimuli to produce fluorescent signals when exposed to corrosive environments. These innovations have been pivotal in solving the limitations of traditional coatings, which lack intelligent early-warning systems.

He has authored 21 research articles in high-impact journals, including top publications like Chemical Engineering Journal, Nanoscale, and Colloids and Surfaces A. Additionally, he holds a patent (CN111394094-A; CN111394094-B) for a dual-band light-responsive reversible color solution, showcasing his innovative contributions to smart materials.

Impact and Influence 🌍

Dr. Ahmed’s research has had a substantial impact on materials science, especially in the development of smart coatings for corrosion detection. His fluorescent smart coatings are expected to revolutionize industries such as aerospace, automotive, and marine engineering, where early detection of corrosion can prevent extensive damage and improve material longevity. His work has been widely cited and continues to influence both academic research and practical applications in coatings technology.

Academic Cites 📚

With 422 citations and an h-index of 10, Dr. Ahmed has garnered recognition for his influential contributions to the field of nanomaterials and coatings technology. His papers, particularly as the first author, in journals such as Materials Chemistry and Physics and Journal of Materials Science and Technology, reflect the significant impact of his work within the scientific community.

Research Skills 🛠️

Dr. Ahmed has mastered several advanced techniques in nanomaterials preparation, including synthesis of oxygen-deficient materials, fluorescence analysis, and computational modeling. His research is not only grounded in experimental work but also utilizes computational science to predict the behavior of materials under various environmental conditions. His ability to combine both experimental and computational approaches gives his work a robust scientific foundation.

Teaching Experience 👨‍🏫

Though primarily a researcher, Dr. Ahmed’s teaching experience is an integral part of his professional journey. At USTC, he has contributed to educating the next generation of materials scientists, particularly in the area of nanomaterials and smart coatings. He mentors students and provides them with invaluable guidance on research methodology and cutting-edge technologies in nanotechnology.

Awards and Honors 🏅

Dr. Ahmed’s excellence in research has earned him recognition in the form of publications in top-tier journals and inclusion in major collaborative projects. Although specific awards are not listed, his patent and high citation index suggest that his work is highly respected within the scientific community. His ongoing research and contributions place him in a strong position to receive further academic and professional accolades.

Legacy and Future Contributions 🔮

Dr. Sharjeel Ahmed is paving the way for future innovations in smart materials, particularly in nanomaterials that are both responsive and intelligent. As his work continues to evolve, it will likely contribute to environmentally sustainable and cost-effective solutions for industries ranging from coatings and corrosion detection to advanced textiles. His future endeavors may include expanding his patent portfolio, collaborating with industries, and broadening his research into emerging areas such as energy storage materials or biodegradable coatings.

Publications Top Notes

  • A review of advancement in fluorescence-based corrosion detection for metals and future prospects
    Authors: Sharjeel Ahmed, Hongwei Shi, Mustehsin Ali, Imran Ali, Fuchun Liu, En-Hou Han
    Journal: Journal of Materials Science & Technology
    Year: 2025

  • Epoxy coating containing CoMOF@MBT metal-organic framework for active protection of aluminum alloy
    Authors: Nwokolo, Izuchukwu K.; Shi, Hongwei; Ikeuba, Alexander I.; Liu, Fuchun; Ahmed, Sharjeel; Zhang, Wanyu
    Journal: Surface and Coatings Technology
    Year: 2024

  • Modified Graphene Micropillar Array Superhydrophobic Coating with Strong Anti-Icing Properties and Corrosion Resistance
    Authors: Zhang, Wanyu; Liu, Fuchun; Li, Yushan; Chen, Tao; Nwokolo, Izuchukwu Kenneth; Ahmed, Sharjeel; Han, En-Hou
    Journal: Coatings
    Year: 2024

  • UV light-triggered fluorescence corrosion sensing coatings for AA2024-T3 based on 8-hydroxyquinline loaded vanadium oxide nanorods
    Authors: Sharjeel Ahmed
    Journal: Colloids and Surfaces A: Physicochemical and Engineering Aspects
    Year: 2024

  • Catalytic degradability and anti-permeability of peelable coating based on organophosphate nerve agent simulants
    Authors: Gao, Ningjie; Ahmed, Sharjeel; Zhang, Wanyu; Li, Jiwen; Liu, Fuchun
    Journal: Colloids and Surfaces A: Physicochemical and Engineering Aspects
    Year: 2023

 

Yuan-Yuan Zhao | Machine Learning in Physics | Best Researcher Award

Assoc. Prof  Dr. Yuan-Yuan Zhao | Machine Learning in Physics | Best Researcher Award

Jinan University | China

Dr. Yuanyuan Zhao is an Associate Professor and Master’s Advisor at Jinan University, specializing in optical micro/nano fabrication and femtosecond laser two-photon processing. His research also focuses on metamaterials, metasurfaces, and micro/nano optics. He has contributed to significant advancements in cross-scale nanolithography and digital mask projection lithography, and he has received widespread recognition for his groundbreaking work.

👨‍🎓Profile

Google scholar

Scopus

ORCID

Early Academic Pursuits 📚

Dr. Zhao began his academic journey at the Institute of Physics and Chemistry, Chinese Academy of Sciences, where he completed his Ph.D. in Optics from 2011 to 2016. This direct-track program allowed him to quickly establish a strong foundation in optics and nanotechnology, setting the stage for his later research contributions.

Professional Endeavors 🛠️

After completing his Ph.D., Dr. Zhao worked as an Assistant Researcher at the 3D Printing Center, Chongqing Institute of Chinese Academy of Sciences from 2016 to 2018, where he honed his expertise in advanced fabrication techniques. He then joined Jinan University in October 2018, where he established the Nano Lithography Technology Team, under the guidance of Prof. Xuanming Duan. His professional journey has been marked by constant innovation, leading to various research projects funded by prestigious programs such as the National Key R&D Program’s “Nanotechnology” project.

Contributions and Research Focus 🔬

Dr. Zhao’s work primarily involves femtosecond laser-based micro/nano fabrication techniques, metamaterials, and metasurfaces. His original contributions include the world’s first fabrication of three-dimensional gradient refractive index Luneburg lenses, which was featured as a cover article in Laser Photonics Reviews. His expertise spans the development of cross-scale nanolithography methods and DMD projection lithography, aiming to enhance resolution and create more efficient lithography processes.

Impact and Influence 🌍

Dr. Zhao’s research has had a significant impact in the field of optics and nanotechnology. His publications in top-tier journals and his contributions to the development of new fabrication techniques have been widely cited. He has delivered more than 10 international conference talks, including 5 invited talks, showcasing his influence as an expert in optical micro/nano fabrication. His patent portfolio, with 11 filed patents, underscores his role in transforming academic research into technological innovations.

Academic Citations 📑

Dr. Zhao has published over 30 papers in prestigious academic journals, with more than 20 papers where he served as the first author, co-first author, or corresponding author. His contributions have resulted in numerous citations, reflecting the significance and relevance of his work to the global research community. Notable publications in journals like Nature Communications and APL Photonics highlight his contributions to advanced nanofabrication and optical technologies.

Research Skills 🔧

Dr. Zhao is skilled in a variety of cutting-edge research areas, including:

  • Femtosecond laser two-photon processing
  • Metamaterial fabrication
  • Nanolithography
  • Digital mask projection lithography
  • Deep learning-based inverse lithography

His technical proficiency has enabled him to develop novel fabrication methods, such as digital phase-shifting masks and in-situ digital multi-exposure lithography, which are crucial for improving the resolution of nanostructure fabrication. These skills have placed him at the forefront of nanotechnology and optical engineering.

Teaching Experience 🎓

As a Master’s Advisor at Jinan University, Dr. Zhao has played an important role in educating and mentoring students in the field of optics and nanotechnology. His guidance in the development of the Nano Lithography Technology Team has helped foster a collaborative and research-driven learning environment. Through his teaching, he encourages students to explore innovative technologies in optical fabrication and nanoscience, preparing the next generation of scientists and engineers.

Awards and Honors 🏆

Dr. Zhao has received several prestigious awards throughout his career, recognizing his outstanding contributions to the field:

  • “Western Light” Young Scholar Award by the Chinese Academy of Sciences in 2017.
  • Distinguished Young Scholar under the Double Hundred Talents Program at Jinan University in 2021.
  • Selected as Principal Investigator for various National and Guangdong Natural Science Foundation research projects.

Legacy and Future Contributions 🔮

Dr. Zhao’s legacy in the field of nano optics and metamaterials is already well-established, with numerous innovative patents, high-impact publications, and substantial contributions to the development of cutting-edge fabrication techniques. Looking ahead, Dr. Zhao’s research is poised to lead to even greater breakthroughs in cross-scale nanolithography and digital lithography technologies. His continued focus on multi-scale integration methods and dynamic surface scanning technologies is set to have a transformative impact on the future of nanofabrication and metamaterial-based applications.

Publications Top Notes

Two-photon absorption under few-photon irradiation for optical nanoprinting

  • Authors: Z. Liang, Y. Zhao, J. Chen, M. Zheng, X. Duan
    Journal: Nature Communications
    Year: 2025

Deep learning-driven digital inverse lithography technology for DMD-based maskless projection lithography

  • Authors: J. Chen, Y. Zhao, X. Guo, X. Duan
    Journal: Optics and Laser Technology
    Year: 2025

Nonlinear Raman-Nath diffraction in submicron-thick periodically poled lithium niobate thin film

  • Authors: X. Li, L. Peng, Y. Liu, B. Chen, Z. Li
    Journal: PhotoniX
    Year: 2024

Grayscale two-photon 3D printed gradient-refractive-index metamaterial lens for dual-band mid-infrared imaging

  • Authors: H. Luo, Y. Zhao, X. Zhao, Y. Cao, X. Duan
    Journal: APL Photonics
    Year: 2024

Ultra-broadband, high absorption, polarization-insensitive microwave absorbers designed based on multi-scale fractal metasurfaces

  • Authors: Z. Yuan, S. Cai, Y. Zhao, X. Duan
    Journal: Optical Materials Express
    Year: 2024

 

 

Basaad Hamza | Theoretical Advances | Editorial Board Member

Assist. Prof. Dr. Basaad Hamza | Theoretical Advances | Editorial Board Member

Mustansiriyah university | Iraq

Dr. Basaad Hadi Hamza is an Assistant Professor in Electro-Optical Physics at Mustansiriyah University, College of Sciences. With a Ph.D. in Electro-Optical Physics (2004) from Mustansiriyah University, his academic expertise spans simulation programs for electro-optical tracking systems and optical systems. His commitment to advancing the field of electro-optical physics is evident through his teaching and research contributions.

👨‍🎓Profile

Google scholar

Scopus

ORCID

Early Academic Pursuits 🎓

Dr. Basaad’s academic journey began at Mustansiriyah University, where he earned his B.Sc. in Physics (1992), followed by a M.Sc. in Nuclear Physics (1998), and eventually his Ph.D. in Electro-Optical Physics (2004). His doctoral thesis focused on the development of a simulation program for electro-optical tracking systems, laying the foundation for his career in applied physics.

Professional Endeavors 💼

Dr. Basaad has an extensive teaching background, contributing to the development of future scientists and engineers. He taught various undergraduate courses in Physics 1, Electricity and Magnetism, Thermodynamics, and Analytical Mechanics. He has also guided graduate students, particularly in specialized topics for Ph.D. comprehensive examinations. His professional affiliations include serving as the Chairman of the Diversity Committee, overseeing curriculum preparation, and leading both undergraduate and graduate examination committees.

Contributions and Research Focus 🔬

Dr. Basaad’s research focus includes polarization effects on soliton propagation, radiance calculations, and the discrimination of targets from background in infrared (IR) imagery. He is particularly interested in the development of simulation programs for transforming IR images across various bands, a significant contribution to remote sensing and infrared imaging technologies. His work also includes improving detector performance in optical spectral ranges to enhance the accuracy of images.

Impact and Influence 🌍

Dr. Basaad’s research has had a broad impact, particularly in IR imaging, target discrimination, and optical physics. His innovative work on transforming IR images from band to band, coupled with his simulation techniques, has contributed to advancements in defense technologies, remote sensing, and optical systems. His publications, including in journals like the International Journal of Application or Innovation in Engineering & Management and Mustansiriyah Journal of Science, highlight his significant role in these fields.

Research Skills 🔍

Dr. Basaad possesses strong analytical skills, particularly in the areas of simulation programming, optical imaging, and IR technology. His proficiency in simulation software and knowledge of IR wavelength bands make him a leader in image transformation techniques. His work on target discrimination using multi-channel data and threshold methods highlights his ability to solve complex problems in infrared imagery.

Teaching Experience 📘

Dr. Basaad’s teaching experience spans over two decades, during which he has taught a range of undergraduate and graduate-level physics courses. He has taught Physics 1, Electricity and Magnetism, Thermodynamics, and Analytical Mechanics, and has supervised graduate theses. His guidance on special topics for Ph.D. students and his role in preparing students for comprehensive exams demonstrates his deep commitment to academic development.

Legacy and Future Contributions 🌱

Dr. Basaad’s legacy is marked by his contributions to electro-optical physics, especially in the development of simulation techniques for infrared imaging. Looking ahead, he plans to continue advancing research in target discrimination and optical systems, with potential applications in remote sensing, security, and environmental monitoring. His ongoing mentorship of graduate students will further ensure his influence in academic research and scientific innovation.

Publications Top Notes

Green Synthesis of Silver Nanoparticles and Their Effect on the Skin Determined Using IR Thermography

  • Authors: Alaabedin Alrabab Ali Zain, Majeed Aseel Musafa Abdul, Basaad Hadi Hamza
    Journal: Kuwait Journal of Science
    Year: 2024

Infrared Imaging of Skin Cancer Cell Treated with Copper Oxide and Silver Nanoparticles

  • Authors: M.M. Mowat, M.S. Khallaf, B.H. Hamza
    Journal: Bionatura
    Year: 2023

People Identification via Tongue Print Using Fine-Tuning Deep Learning

  • Authors: A.S. Obaid, M.Y. Kamil, B.H. Hamza
    Journal: International Journal of Reconfigurable and Embedded Systems
    Year: 2023

People Recognition via Tongue Print Using Deep and Machine Learning

  • Authors: A.S. Obaid, M.Y. Kamil, B.H. Hamza
    Journal: Journal of Artificial Intelligence and Technology
    Year: 2023

Improved Detector Performance Rendering in the Optical Spectral Ranges to Provide Accurate Image

  • Authors: Basaad Hadi Hamza
    Journal: Mustansiriyah Journal of Science
    Year: 2019

 

Shewa Getachew | High energy physics | Editorial Board Member

Mr. Shewa Getachew | High energy physics | Editorial Board Member

Lecturer at Wolkite University | Ethiopia

Shewa Getachew Mamo is a dedicated Physics Lecturer and researcher with a specialized focus on optical properties of nanocomposites, material science, refractive index, and group velocity. Passionate about advancing scientific knowledge, he is committed to both academic excellence and innovative research in the realm of condensed matter physics. His expertise extends to investigating local field enhancements, optical properties of nanostructures, and exploring nanoparticle-based materials and geometries.

👨‍🎓Profile

ORCID

Early Academic Pursuits 🎓

Shewa’s academic journey began at Wolkite University, where he earned his Bachelor’s degree in Physics (2016-2019) and later pursued a Master’s degree in Condensed Matter Physics (2022-2023). Throughout his education, he developed a strong foundation in experimental and theoretical physics, which propelled him into a career of teaching and research in the field.

Professional Endeavors 💼

Currently, Shewa serves as a Physics Teacher at Wolkite University (since December 2023). In this role, he is responsible for preparing and presenting undergraduate and sometimes postgraduate courses in various areas of physics, including mechanics, electromagnetism, thermodynamics, quantum mechanics, and material science. He plays a vital role in designing curricula, developing lesson plans, and selecting relevant textbooks to ensure effective learning outcomes. His academic influence extends to advising students on academic matters and guiding them through research projects.

Contributions and Research Focus 🔬

Shewa’s research focus is primarily on the optical properties of core-shell spherical nanocomposites and local field enhancements. His research aims to explore the interaction between optical fields and nanocomposites, as well as investigating the influence of depolarization on the local field enhancement factor in passive and active composites with pure metal spheroidal nanoinclusions. One of his notable research areas includes optical bistability in nanoparticle composites and the role of tunable dielectric cores in cylindrical core-shell nanocomposites.

Impact and Influence 🌍

Shewa’s research has led to significant contributions to the field of material science and nanotechnology, specifically in understanding the optical properties of nanostructured materials. His findings have been widely discussed in the scientific community, with numerous publications in prominent journals. He is committed to staying updated with the latest advancements in condensed matter physics and nanotechnology, consistently striving to push the boundaries of existing scientific knowledge.

Academic Cites 📚

Shewa’s work has been widely cited, with his contributions being recognized across several prestigious journals. His publications include studies such as:

  • Tsegaye, A., & Getachew, S. (2024). “Investigation Optical Properties of ZnTe@Ag Core-Shell Spherical Nanocomposites Within Varies Dielectric Host Matrices”. Advances in Materials, 13(4), 80-91.
  • Getachew, S. (2024). “Effect of Tunable Dielectric Core on Optical Bistability in Cylindrical Core-Shell Nanocomposites”. Advances in Condensed Matter Physics, 2024(1), 9911970.
  • Getachew, S. (2024). “Investigation of Refractive Index and Group Velocity Metal Coated Dielectric Spherical Nanocomposites”. Iranian Journal of Physics Research, 24(3), 75-87.

His academic citations are a testament to his research impact and scientific contributions.

Research Skills 🔍

Shewa possesses advanced knowledge in condensed matter physics, with strong analytical and problem-solving skills. He is proficient in a range of experimental and theoretical physics techniques. His technical expertise includes programs such as Matlab, Word, Excel, PowerPoint, OpenOffice, and Latex, and he is skilled in computer languages like Python, Fortran, and Gnuplot. He also has experience with Unix systems and software like xmgrace, showcasing his comprehensive research toolset.

Teaching Experience 📘

Shewa’s teaching experience is extensive, having taught various physics courses at the undergraduate and postgraduate levels. He designs engaging lesson plans and works closely with students to help them grasp key concepts in physics. By preparing and grading exams, assignments, and laboratory reports, he ensures students receive constructive feedback for their academic growth. His role as a mentor goes beyond the classroom, advising students on their academic and career paths and supervising their research projects.

Legacy and Future Contributions 🌱

Shewa is committed to leaving a lasting legacy in the fields of nanotechnology, material science, and condensed matter physics. His ongoing research will likely continue to make valuable contributions to the understanding of optical properties and nanocomposite materials. Looking ahead, Shewa is dedicated to mentoring the next generation of scientists and physicists, sharing his knowledge and advancing the boundaries of nanophysics and material science research. Through continuous publication and collaboration, his work is set to influence the scientific community for years to come.

Publications Top Notes

Effect of Tunable Dielectric Function of the Core on Optical Bistability in Small Spherical Metal-Dielectric Composite

  • Authors: Hawi Aboma, Shewa Getachew, Sisay Shewamare
    Journal: Ethiopian Journal of Applied Sciences
    Year: 2025

Investigation Optical Properties of ZnTe@Ag Core-Shell Spherical Nanocomposites Within Varies Dielectric Host Matrices

  • Authors: Tsegaye Atnaf, Shewa Getachew
    Journal: Advances in Materials
    Year: 2024

Investigating the Optical Bistability of Pure Spheroidal Nanoinclusions in Passive and Active Host Matrices

  • Authors: Shewa Getachew, Girma Berga
    Journal: Canadian Journal of Physics
    Year: 2024

Investigation of Refractive Index and Group Velocity Metal Coated Dielectric Spherical Nanocomposites Within Passive and Active Dielectric Cores

  • Authors: Shewa Getachew
    Journal: Iranian Journal of Physics Research (IJPR)
    Year: 2024

Effect of Tunable Dielectric Core on Optical Bistability in Cylindrical Core–Shell Nanocomposites

  • Authors: Shewa Getachew, Junjie Li
    Journal: Advances in Condensed Matter Physics
    Year: 2024

 

 

Jitendra Tripathi | Experimental methods | Editorial Board Member

Prof. Dr. Jitendra Tripathi | Experimental methods | Editorial Board Member

IPS Academy Indore | India

Dr. Jitendra Tripathi is a distinguished Professor and Head of the Department of Physics at IPS Academy, Indore (since Nov 2012). With a career spanning over two decades, he has a rich background in both academia and research. Dr. Tripathi completed his Ph.D. from Rani Durgawati University, Jabalpur, India, in 2013, and his work primarily focuses on polymer films, magnetic nanomaterials, and condensed matter physics. He currently supervises seven PhD students, four of whom have successfully completed their research. His academic journey and dedication to advancing physics have earned him recognition both in India and internationally.

👨‍🎓Profile

Google scholar

Scopus

Orcid

🎓 Early Academic Pursuits

Dr. Tripathi’s academic journey began with his B.Sc. in Physics, Chemistry, and Mathematics (1995), followed by an M.Sc. in Physics (1997), specializing in Electronics. His desire to further explore the field of physics led him to pursue an M.Phil. in Physics (2008) and a Ph.D. in Physics (2013) under the guidance of Prof. J.M. Keller and Dr. K. Das at Rani Durgawati University, Jabalpur, where he conducted impactful research on polymeric materials and their optical properties.

💼 Professional Endeavors

Dr. Tripathi has held numerous academic positions, serving as Vice Principal, Assistant Professor, Dean Academics, and Officiating Principal at St. Aloysius Institute of Technology, Jabalpur, before taking on his current role at IPS Academy. He has been an active member of various institutional committees, including the Board of Governors and NAAC accreditation committees. His leadership in these positions demonstrates his commitment to enhancing the quality of education and academic administration.

🔬 Contributions and Research Focus

Dr. Tripathi’s research interests are centered around the preparation, characterization, and application of thin polymer films doped with fluorescent dyes, as well as magnetic nanomaterials like FeS2 nanoparticles and magnetic nanocaps. His research projects include studies on spin-dependent magnetic properties and nanostructures. He is currently leading several high-impact research projects funded by institutions such as UGC-DAE and TEQIP-III, and has co-supervised PhD students on topics ranging from polymeric composites to magnetic nanostructures.

🌍 Impact and Influence

Dr. Tripathi’s work has had a lasting impact on the field of materials science and condensed matter physics, particularly in the study of polymer blends and nanomaterials. He has made significant contributions to advanced research techniques and characterization methods such as XPS, XRD, and UV-Vis spectrophotometry. His research has helped to advance optical materials and magnetic properties, making him a valuable resource in both academia and research communities.

📚 Academic Cites

Dr. Tripathi’s work has garnered numerous citations, underscoring the significance of his research in polymer science and nanotechnology. His publications and research findings are widely referenced by peers, especially in the domains of thin films, nanoscience, and magnetic materials. His ongoing research and collaborations continue to contribute to the advancement of fundamental and applied physics.

🔧 Research Skills

Dr. Tripathi possesses extensive expertise in polymer film deposition, nanostructure synthesis, and magnetic characterization techniques. His research skills include proficiency in advanced instrumentation such as Abbey’s refractometer, microhardness testers, and double-beam UV-Vis spectrophotometers. He is also skilled in nanomaterial characterization and experimental physics, which enable him to conduct cutting-edge research in the field of condensed matter physics.

🍎 Teaching Experience

With over 20 years of teaching experience, Dr. Tripathi has taught undergraduate and postgraduate students in Physics at various institutions, including IPS Academy, St. Aloysius College, and Oriental Group of Institutes. He has been responsible for mentoring students in both classroom teaching and laboratory work, with a focus on experimental physics, nuclear physics, and solid-state physics. He has also been actively involved in organizing national workshops and laboratory training sessions for postgraduate teachers.

🏆 Awards and Honors

Dr. Tripathi has received recognition for his academic and professional contributions, including being appointed as the Chairperson and Convener for numerous conferences and workshops. His leadership has been instrumental in organizing events such as the National Conference on Physics and Chemistry of Materials (2020) and the Prof. Babulal Saraf Memorial All India Laboratory Workshop for P.G. Teachers. His dedication to academic excellence has earned him several accolades from both his peers and academic institutions.

🏛️ Legacy and Future Contributions

Dr. Tripathi’s legacy is built upon his dedication to both teaching and research, having nurtured several Ph.D. scholars and developed a strong academic network. Moving forward, he is committed to making further contributions in nanoscience, polymeric materials, and magnetic nanostructures, while continuing to mentor the next generation of researchers. His future research endeavors aim to address challenges in material science and contribute to innovations in technology commercialization and sustainable development.

Publications Top Notes

  • Influence of interface alloy formation on the magnetic and structural properties of Co/Si (100) thin films
    Authors: Sharma, A., Tripathi, J.
    Journal: Interactions, 2024
  • Dielectric properties of pure PMMA and Co3O4 nanoparticles-PMMA composite films
    Authors: Rajput, S.S., Mishra, A., Sharma, A., Singh, J., Tripathi, J.
    Journal: Interactions, 2024
  • Correlation between morphology and transport properties of Au/Co/Au/Si wedge ultra-thin film
    Authors: Sharma, A., Tripathi, J., Singh, J., Bisen, R., Tripathi, S.
    Journal: Physica B: Condensed Matter, 2024
  • Curvature modulated structural and magnetic properties of CoO/Co thin films deposited onto 2-D nanosphere array
    Authors: Tripathi, J., Kumar, Y., Kumar, D., Sharma, R., Sharma, A.
    Journal: Journal of Magnetism and Magnetic Materials, 2023
  • Synthesis and characterization of zirconia nanocrystalline powder by thermal treatment method
    Authors: Soni, D., Singh, J., Kaurav, N., Tripathi, J., Sharma, A.
    Journal: Materials Today: Proceedings, 2022

 

 

Sheng Hsiung Chang | Experimental methods | Best Researcher Award

Prof. Sheng Hsiung Chang | Experimental methods | Best Researcher Award

Professor at National Taiwan Ocean University | Taiwan

Dr. Sheng Hsiung Chang is a Professor at the National Taiwan Ocean University. His extensive career in academia and research is marked by significant roles in leading institutions such as Chung Yuan Christian University (CYCU) and National Central University. Dr. Chang’s work has spanned across several pivotal research areas, particularly in semiconductor physics, optical physics, and perovskite optoelectronic devices. His achievements not only demonstrate his technical expertise but also highlight his commitment to academic leadership, mentorship, and advancing scientific knowledge.

👨‍🎓Profile

Google scholar

Scopus

ORCID

Early Academic Pursuits 🎓

Dr. Chang’s academic journey began with his postdoctoral research roles, first at Academia Sinica (2008-2010) and later at National Central University (2010-2012), where he gained foundational experience in semiconductor and optical physics. During these early years, he developed a strong interest in light-material interactions and functional thin films, fields that would shape his future research directions. His foundational work in nanotechnology and optoelectronics established the groundwork for his later academic and research career.

Professional Endeavors 🌍

Dr. Chang has held pivotal roles in academia, including Associate Professor and Professor at CYCU, where he also served as the Director of the Career Service Center (2020-2021). These positions reflect his commitment to fostering both the research and professional development of students. Additionally, he has contributed to the scientific community as an Editorial Board Member for journals such as Nanotechnology and Physics Bimonthly.

He has also demonstrated leadership in academic societies, serving as Vice Chairman (2021-2024) and Secretary General (2019-2020) of the Taiwan Vacuum Society. This involvement shows his dedication not only to research but also to promoting collaboration and innovation within the scientific community.

Contributions and Research Focus 🔬

Dr. Chang’s research is centered around perovskite optoelectronic devices, light-material interactions, plasmonic devices, nonlinear optics, and functional thin films. He is currently the Principal Investigator for various research projects funded by the National Science and Technology Council (NSTC) and the Ministry of Science and Technology (MOST). His groundbreaking work on perovskite thin films and their applications in photovoltaic cells is pushing the boundaries of renewable energy technologies. Through projects that explore optical coupling, material interfaces, and energy harvesting, Dr. Chang’s research is expected to revolutionize the optoelectronics field.

Impact and Influence 🌍

Dr. Chang’s contributions to the scientific community have had far-reaching implications, particularly in the area of perovskite solar cells. His work on improving photovoltaic performance and investigating interfacial contacts between organic and inorganic materials has the potential to enhance solar cell efficiency and sustainability. He is a key player in advancing technologies related to energy conversion, helping to foster sustainable solutions to global energy challenges. His leadership roles in academic societies have also expanded his influence and outreach in the scientific community.

Academic Citations 📈

Dr. Chang has an impressive publication record, with recent articles in high-impact journals such as Nanotechnology, Synthetic Metals, and Materials Science in Semiconductor Processing. His work is frequently cited by fellow researchers in the field of optoelectronics, particularly his studies on perovskite materials and their optical properties. These citations underscore the significance and influence of his research in both academia and industry.

Research Skills 🧑‍🔬

Dr. Chang possesses an extensive skill set in semiconductor physics, optical physics experiments, and theoretical computations. His research involves complex techniques such as material synthesis, thin film fabrication, and optical characterization. He has a deep understanding of light-matter interactions and their application to next-generation devices like solar cells and plasmonic devices. Additionally, his ability to bridge experimental techniques with theoretical models allows him to tackle complex challenges in material design and optoelectronic applications.

Teaching Experience 🏫

In his roles as a Professor and Associate Professor, Dr. Chang has mentored numerous graduate and postgraduate students in their research pursuits. His teaching approach is centered around encouraging critical thinking, innovation, and hands-on experimentation. His experience in guiding students and fostering academic growth aligns with his belief in the importance of collaboration and mentorship within academic settings. He also plays an active role in career development, helping students transition into the professional world with a strong foundation in research and industry-related skills.

Awards and Honors 🏆

Throughout his career, Dr. Chang has been the recipient of several prestigious awards and honors, recognizing his contributions to the fields of optical physics, semiconductor research, and perovskite optoelectronics. His ongoing recognition as a leader in nanotechnology and materials science reflects his consistent pursuit of excellence in both academic research and scientific innovation.

Legacy and Future Contributions 🔮

Dr. Chang’s work is poised to leave a lasting impact on the scientific community, particularly in the field of renewable energy and optoelectronics. As the principal investigator of major research projects, he is advancing the efficiency and sustainability of perovskite-based technologies, paving the way for affordable and efficient solar energy solutions. Dr. Chang’s future contributions to nanomaterials and functional thin films will likely continue to inspire scientific innovation, technological advancements, and environmental sustainability for years to come.

Publications Top Notes

Long room-temperature valley lifetimes of localized excitons in MoS2 quantum dots

  • Authors: H. Wang, Y. Chen, T.Y. Pan, Y. Lee, J. Shen
    Journal: Optics Express
    Year: 2024

Structural and excitonic properties of the polycrystalline FAPbI3 thin films, and their photovoltaic responses

  • Authors: Y. Huang, I.J. Yen, C. Tseng, A. Chandel, S.H. Chang
    Journal: Nanotechnology
    Year: 2024

Observations of two-dimensional electron gases in AlGaN/GaN high-electron-mobility transistors using up-converted photoluminescence excitation

  • Authors: Y. Chen, L. Chen, C.B. Wu, Y.J. Lee, J. Shen
    Journal: Optics Express
    Year: 2024

Efficient Optical Coupling between Dielectric Strip Waveguides and a Plasmonic Trench Waveguide

  • Authors: J. Wu, A. Chandel, C. Chuang, S.H. Chang
    Journal: Photonics
    Year: 2024

Enhancing the photovoltaic responses of MAPbI3 poly-crystalline perovskite films via adjusting the properties of PEDOT:PSS hole transport material with a low-polarity solvent treatment process

  • Authors: C. Tsai, S.N. Manjunatha, M. Sharma, L.B. Chang, C. Chang
    Journal: Materials Science in Semiconductor Processing
    Year: 2024

 

Ramadevi Suguru Pathinti | Experimental methods | Best Researcher Award

Mrs. Ramadevi Suguru Pathinti | Experimental methods | Best Researcher Award

Research Scholar at National Institute of Technology Warangal | India

Ramadevi Suguru Pathinti is currently pursuing her Ph.D. in Physics at the National Institute of Technology, Warangal, India, specializing in Materials Science with a focus on soft matter research. Her academic journey spans from her M.Sc. in Physics to her ongoing doctoral studies. Ramadevi has made significant contributions in the field of nanomaterials and smart materials, particularly in integrating liquid crystals with metal oxides for the development of advanced gas sensors and UV photodetectors.

👨‍🎓Profile

Google scholar

Scopus

ORCID

Early Academic Pursuits 🎓

Ramadevi’s academic journey began at Rayalaseema University, Kurnool, India, where she pursued her M.Sc. in Physics with a specialization in Electronics, securing a CGPA of 9.1/10. She also holds a B.Sc. in Mathematics, Physics, and Computer Science. Her strong academic foundation laid the groundwork for her pioneering research in Materials Science during her doctoral studies at NIT, Warangal.

Professional Endeavors 💼

In her professional journey, Ramadevi has excelled in scientific research within both academic and industrial contexts. She has contributed to the development of thin film devices for smart window technologies, gas sensors, and photodetectors. Her Ph.D. research focuses on integrating liquid crystal-functionalized metal oxides to enhance the optical properties and responsivity of sensors, enabling advancements in environmental sensing and optoelectronic devices.

Contributions and Research Focus 🔬

Ramadevi’s research is centered on the synthesis of nanomaterials and their integration into innovative smart materials. She has worked extensively on fabricating gas sensors and UV photodetectors using liquid crystal-metal oxide hybrids. Notably, her work on smart windows is groundbreaking, where she has discovered novel optical switching behaviors and light modulation techniques, paving the way for energy-saving technologies. Furthermore, her synthesis methods like sol-gel and hydrothermal techniques have contributed to enhanced material properties for sensing applications.

Impact and Influence 🌍

Her research has already made a considerable impact in the fields of environmental sensing and smart material development, particularly in the energy-efficient technologies sector. Ramadevi’s work has the potential to revolutionize how we detect gases, modulate light, and develop self-powered sensors, with applications ranging from smart windows to sensitive environmental monitoring systems. Through her research, she aims to bring forth sustainable technologies that are adaptable to changing global needs.

Academic Cites 📚

Ramadevi has authored several impactful publications in top-tier peer-reviewed journals, contributing to the fields of materials science and optoelectronics. Her articles in journals like the Journal of Molecular Liquids, Journal of Alloys and Compounds, and Advanced Material Technology have contributed to the scientific community’s understanding of the integration of nanomaterials and liquid crystals for innovative devices. She has also presented her research at national and international conferences, further strengthening her academic profile.

Research Skills 🛠

Ramadevi has developed extensive technical expertise in nanomaterial synthesis using methods like sol-gel and hydrothermal techniques. She is proficient in device fabrication, particularly thin film devices for gas sensing and UV photodetector applications. Additionally, she has hands-on experience with advanced research instruments, including optical polarizing microscopes, fluorescence microscopes, and spin coating systems, which enhance her ability to conduct high-quality research and device development.

Teaching Experience 📚

In addition to her research, Ramadevi has taught practical sessions for both M.Sc. (Tech) Physics and B.Tech students. She has handled laboratory work, where she imparted valuable knowledge on experimental techniques and device characterization to budding scientists. This experience has helped her develop strong interpersonal and communication skills, which are essential for future academic and industrial collaborations.

Awards and Honors 🏆

Ramadevi’s excellence has been acknowledged through the Joint CSIR-UGC National Eligibility Test (NET) for Junior Research Fellowship (JRF) in 2017, where she secured an impressive All India Rank of 57. This achievement is a testament to her academic aptitude and research potential.

Legacy and Future Contributions 🌟

Looking forward, Ramadevi aims to make lasting contributions to the field of materials science and nanotechnology. Her research is poised to drive innovations in smart materials, sustainable technologies, and energy-efficient devices, with far-reaching implications for environmental sensing, smart window technologies, and optoelectronics. With her interdisciplinary approach and collaborative nature, she is well-positioned to make significant advancements in both academic and industrial research.

Publications Top Notes

Label-free detection of Aβ-42: a liquid crystal droplet approach for Alzheimer’s disease diagnosis

  • Authors: Saumya Ranjan Pradhan, Ramadevi Suguru Pathinti, Ramesh Kandimalla, Krishnakanth Chithari, Madhava Rao Veeramalla N., Jayalakshmi Vallamkondu
    Journal: RSC Advances
    Year: 2024

Enhanced ethanol gas detection using TiO2 nanorods dispersed in cholesteric liquid crystal: Synthesis, characterization, and sensing performance

  • Authors: Ramadevi Suguru Pathinti, Sunil Gavaskar Dasari, Buchaiah Gollapelli, Sreedevi Gogula, Ramana Reddy M.V., Jayalakshmi Vallamkondu
    Journal: Journal of Alloys and Compounds
    Year: 2024

Enhanced security through dye-doped cholesteric liquid crystal shells for anti-counterfeiting

  • Authors: Chris Mathew, Ramadevi Suguru Pathinti, Saumya Ranjan Pradhan, Buchaiah Gollapelli, Krishnakanth Chithari, Mrittika Ghosh, Ashok Nandam, Jayalakshmi Vallamkondu
    Journal: Optical Materials
    Year: 2024

ZnO nanoparticles dispersed cholesteric liquid crystal based smart window for energy saving application

  • Authors: Ramadevi Suguru Pathinti, Arun Kumar Tatipamula, Jayalakshmi Vallamkondu
    Journal: Journal of Alloys and Compounds
    Year: 2023

Energy saving, transparency changing thermochromism in dye-doped cholesteric liquid crystals for smart windows

  • Authors: Ramadevi Suguru Pathinti, Buchaiah Gollapelli, Saumya Ranjan Pradhan, Jayalakshmi Vallamkondu
    Journal: Journal of Photochemistry and Photobiology A: Chemistry
    Year: 2023

 

Song He | High energy physics | Best Researcher Award

Mr. Song He | High energy physics | Best Researcher Award

Ph.D. student at Huazhong University of Science and Technology | China

Song He is currently a Ph.D. student at Huazhong University of Science and Technology (HUST), specializing in novel radiation detectors and imaging techniques. He has contributed extensively to high-impact journals in the fields of material science and electronics, with innovative research in scintillator development. His work has led to groundbreaking discoveries in enhancing X-ray imaging and fast neutron imaging resolution.

👨‍🎓Profile

Scopus 

ORCID

Early Academic Pursuits 🎓

Song He’s academic journey began with a Bachelor of Engineering in Materials Science and Engineering from China University of Mining and Technology (2015-2019). He continued with a Master of Engineering in Materials and Physics from the same university (2019-2022). Currently, he is pursuing a Ph.D. in Electronic Science and Technology at HUST since 2022. His early education laid a strong foundation for his innovative approach to radiation detection and imaging technology.

Professional Endeavors 💼

Throughout his career, Song He has primarily focused on developing novel radiation detectors and imaging technologies. His work emphasizes improving the performance of scintillators for better X-ray and neutron imaging. He has filed several patents related to his inventions, demonstrating his commitment to transformative research in radiation detection. Despite limited professional collaborations at this stage, his independent contributions have been highly impactful in the scientific community.

Contributions and Research Focus 🔬

Song He’s research primarily revolves around novel radiation detectors and scintillator technologies. In particular, he has developed a new class of scintillators that overcome traditional limitations by using hot exciton molecules (TPE-4Br) and conjugated polymers (PVT) to enhance performance. His contributions have led to breakthroughs in X-ray imaging and fast neutron imaging resolution, significantly advancing the field of radiation detection.

Impact and Influence 🌍

Song He’s work is paving the way for high-resolution imaging technologies that can have a significant impact in fields such as medical diagnostics, nuclear physics, and security imaging. His innovative approaches are influencing both academic research and practical applications. His recent paper in Advanced Functional Materials (DOI: 10.1002/adfm.202503688) received recognition for offering a new solution to long-standing challenges in the radiation detection field.

Academic Citations 📑

Although Song He’s citation index is not formally listed, his work is published in top-tier journals like Advanced Functional Materials, Inorganic Chemistry, Advanced Materials, and The Journal of Physical Chemistry C. The high impact of his research is evident in the citations of his publications, showing their relevance and influence in the scientific community.

Research Skills 🧠

Song He demonstrates exceptional skills in materials science, physics, and electronic technology. His ability to synthesize innovative materials and develop advanced radiation detectors showcases his technical expertise. Additionally, he has practical skills in scintillator synthesis, polymer chemistry, and in-situ polymerization. His experimental design and analytical techniques allow for high-precision imaging, which is crucial for the future of radiation detection.

Awards and Honors 🏅

Currently, Song He has not reported receiving formal awards or honors. However, the significance of his innovative research and published work in high-impact journals positions him as a rising star in his field. His patent applications and scientific contributions hint at a promising future where such recognitions are likely.

Legacy and Future Contributions 🔮

With his cutting-edge research in radiation detectors and imaging technologies, Song He is poised to make long-lasting contributions to both academic and industry sectors. His future work holds the potential for further advancements in medical imaging, nuclear research, and security applications, with his innovative materials providing solutions to longstanding challenges. As his career progresses, Song He is expected to become a significant figure in radiation detection technologies, with lasting impact on both science and society.

Publications Top Notes

High‐Performing Direct X‐Ray Detection Made of One‐Dimensional Perovskite‐Like (TMHD)SbBr₅ Single Crystal With Anisotropic Response

  • Authors: Guangya Zheng, Haodi Wu, Song He, Hanchen Li, Zhiwu Dong, Tong Jin, Jincong Pang, Rachid Masrour, Zhiping Zheng, Guangda Niu et al.
    Journal: Small
    Year: 2025

Hot Exciton‐Based Plastic Scintillator Engineered for Efficient Fast Neutron Detection and Imaging

  • Authors: Song He, Pengying Wan, Hanchen Li, Zizhen Bao, Xinjie Sui, Guangya Zheng, Hang Yin, Jincong Pang, Tong Jin, Shunsheng Yuan et al.
    Journal: Advanced Functional Materials
    Year: 2025

Close‐to‐Equilibrium Crystallization for Large‐Scale and High‐Quality Perovskite Single Crystals

  • Authors: Hang Yin, Mingquan Liao, Yuanpeng Shi, Zhiqiang Liu, Hanchen Li, Song He, Zhiping Zheng, Ling Xu, Jiang Tang, Guangda Niu
    Journal: Advanced Materials
    Year: 2025

BiSBr, an Anisotropic One-Dimensional Chalcohalide Used for Radiographic Detection

  • Authors: Yunmeng Liang, Pang Jincong, Zhang Qingli, He Song, Xu Ling, Luo Wei, Zhiping Zheng, Guangda Niu
    Journal: The Journal of Physical Chemistry C
    Year: 2024

Remarkable Improvement of Thermoelectric Performance in Ga and Te Cointroduced Cu₃SnS₄

  • Authors: Song He, 勇 罗, Liangliang Xu, Yue Wang, Zhongkang Han, Xie Li, Jiaolin Cui
    Journal: Inorganic Chemistry
    Year: 2021