Tayebeh Movlarooy | Condensed Matter Physics | Best Researcher Award

Assoc Prof Dr. Tayebeh Movlarooy | Condensed Matter Physics | Best Researcher Award

Associate Professor at Shahrood University of Technology, Iran

Tayebeh Movlarooy, an Iranian national born in Fariman, is an esteemed Associate Professor specializing in Solid State Physics and Nanophysics at Shahrood University of Technology. With a Ph.D. from Ferdowsi University of Mashhad, her research delves into computational condensed matter physics and material science, focusing on electronic structure and properties of nanostructures. Proficient in DFT packages like Wien2k and Quantum-ESPRESSO, she has supervised numerous theses and received accolades including Top Researcher at Shahrood University. Tayebeh’s expertise extends to teaching various courses and participating in workshops worldwide, demonstrating her commitment to advancing scientific understanding in her field.

Professional Profiles:

Education

Ph.D: Solid State Physics, Ferdowsi University of Mashhad, Mashhad, Iran (2005-2010) Thesis: “Theoretical calculations of electronic and optical properties of SWCNTs and Peapods” Supervisors: Professors S. M. Hosseini, A. Kompany, and Claudia Ambrosch-Draxl M.Sc: Solid State Physics, Ferdowsi University of Mashhad, Mashhad, Iran (2002-2005) B.Sc: Physics, Ferdowsi University of Mashhad, Mashhad, Iran (1998-2002)

Professional Experience:

Associate Professor: Solid State Physics and Nanophysics, Shahrood University of Technology, Shahrood, Iran (2018 – Present) Assistant Professor: Solid State Physics and Nanophysics, Shahrood University of Technology, Shahrood, Iran (2010-2018)

Teaching Experiences

Taught various courses including Numerical Modeling and Simulation in Condensed Matter, Density Functional Theory, Solid State Physics, Advanced Solid State Physics, Computational Physics, Nanophysics, Quantum Mechanics, Electromagnetic, and more.

Research Interests

Computational condensed matter physics and Computational Material Science Simulation and Modeling of bulk materials, surfaces, and Nanostructures High-performance computing on the electronic structure and physical properties of nanostructures Investigation of various properties such as structural, electronic, magnetic, optical, and transport properties, as well as spintronics.

Computer Skills

Proficient in DFT Packages like Wien2k, Quantum-ESPRESSO, and Siesta Experienced in programming languages like Fortran Skilled in operating systems including Linux and Windows Familiar with simulation packages such as Gauss View and ATK (Atomistix Tool Kit) Competent in Microsoft Office tools.

Awards

Received various scholarships including PhD. Scholarship, Study Opportunity Scholarship, and Guest Researcher Scholarship. Recognized as the Top Researcher of Shahrood University of Technology and the Top Researcher of the Semnan province in 2023.

Research Focus:

Tayebeh Movlarooy’s research primarily focuses on computational materials science, with an emphasis on electronic structure calculations and optical properties of various nanomaterials. Her work spans a broad spectrum, including first-principles investigations of cohesive energies in perovskite structures like PbTiO3, optical absorption in carbon nanotubes, and adsorption studies on nanotube surfaces for gas sensing applications. Additionally, she explores spin transport properties in graphene nanoribbons and transition metal-doped nanostructures, contributing to the development of materials for spintronic devices. Movlarooy’s expertise lies in leveraging density functional theory to elucidate fundamental properties of nanomaterials, paving the way for innovative applications in electronics and sensing technologies.

Publications

  1. Gas molecules adsorption on β12 borophene nanoribbons and nanosheets for the gas sensor applications, Publication: 2024.
  2. The effect of cations in electronic, and optical properties of lead-free halide perovskites based on Sn–Ge, Publication: 2023.
  3. Investigating the effect of halogens on the electronic and optical properties of lead‐free double halide perovskites based on Cu Bi, Publication: 2023.
  4. Tuning structural and electronic properties of 12-Borophene/Graphene heterostructure, Publication: 2023.
  5. Structural and electronic properties of double-walled zigzag and armchair Zinc oxide nanotubes, Publication: 2023.
  6. Electronic structures and stability of double-walled armchair (n,n)@(m,m) SiC nanotubes, Publication: 2023.
  7. DFT Study of High‐Curie‐Temperature Ferromagnetism in α‐borophene Nanoribbons for Spintronic Applications, Publication: 2023.
  8. Exploring Optical and Electronic Properties of 2D Lead-Free Hybrid Perovskites Based on Sn-Ge for Photovoltaic Applications, Publication: 2023.
  9. Ab initio study of structural properties and inter-wall distances of double-walled BN nanotubes, Publication: 2023.
  10. Tuning Structural Properties and Interwall Spacing of Double‐Walled GaN Nanotubes, Publication: 2023.
.

Emmanuel Adeyefa | Theoretical Physics | Member

Assoc Prof Dr. Emmanuel Adeyefa | Theoretical Physics | Member

PHD at University of Ilorin, Nigeria

Dr. Emmanuel Oluseye Adeyefa is a distinguished mathematician and academic leader from Nigeria. With a Ph.D. in Mathematics from the University of Ilorin, he currently serves as a Reader at the Department of Mathematics, Federal University Oye-Ekiti. His administrative roles include acting as Head of Department and Postgraduate Coordinator. With a passion for teaching, he has instructed various courses and supervised numerous undergraduate and postgraduate projects. A committed scholar, he actively participates in conferences and workshops, contributing to advancements in mathematics and cryptography. Beyond academia, he engages in community service and enjoys activities such as reading, football, and music.

Professional Profiles:

Education

Ph.D. in Mathematics, University of Ilorin, 2014 M.Sc. in Mathematics, University of Ilorin, 2007 B.Sc. in Mathematics, University of Ilorin, 2003 PGD in Education, Obafemi Awolowo University, 2014

Administrative Experience

Acting Head, Department of Mathematics Postgraduate Coordinator University Examination Committee Member Level Adviser/Coordinator Departmental Seminar Coordinator Staff Secretary Various Committee Memberships and Chairmanships. Federal University Wukari, Taraba State Oduduwa University, Osun State Southern Institute of Innovative Technology (SNIIT Polytechnic), Osun State

Teaching Experience

Various courses in Mathematics including Linear Algebra, Mathematical Packages, Vector and Tensor Analysis, Real Analysis, Mathematical Methods, Analytical Dynamics, Fluid Dynamics, and Numerical Analysis.

Awards

Recipient of various awards including Departmental Best Graduating Student and Best Lecturer of the year.

Research Focus:

Dr. Emmanuel Oluseye Adeyefa’s research focus primarily revolves around the development and application of advanced numerical methods for solving various classes of ordinary and partial differential equations. His work spans topics such as direct integration methods, orthogonal basis function formulations, hybrid block methods, and collocation approaches. Additionally, he explores the use of polynomial and orthogonal basis functions, particularly Chebyshev polynomials, in continuous formulations of numerical solvers. Adeyefa’s contributions bridge mathematical theory with practical applications, showcasing his expertise in computational mathematics and algorithm development, with potential applications in cryptography and queueing systems.

Publications

  1. Error estimation of the integral tau method for fourth order overdetermined ODES, Publication: 2023.
  2. Integral tau Method for Certain Over-determined Fourth-Order Ordinary Differential Equations., Publication: 2023.
  3. A Generalized Series Solution of 𝒏𝒕𝒉 Order Ordinary Differential Equations, Publication: 2023.
  4. Improved 2-Point Hybrid Block Model for Direct Integration of Third and Fourth-Order Initial Value Problems, Publication: 2023.
  5. Algebraic characterization of Ifa main divination codes, Publication: 2023.
  6. Ninth-order Multistep Collocation Formulas for Solving Models of PDEs Arising in Fluid Dynamics: Design and Implementation Strategies, Publication: 2023.
  7. Hybrid block methods with constructed orthogonal basis for solution of third-order ordinary differential equations, Publication: 2023.
  8. A continuous five-step implicit block unification method for numerical solution of second-order elliptic partial differential equations, Publication: 2023.
  9. Implicit hybrid block methods for solving second, third and fourth orders ordinary differential equations directly, Publication: 2022.
  10. New developed numerical formula for solution of first and higher order ordinary differential equations, Publication: 2022.
.

Houda Jebari | Materials Science | Member

Mrs. Houda Jebari | Materials Science | Member

PHD at Mohammed V University of Rabat, Morocco

Houda Jebari is a Ph.D. student in Physics specializing in Condensed Matter and Modeling of Systems at the Laboratory of Condensed Matter and Interdisciplinary Sciences (LaMCSci) at Mohammed V University of Rabat, Morocco. Her research focuses on experimental studies and theoretical calculations using Density Functional Theory (DFT) and Monte Carlo simulation. She investigates the structural, electronic, transport, mechanical, optical, and magnetic properties of various materials and 2D-materials for applications in spintronics, photovoltaics, optoelectronics, batteries, magnetic fields, photocatalysis, and magnetocalorics, with a long-term interest in environmental applications of multiferroic materials and 2D-materials.

Professional Profiles:

Education and Diploma:

Ph.D. in Physics (Condensed Matter and Modeling of Systems) Master’s degree in Computational Physics Bachelor’s degree in Physics General University Study’s degree in Physics (DEUG) High school degree in Mathematical Sciences A option

Professional Experiences:

Research internship at the LPCMIO Laboratory, Ecole Normal Supérieure Rabat Substitute professor of practical works at the Faculty of Sciences Rabat, Morocco

Scientific Communications:

Presented at various conferences including the LaMCScI Meeting and EURO-MEDITERRANEAN CONFERENCE ON MATERIALS AND RENEWABLE ENERGIES Oral and poster communications at international conferences Multiple articles submitted for publication in scientific journals

Skills

Computer Skills: Proficient in programming languages (C/C++/C#/FORTRAN), DFT codes (Akai-KKR, WIEN2K, QUANTUM ESPRESSO, CASTEP), operating systems (Windows, Linux), and other software such as 3DS Max and Unity. Soft Skills: Strong teamwork, motivation, flexibility, and time management. Experimental Skills: Experience in synthesis methods and characterization techniques including FT-IR spectroscopy, DSC, and dielectric measurement.

Research Focus:

Houda Jebari’s research focuses on theoretical investigations of various materials, particularly exploring their electronic, optical, and thermoelectric properties. She has contributed significantly to the study of halide perovskite compounds, such as AGeI2Br, for photovoltaic applications. Additionally, her work extends to the exploration of magnetocaloric properties in compounds like Bi25FeO40 and EuCrO3. Jebari’s research also encompasses the analysis of novel materials like MoS2 for hydrogen production and CsGeI2Br for optoelectronic applications. Through her studies, she aims to advance understanding and facilitate the practical applications of these materials in renewable energy and environmental technologies.

Publications 

  1. The investigation of the electronic, optical, and thermoelectric properties of the Ge‐based halide perovskite AGeI2Br (a = K, Rb, Cs) compound for a photovoltaic …, cited by: 26, Publication date: 2022.
  2. Theoretical investigation of electronic, magnetic and magnetocaloric properties of Bi25FeO40 compoundcited by: 12, Publication date: 2021.
  3. Structural, optical, dielectric, and magnetic properties of iron-sillenite Bi25FeO, cited by: 8, Publication date: 2022.
  4. First-principles calculations to investigate structural, electronic, optical, thermoelectric, magnetic, and magnetocaloric properties of the orthochromite EuCrO3, cited by: 4, Publication date: 2023.
  5. Tensile effect on photocatalytic and optoelectronic properties of MoS2 for hydrogen production: DFT study, cited by: 1, Publication date: 2024.
  6. Structural, Infrared and Raman Spectroscopy Reinvestigation, and Theoretical Optoelectronic Properties of Hydrazinium (1+) Hexafluorosilicate (N2H5) 2SiF6, Publication date: 2023.
  7. Insights into optoelectronic behaviors of novel double halide perovskites Cs2KInX6 (X= Br, Cl, I) for energy harvesting: First principal calculation, Publication date: 2024.
  8. First principal calculation of the physical proprieties of the ternary intermetallic compound Gd2Cu2Cd for magnetic refrigeration applications, Publication date: 2024.
  9. Analysis of the structural, electronic, optical and mechanical properties of CsGeI2Br under tensile and compressive strain for optoelectronic applications: A DFT computational …, Publication date: 2024.
  10. Photovoltaic and thermoelectric properties of Ag2MnGeS4_Kesterite: First-principal investigations, Publication date: 2023.

 

.

Christian Kenfack Sadem | Condensed Matter Physics | Member

Assoc Prof Dr. Christian Kenfack Sadem | Condensed Matter Physics | Member

PHD at University of Abomey Calavi, Benin

Christian Kenfack Sadem, an Associate Professor born on July 26, 1983, in Buea, Cameroon, holds Ph.D.s in Physical Oceanography and Condensed Matter Physics. With a diverse teaching background, including roles as a lecturer and visiting lecturer across Cameroon, he currently serves as an Associate Professor at the University of Dschang. Kenfack’s expertise spans research, teaching, and supervision of junior researchers, focusing on condensed matter physics and exciton-polaron dynamics. Recognized for his teaching excellence, he inspires students to pursue research careers. Kenfack is also skilled in data management and scientific software, contributing significantly to climate modeling.

Professional Profiles:

Education

Ph.D. in Physical Oceanography and Applications, University of Abomey Calavi, Benin, May 2021 Ph.D. in Condensed Matter Physics, University of Dschang, Cameroon, November 2011 Masters in Physical Oceanography and Applications, University of Abomey Calavi, Benin, November 2010 M.Sc. in Condensed Matter Physics, University of Dschang, Cameroon, June 2008 B.Sc. in General Physics, University of Ngaoundere, Cameroon, September 2005

Employment History

Associate Professor: University of Dschang, Cameroon (2019 – Present) Lecturer and Visiting Lecturer: Various institutions in Cameroon (2012 – 2019) Visiting Lecturer: National Polytechnic Bambui, Cameroon (2008 – 2009) Visiting Lecturer: Intitut Privé Polyvalent la Reforme, Cameroon (2007 – 2008)

Teaching Activities

Taught a range of courses including Statistical Physics, Group Theory, General Physics, Electromagnetism, and more

Prizes, Awards, Fellowships

Received various scholarships and fellowships including the Mwalimu Nyerere African Union Scholarship and the DAAD fellowship. Conducted groundbreaking research in the field of condensed matter physics, particularly in the areas of exciton-polaron dynamics and optical properties of transition metal dichalcogenides

Research Focus:

Christian Kenfack Sadem has contributed significantly to various scientific publications, including “Mobility and Decoherence of Bipolaron in Transition Metal Dichalcogenides Pseudodot Quantum Qubit” published in the Iranian Journal of Science. Additionally, he has co-authored articles such as “Enhancement of the group delay in quadratic coupling optomechanical systems subjected to an external force” in Chinese Physics B and “First principle investigation of electronic and optical properties of graphene/h-BN bilayers using Tran-Blaha-modified Becke-Johnson potential” in Optical and Quantum Electronics. His research covers a wide range of topics, including exciton-polaron dynamics, optical properties of graphene, and magnetic barrier effects on transition metal dichalcogenides.

Publications 

  1. Deformation and size effects on electronic properties of toroidal quantum dot in the presence of an off-center donor atom, cited by: 5, Publication date: 2022.
  2. The intensity and direction of the electric field effects on off-center shallow-donor impurity binding energy in wedge-shaped cylindrical quantum dots, cited by: 18, Publication date: 2022.
  3. Magnetic barrier and temperature effects on optical and dynamic properties of exciton-polaron in monolayers transition metal dichalcogenidescited by: 1, Publication date: 2022.
  4. Impacts of an initial axial force and surface effects on the dynamic characteristics of a bioliquid-filled microtubule in cytosol, Publication date: 2022.
  5. A Ginzburg-Landau approach to field theories for single, isolated zero-dimensional superconductors, Publication date: 2022.
  6. Magnetic barrier and electric field effects on exciton-polaron relaxation and transport properties in transition metal dichalcogenide monolayers, Publication date: 2023.
  7. First principle investigation of electronic and optical properties of graphene/h-BN bilayers using Tran-Blaha-modified Becke-Johnson potential, Publication date: 2023.
  8. Enhancement of the group delay in quadratic coupling optomechanical systems subjected to an external force, Publication date: 2023.
  9. Mobility and Decoherence of Bipolaron in Transition Metal Dichalcogenides Pseudodot Quantum QubitPublication date: 2024.

 

.

Al-Hattab Mohamed | Physics | Member

Dr. Al-Hattab Mohamed | Physics | Member

PHD at Sultan Moulay Slimane University, Morocco

Mohamed Al-Hattab is a dedicated researcher specializing in Physics of Materials and Energy. He completed his Ph.D. at Sultan Moulay Slimane University, focusing on the properties of the semiconductor GaSe. With expertise in scanning electron microscopy, X-ray crystallography, and spectroscopy, Mohamed has contributed to various publications in prestigious journals like Solar Energy and Nanoparticle Research. He actively engages in educational activities, supervising students and presenting at international conferences. As a reviewer for prominent journals, Mohamed continues to advance research in his field, affiliated with the Research Laboratory in Physics and Sciences for Engineers at Sultan Moulay Slimane University.

Professional Profiles:

Education

Ph.D. in Physics of Materials and Energies Sultan Moulay Slimane University, Beni Mellal, Morocco (2018 – 2022) Advisor: Khalid Rahmani Dissertation: Study of the structural, electronic, optical, and elastic properties of the lamellar semiconductor (GaSe) Master in Advanced Materials Sultan Moulay Slimane University, Beni Mellal, Morocco (2015 – 2018) Bachelor’s degree in Physical Sciences, Electronics option Cadi Ayyad University, Marrakech, Morocco (2011 – 2015) Advisor: Amal Rajirae Dissertation: Study of the properties of the lamellar material GaSe used as an absorber in photovoltaic cells

Skills

Scanning Electron Microscope X-ray Crystallography UV-Visible Spectroscopy and Raman Spectroscopy Simulation (Biovia Material Studio 2017, SCAPS-1D, MATLAB, Silvako

Research Focus:

Mohamed Al-Hattab is a versatile researcher with a primary focus on materials science and renewable energy technologies. His contributions span various aspects of solar cell design and optimization, including numerical modeling, density functional theory (DFT) investigations, and experimental studies. With expertise in tandem solar cells, perovskite materials, and semiconductor physics, Mohamed’s research aligns with advancing eco-friendly and efficient photovoltaic devices. He collaborates extensively with multidisciplinary teams, emphasizing the integration of theoretical insights with practical applications. Through his work, Mohamed strives to enhance the performance and sustainability of solar energy technologies for a greener future. Physics

Publications 

  1. Experimental and numerical study of the CIGS/CdS heterojunction solar cell,  Publication date: 2023.
  2. Novel Simulation and Efficiency Enhancement of Eco-friendly Cu2FeSnS4/c-Silicon Tandem Solar Device, cited by: 4, Publication date: 2023.
  3. Ab Initio Investigation for Solar Technology on the Optical and Electronic Properties of Double Perovskites Cs2AgBiX6(X=Cl, Br, I), Publication date: 2023.
  4. Thermodynamic, optical, and morphological studies of the Cs2AgBiX6 double perovskites (X = Cl, Br, and I): Insights from DFT study, cited by: 16, Publication date: 2023.
  5. Ag2BeSnX4(S, Se,Te)-based kesterite solar cell modeling: A DFT investigation and Scaps-1 danalysis,Publication date: 2023.
  6. Numerical Simulation of CdS/GaSe Solar Cell Using SCAPs Simulation Software, Publication date: 2022.
  7. Density Functional Theory Study on the Electronic and Optical Properties of Graphene, Single-Walled Carbon Nanotube and C60, Publication date: 2022.
  8. Quantum confinement in GaN/AlInN asymmetric quantum wells for terahertz emission and field of optical fiber telecommunications, Publication date: 2024.
  9. Cu2BaSnS4/Cu2FeSnS4 combination for a good light absorption in thin-film solar cells—a numerical model, Publication date: 2024.
  10. Performance assessment of an eco-friendly tandem solar cell based on double perovskite Cs2AgBiBr6Publication date: 2024.

 

.