Muhammad Yar Khan | Computational Methods | Best Researcher Award

Assoc. Prof. Dr. Muhammad Yar Khan | Computational Methods | Best Researcher Award

Associate Professor at Qilu institute of Technology | China

Dr. Hafiz Muhammad Yar Khan is an accomplished Materials Scientist and Associate Professor in Physics, with an extensive background in Density Functional Theory (DFT) Materials Modeling. He completed his Ph.D. in Materials Science Engineering at Zhejiang University, China (2023), which is ranked 41st in the QS World University Rankings (2022). His research is focused on novel 2D materials, energy storage materials, and the optical and magnetic properties of advanced materials, with significant contributions to the fields of spintronics, energy storage, and 2D magnetic materials.

👨‍🎓Profile

Google scholar

Scopus

ORCID

Early Academic Pursuits 🎓

Dr. Khan’s academic journey began with a Master of Science in Physics (M. Phil) from Hazara University Mansehra, Pakistan, in 2011, where he developed his passion for solid-state physics and computational material science. His dissertation focused on the first-principles study of perovskite-type oxides, laying the foundation for his later work in computational materials research. His focus on quantum mechanics, electrodynamics, and applied research techniques during his M.S. equipped him with a solid theoretical and experimental base.

Professional Endeavors 💼

Dr. Khan has held various teaching and administrative roles across prominent institutions in both Pakistan and China. His career includes serving as Lecturer in Physics at Kohat University of Science and Technology and The University of Haripur, Pakistan. His current position as Associate Professor at Qilu Institute of Technology, China, reflects his rising prominence in academia. Dr. Khan has also contributed to academic committees, such as being a member of the Academic Council at Kohat University and organizing events like sports day and international cultural day, showing his leadership in academic and extracurricular spheres.

Contributions and Research Focus 🔬

Dr. Khan’s research spans several cutting-edge areas in materials science. His Ph.D. dissertation on “First-Principles Study of Tuning Magnetic and Optical Properties of Novel 2D-Materials” focuses on materials such as transition metal carbon trichalcogenides and 2D magnetic materials. He has also explored energy storage technologies, such as Na and Li-ion batteries, providing insights into anode and cathode materials. His work also delves into optoelectronics and spintronics devices, underscoring his interdisciplinary approach.

Notable research topics include:

  • Magnetic and optical properties of 2D materials.

  • Energy storage materials (batteries, cathodes, and anodes).

  • Spintronics and optoelectronics for device applications.

Impact and Influence 🌍

Dr. Khan’s research has had significant implications in both academia and industry, especially in 2D materials and energy storage technologies. His publications in prestigious journals like Journal of Superconductivity and Novel Magnetism, Physics Letter A, and Nanoscale demonstrate his ability to contribute to high-impact research. His work is highly regarded in the scientific community, and he has collaborated with leading universities and institutions such as the New Jersey Institute of Technology (NJIT), Quaid-i-Azam University, University of Ulsan, and King Saud University.

His influence extends beyond materials science into academic collaboration, where he serves as a bridge between global research hubs in Pakistan, China, South Korea, and Saudi Arabia.

Research Skills 🧠

Dr. Khan is proficient in various computational software critical to materials science research, including:

  • WIEN2K

  • VASP

  • FLAPW

His ability to independently formulate research questions, conduct empirical research, and analyze data systematically has been key to his success. His first-principles approach has made him a leading figure in DFT-based materials modeling and theoretical materials science.

Teaching Experience 🍎

Dr. Khan has taught a variety of physics courses at undergraduate and postgraduate levels. He has mentored students in subjects such as Quantum Mechanics, Solid-State Physics, and Electrodynamics. He has also demonstrated his administrative skills in his role as Assistant Manager ORIC and member of the departmental admission committee, helping shape the academic landscape at institutions like Kohat University of Science and Technology and The University of Haripur. His teaching philosophy emphasizes the importance of research-driven education, encouraging students to engage with cutting-edge topics in material science and computational physics.

Awards and Honors 🏅

Dr. Khan has been recognized for his academic achievements with prestigious scholarships and fellowships, including:

  • Chinese Government Scholarship for his Ph.D. studies.

  • Brain Korea 21 (BK21) Fellowship by the Korean Government.

  • Pioneer Research Center Program through the National Research Foundation of Korea.

These awards underscore his commitment to academic excellence and his ability to secure competitive funding for his research endeavors.

Legacy and Future Contributions 🌟

Dr. Khan’s legacy is built on a solid foundation of innovative research, interdisciplinary collaborations, and a commitment to teaching. His future contributions are poised to make an impact not only in materials science but also in the energy sector, with further exploration into battery technologies, spintronics, and 2D materials. His ongoing work on defect-engineered materials and multiferroic hetero-structures is expected to push the boundaries of materials science in the coming years.

Publications Top Notes

“Computational insights into optoelectronic and magnetic properties of V(III)-doped GaN”

  • Authors: Muhammad Sheraz Khan, Muhammad Ikram, Li-Jie Shi, Bingsuo Zou, Hamid Ullah, Muhammad Yar Khan
    Journal: Journal of Solid-State Chemistry
    Year: 2021

“A highly selective nickel-aluminum layered double hydroxide nanostructures based electrochemical sensor for detection of pentachlorophenol”

  • Authors: Khan, Mir Mehran, Huma Shaikh, Abdullah Al Souwaileh, Muhammad Yar Khan, Madeeha Batool, Saima Q. Memon, and Amber R. Solangi
    Journal: Arabian Journal of Chemistry
    Year: 2024

“Exploring the structural stability of 1T-PdO2 and the Interface Properties of 1T-PdO2/Graphene Heterojunction”

  • Authors: Muhammad Yar Khan, Arzoo Hassan, Xiao-Qing Kelvin Tian, Abdus Samad
    Journal: ACS OMEGA
    Year: 2024

“Experimental Investigation of the Structural, Electrical, and Magnetic Properties of AgNbO3 Silver Nanobytes”

  • Authors: Junaid Khan, Shah Khalid, Pagunda3, Farhan Ahmad, Abdul Jabbar5, Rabah Khenata, Muhammad Yar Khan, and Heba G. Mohamed
    Journal: Journal of Materials Science

“Fabrication of nanofiltration membrane with enhanced water permeability and dyes removal efficiency using tetramethyl thiourea-doped reduced graphene oxide”

  • Authors: Sehrish Qazi, Huma Shaikh, Amber R. Solangi, Madeeha Batool, Muhammad Yar Khan, Nawal D. Alqarni, Sarah Alharthi, and Nora Hamad Al-Shaalan
    Journal: Journal of Materials Science

SHARJEEL AHMED | Particle Experiments | Best Researcher Award

Dr. SHARJEEL AHMED | Particle Experiments | Best Researcher Award

PhD Researcher at University of Science and Technology China (USTC), Chinese Academy of Science,Institute of Metal Research (CAS, IMR) | China

Dr. Sharjeel Ahmed is a PhD Researcher at the University of Science and Technology China (USTC), Chinese Academy of Science, Institute of Metal Research (CAS, IMR), China. He completed his master’s degree from Donghua University (DHU), China, and earned his PhD from USTC. His research specializes in photoresponsive nanomaterials and smart fluorescence coatings, focusing on oxygen-deficient nanomaterials for photocolorswitching properties and early-stage corrosion detection.

👨‍🎓Profile

Scopus

ORCID

Early Academic Pursuits 🎓

Dr. Ahmed’s academic journey began at Donghua University (DHU), where he obtained his master’s degree. Building on this foundation, he continued his research at USTC, a leading institution in nanotechnology and materials science. His early academic work laid the groundwork for his specialization in nanomaterials and coating technologies that can respond to environmental triggers like light, opening new avenues in corrosion detection and smart materials.

Professional Endeavors 🏢

Throughout his professional career, Dr. Ahmed has collaborated with eminent scholars, such as Prof. Liu Fuchun from Northwestern Polytechnical University, and has contributed significantly to research projects focused on the preparation technology of micro-nano structures and self-repair mechanisms for coatings. His work bridges academic research and industry applications, ensuring his contributions are impactful both in laboratories and in practical solutions.

Contributions and Research Focus 🔬

Dr. Ahmed’s main research interests lie in photoresponsive nanomaterials, particularly in smart fluorescence coatings and early-stage corrosion detection. He has developed oxygen-deficient nanomaterials for photocolorswitching properties, which react to light stimuli to produce fluorescent signals when exposed to corrosive environments. These innovations have been pivotal in solving the limitations of traditional coatings, which lack intelligent early-warning systems.

He has authored 21 research articles in high-impact journals, including top publications like Chemical Engineering Journal, Nanoscale, and Colloids and Surfaces A. Additionally, he holds a patent (CN111394094-A; CN111394094-B) for a dual-band light-responsive reversible color solution, showcasing his innovative contributions to smart materials.

Impact and Influence 🌍

Dr. Ahmed’s research has had a substantial impact on materials science, especially in the development of smart coatings for corrosion detection. His fluorescent smart coatings are expected to revolutionize industries such as aerospace, automotive, and marine engineering, where early detection of corrosion can prevent extensive damage and improve material longevity. His work has been widely cited and continues to influence both academic research and practical applications in coatings technology.

Academic Cites 📚

With 422 citations and an h-index of 10, Dr. Ahmed has garnered recognition for his influential contributions to the field of nanomaterials and coatings technology. His papers, particularly as the first author, in journals such as Materials Chemistry and Physics and Journal of Materials Science and Technology, reflect the significant impact of his work within the scientific community.

Research Skills 🛠️

Dr. Ahmed has mastered several advanced techniques in nanomaterials preparation, including synthesis of oxygen-deficient materials, fluorescence analysis, and computational modeling. His research is not only grounded in experimental work but also utilizes computational science to predict the behavior of materials under various environmental conditions. His ability to combine both experimental and computational approaches gives his work a robust scientific foundation.

Teaching Experience 👨‍🏫

Though primarily a researcher, Dr. Ahmed’s teaching experience is an integral part of his professional journey. At USTC, he has contributed to educating the next generation of materials scientists, particularly in the area of nanomaterials and smart coatings. He mentors students and provides them with invaluable guidance on research methodology and cutting-edge technologies in nanotechnology.

Awards and Honors 🏅

Dr. Ahmed’s excellence in research has earned him recognition in the form of publications in top-tier journals and inclusion in major collaborative projects. Although specific awards are not listed, his patent and high citation index suggest that his work is highly respected within the scientific community. His ongoing research and contributions place him in a strong position to receive further academic and professional accolades.

Legacy and Future Contributions 🔮

Dr. Sharjeel Ahmed is paving the way for future innovations in smart materials, particularly in nanomaterials that are both responsive and intelligent. As his work continues to evolve, it will likely contribute to environmentally sustainable and cost-effective solutions for industries ranging from coatings and corrosion detection to advanced textiles. His future endeavors may include expanding his patent portfolio, collaborating with industries, and broadening his research into emerging areas such as energy storage materials or biodegradable coatings.

Publications Top Notes

  • A review of advancement in fluorescence-based corrosion detection for metals and future prospects
    Authors: Sharjeel Ahmed, Hongwei Shi, Mustehsin Ali, Imran Ali, Fuchun Liu, En-Hou Han
    Journal: Journal of Materials Science & Technology
    Year: 2025

  • Epoxy coating containing CoMOF@MBT metal-organic framework for active protection of aluminum alloy
    Authors: Nwokolo, Izuchukwu K.; Shi, Hongwei; Ikeuba, Alexander I.; Liu, Fuchun; Ahmed, Sharjeel; Zhang, Wanyu
    Journal: Surface and Coatings Technology
    Year: 2024

  • Modified Graphene Micropillar Array Superhydrophobic Coating with Strong Anti-Icing Properties and Corrosion Resistance
    Authors: Zhang, Wanyu; Liu, Fuchun; Li, Yushan; Chen, Tao; Nwokolo, Izuchukwu Kenneth; Ahmed, Sharjeel; Han, En-Hou
    Journal: Coatings
    Year: 2024

  • UV light-triggered fluorescence corrosion sensing coatings for AA2024-T3 based on 8-hydroxyquinline loaded vanadium oxide nanorods
    Authors: Sharjeel Ahmed
    Journal: Colloids and Surfaces A: Physicochemical and Engineering Aspects
    Year: 2024

  • Catalytic degradability and anti-permeability of peelable coating based on organophosphate nerve agent simulants
    Authors: Gao, Ningjie; Ahmed, Sharjeel; Zhang, Wanyu; Li, Jiwen; Liu, Fuchun
    Journal: Colloids and Surfaces A: Physicochemical and Engineering Aspects
    Year: 2023

 

Basaad Hamza | Theoretical Advances | Editorial Board Member

Assist. Prof. Dr. Basaad Hamza | Theoretical Advances | Editorial Board Member

Mustansiriyah university | Iraq

Dr. Basaad Hadi Hamza is an Assistant Professor in Electro-Optical Physics at Mustansiriyah University, College of Sciences. With a Ph.D. in Electro-Optical Physics (2004) from Mustansiriyah University, his academic expertise spans simulation programs for electro-optical tracking systems and optical systems. His commitment to advancing the field of electro-optical physics is evident through his teaching and research contributions.

👨‍🎓Profile

Google scholar

Scopus

ORCID

Early Academic Pursuits 🎓

Dr. Basaad’s academic journey began at Mustansiriyah University, where he earned his B.Sc. in Physics (1992), followed by a M.Sc. in Nuclear Physics (1998), and eventually his Ph.D. in Electro-Optical Physics (2004). His doctoral thesis focused on the development of a simulation program for electro-optical tracking systems, laying the foundation for his career in applied physics.

Professional Endeavors 💼

Dr. Basaad has an extensive teaching background, contributing to the development of future scientists and engineers. He taught various undergraduate courses in Physics 1, Electricity and Magnetism, Thermodynamics, and Analytical Mechanics. He has also guided graduate students, particularly in specialized topics for Ph.D. comprehensive examinations. His professional affiliations include serving as the Chairman of the Diversity Committee, overseeing curriculum preparation, and leading both undergraduate and graduate examination committees.

Contributions and Research Focus 🔬

Dr. Basaad’s research focus includes polarization effects on soliton propagation, radiance calculations, and the discrimination of targets from background in infrared (IR) imagery. He is particularly interested in the development of simulation programs for transforming IR images across various bands, a significant contribution to remote sensing and infrared imaging technologies. His work also includes improving detector performance in optical spectral ranges to enhance the accuracy of images.

Impact and Influence 🌍

Dr. Basaad’s research has had a broad impact, particularly in IR imaging, target discrimination, and optical physics. His innovative work on transforming IR images from band to band, coupled with his simulation techniques, has contributed to advancements in defense technologies, remote sensing, and optical systems. His publications, including in journals like the International Journal of Application or Innovation in Engineering & Management and Mustansiriyah Journal of Science, highlight his significant role in these fields.

Research Skills 🔍

Dr. Basaad possesses strong analytical skills, particularly in the areas of simulation programming, optical imaging, and IR technology. His proficiency in simulation software and knowledge of IR wavelength bands make him a leader in image transformation techniques. His work on target discrimination using multi-channel data and threshold methods highlights his ability to solve complex problems in infrared imagery.

Teaching Experience 📘

Dr. Basaad’s teaching experience spans over two decades, during which he has taught a range of undergraduate and graduate-level physics courses. He has taught Physics 1, Electricity and Magnetism, Thermodynamics, and Analytical Mechanics, and has supervised graduate theses. His guidance on special topics for Ph.D. students and his role in preparing students for comprehensive exams demonstrates his deep commitment to academic development.

Legacy and Future Contributions 🌱

Dr. Basaad’s legacy is marked by his contributions to electro-optical physics, especially in the development of simulation techniques for infrared imaging. Looking ahead, he plans to continue advancing research in target discrimination and optical systems, with potential applications in remote sensing, security, and environmental monitoring. His ongoing mentorship of graduate students will further ensure his influence in academic research and scientific innovation.

Publications Top Notes

Green Synthesis of Silver Nanoparticles and Their Effect on the Skin Determined Using IR Thermography

  • Authors: Alaabedin Alrabab Ali Zain, Majeed Aseel Musafa Abdul, Basaad Hadi Hamza
    Journal: Kuwait Journal of Science
    Year: 2024

Infrared Imaging of Skin Cancer Cell Treated with Copper Oxide and Silver Nanoparticles

  • Authors: M.M. Mowat, M.S. Khallaf, B.H. Hamza
    Journal: Bionatura
    Year: 2023

People Identification via Tongue Print Using Fine-Tuning Deep Learning

  • Authors: A.S. Obaid, M.Y. Kamil, B.H. Hamza
    Journal: International Journal of Reconfigurable and Embedded Systems
    Year: 2023

People Recognition via Tongue Print Using Deep and Machine Learning

  • Authors: A.S. Obaid, M.Y. Kamil, B.H. Hamza
    Journal: Journal of Artificial Intelligence and Technology
    Year: 2023

Improved Detector Performance Rendering in the Optical Spectral Ranges to Provide Accurate Image

  • Authors: Basaad Hadi Hamza
    Journal: Mustansiriyah Journal of Science
    Year: 2019

 

Shewa Getachew | High energy physics | Editorial Board Member

Mr. Shewa Getachew | High energy physics | Editorial Board Member

Lecturer at Wolkite University | Ethiopia

Shewa Getachew Mamo is a dedicated Physics Lecturer and researcher with a specialized focus on optical properties of nanocomposites, material science, refractive index, and group velocity. Passionate about advancing scientific knowledge, he is committed to both academic excellence and innovative research in the realm of condensed matter physics. His expertise extends to investigating local field enhancements, optical properties of nanostructures, and exploring nanoparticle-based materials and geometries.

👨‍🎓Profile

ORCID

Early Academic Pursuits 🎓

Shewa’s academic journey began at Wolkite University, where he earned his Bachelor’s degree in Physics (2016-2019) and later pursued a Master’s degree in Condensed Matter Physics (2022-2023). Throughout his education, he developed a strong foundation in experimental and theoretical physics, which propelled him into a career of teaching and research in the field.

Professional Endeavors 💼

Currently, Shewa serves as a Physics Teacher at Wolkite University (since December 2023). In this role, he is responsible for preparing and presenting undergraduate and sometimes postgraduate courses in various areas of physics, including mechanics, electromagnetism, thermodynamics, quantum mechanics, and material science. He plays a vital role in designing curricula, developing lesson plans, and selecting relevant textbooks to ensure effective learning outcomes. His academic influence extends to advising students on academic matters and guiding them through research projects.

Contributions and Research Focus 🔬

Shewa’s research focus is primarily on the optical properties of core-shell spherical nanocomposites and local field enhancements. His research aims to explore the interaction between optical fields and nanocomposites, as well as investigating the influence of depolarization on the local field enhancement factor in passive and active composites with pure metal spheroidal nanoinclusions. One of his notable research areas includes optical bistability in nanoparticle composites and the role of tunable dielectric cores in cylindrical core-shell nanocomposites.

Impact and Influence 🌍

Shewa’s research has led to significant contributions to the field of material science and nanotechnology, specifically in understanding the optical properties of nanostructured materials. His findings have been widely discussed in the scientific community, with numerous publications in prominent journals. He is committed to staying updated with the latest advancements in condensed matter physics and nanotechnology, consistently striving to push the boundaries of existing scientific knowledge.

Academic Cites 📚

Shewa’s work has been widely cited, with his contributions being recognized across several prestigious journals. His publications include studies such as:

  • Tsegaye, A., & Getachew, S. (2024). “Investigation Optical Properties of ZnTe@Ag Core-Shell Spherical Nanocomposites Within Varies Dielectric Host Matrices”. Advances in Materials, 13(4), 80-91.
  • Getachew, S. (2024). “Effect of Tunable Dielectric Core on Optical Bistability in Cylindrical Core-Shell Nanocomposites”. Advances in Condensed Matter Physics, 2024(1), 9911970.
  • Getachew, S. (2024). “Investigation of Refractive Index and Group Velocity Metal Coated Dielectric Spherical Nanocomposites”. Iranian Journal of Physics Research, 24(3), 75-87.

His academic citations are a testament to his research impact and scientific contributions.

Research Skills 🔍

Shewa possesses advanced knowledge in condensed matter physics, with strong analytical and problem-solving skills. He is proficient in a range of experimental and theoretical physics techniques. His technical expertise includes programs such as Matlab, Word, Excel, PowerPoint, OpenOffice, and Latex, and he is skilled in computer languages like Python, Fortran, and Gnuplot. He also has experience with Unix systems and software like xmgrace, showcasing his comprehensive research toolset.

Teaching Experience 📘

Shewa’s teaching experience is extensive, having taught various physics courses at the undergraduate and postgraduate levels. He designs engaging lesson plans and works closely with students to help them grasp key concepts in physics. By preparing and grading exams, assignments, and laboratory reports, he ensures students receive constructive feedback for their academic growth. His role as a mentor goes beyond the classroom, advising students on their academic and career paths and supervising their research projects.

Legacy and Future Contributions 🌱

Shewa is committed to leaving a lasting legacy in the fields of nanotechnology, material science, and condensed matter physics. His ongoing research will likely continue to make valuable contributions to the understanding of optical properties and nanocomposite materials. Looking ahead, Shewa is dedicated to mentoring the next generation of scientists and physicists, sharing his knowledge and advancing the boundaries of nanophysics and material science research. Through continuous publication and collaboration, his work is set to influence the scientific community for years to come.

Publications Top Notes

Effect of Tunable Dielectric Function of the Core on Optical Bistability in Small Spherical Metal-Dielectric Composite

  • Authors: Hawi Aboma, Shewa Getachew, Sisay Shewamare
    Journal: Ethiopian Journal of Applied Sciences
    Year: 2025

Investigation Optical Properties of ZnTe@Ag Core-Shell Spherical Nanocomposites Within Varies Dielectric Host Matrices

  • Authors: Tsegaye Atnaf, Shewa Getachew
    Journal: Advances in Materials
    Year: 2024

Investigating the Optical Bistability of Pure Spheroidal Nanoinclusions in Passive and Active Host Matrices

  • Authors: Shewa Getachew, Girma Berga
    Journal: Canadian Journal of Physics
    Year: 2024

Investigation of Refractive Index and Group Velocity Metal Coated Dielectric Spherical Nanocomposites Within Passive and Active Dielectric Cores

  • Authors: Shewa Getachew
    Journal: Iranian Journal of Physics Research (IJPR)
    Year: 2024

Effect of Tunable Dielectric Core on Optical Bistability in Cylindrical Core–Shell Nanocomposites

  • Authors: Shewa Getachew, Junjie Li
    Journal: Advances in Condensed Matter Physics
    Year: 2024

 

 

Song He | High energy physics | Best Researcher Award

Mr. Song He | High energy physics | Best Researcher Award

Ph.D. student at Huazhong University of Science and Technology | China

Song He is currently a Ph.D. student at Huazhong University of Science and Technology (HUST), specializing in novel radiation detectors and imaging techniques. He has contributed extensively to high-impact journals in the fields of material science and electronics, with innovative research in scintillator development. His work has led to groundbreaking discoveries in enhancing X-ray imaging and fast neutron imaging resolution.

👨‍🎓Profile

Scopus 

ORCID

Early Academic Pursuits 🎓

Song He’s academic journey began with a Bachelor of Engineering in Materials Science and Engineering from China University of Mining and Technology (2015-2019). He continued with a Master of Engineering in Materials and Physics from the same university (2019-2022). Currently, he is pursuing a Ph.D. in Electronic Science and Technology at HUST since 2022. His early education laid a strong foundation for his innovative approach to radiation detection and imaging technology.

Professional Endeavors 💼

Throughout his career, Song He has primarily focused on developing novel radiation detectors and imaging technologies. His work emphasizes improving the performance of scintillators for better X-ray and neutron imaging. He has filed several patents related to his inventions, demonstrating his commitment to transformative research in radiation detection. Despite limited professional collaborations at this stage, his independent contributions have been highly impactful in the scientific community.

Contributions and Research Focus 🔬

Song He’s research primarily revolves around novel radiation detectors and scintillator technologies. In particular, he has developed a new class of scintillators that overcome traditional limitations by using hot exciton molecules (TPE-4Br) and conjugated polymers (PVT) to enhance performance. His contributions have led to breakthroughs in X-ray imaging and fast neutron imaging resolution, significantly advancing the field of radiation detection.

Impact and Influence 🌍

Song He’s work is paving the way for high-resolution imaging technologies that can have a significant impact in fields such as medical diagnostics, nuclear physics, and security imaging. His innovative approaches are influencing both academic research and practical applications. His recent paper in Advanced Functional Materials (DOI: 10.1002/adfm.202503688) received recognition for offering a new solution to long-standing challenges in the radiation detection field.

Academic Citations 📑

Although Song He’s citation index is not formally listed, his work is published in top-tier journals like Advanced Functional Materials, Inorganic Chemistry, Advanced Materials, and The Journal of Physical Chemistry C. The high impact of his research is evident in the citations of his publications, showing their relevance and influence in the scientific community.

Research Skills 🧠

Song He demonstrates exceptional skills in materials science, physics, and electronic technology. His ability to synthesize innovative materials and develop advanced radiation detectors showcases his technical expertise. Additionally, he has practical skills in scintillator synthesis, polymer chemistry, and in-situ polymerization. His experimental design and analytical techniques allow for high-precision imaging, which is crucial for the future of radiation detection.

Awards and Honors 🏅

Currently, Song He has not reported receiving formal awards or honors. However, the significance of his innovative research and published work in high-impact journals positions him as a rising star in his field. His patent applications and scientific contributions hint at a promising future where such recognitions are likely.

Legacy and Future Contributions 🔮

With his cutting-edge research in radiation detectors and imaging technologies, Song He is poised to make long-lasting contributions to both academic and industry sectors. His future work holds the potential for further advancements in medical imaging, nuclear research, and security applications, with his innovative materials providing solutions to longstanding challenges. As his career progresses, Song He is expected to become a significant figure in radiation detection technologies, with lasting impact on both science and society.

Publications Top Notes

High‐Performing Direct X‐Ray Detection Made of One‐Dimensional Perovskite‐Like (TMHD)SbBr₅ Single Crystal With Anisotropic Response

  • Authors: Guangya Zheng, Haodi Wu, Song He, Hanchen Li, Zhiwu Dong, Tong Jin, Jincong Pang, Rachid Masrour, Zhiping Zheng, Guangda Niu et al.
    Journal: Small
    Year: 2025

Hot Exciton‐Based Plastic Scintillator Engineered for Efficient Fast Neutron Detection and Imaging

  • Authors: Song He, Pengying Wan, Hanchen Li, Zizhen Bao, Xinjie Sui, Guangya Zheng, Hang Yin, Jincong Pang, Tong Jin, Shunsheng Yuan et al.
    Journal: Advanced Functional Materials
    Year: 2025

Close‐to‐Equilibrium Crystallization for Large‐Scale and High‐Quality Perovskite Single Crystals

  • Authors: Hang Yin, Mingquan Liao, Yuanpeng Shi, Zhiqiang Liu, Hanchen Li, Song He, Zhiping Zheng, Ling Xu, Jiang Tang, Guangda Niu
    Journal: Advanced Materials
    Year: 2025

BiSBr, an Anisotropic One-Dimensional Chalcohalide Used for Radiographic Detection

  • Authors: Yunmeng Liang, Pang Jincong, Zhang Qingli, He Song, Xu Ling, Luo Wei, Zhiping Zheng, Guangda Niu
    Journal: The Journal of Physical Chemistry C
    Year: 2024

Remarkable Improvement of Thermoelectric Performance in Ga and Te Cointroduced Cu₃SnS₄

  • Authors: Song He, 勇 罗, Liangliang Xu, Yue Wang, Zhongkang Han, Xie Li, Jiaolin Cui
    Journal: Inorganic Chemistry
    Year: 2021

 

 

Sanae ZRIOUEL | Computational Particle Physics | Women Researcher Award

Prof. Dr. Sanae ZRIOUEL | Computational Particle Physics | Women Researcher Award

Cadi Ayyad university | Morocco

Professor Dr. Sanae Zriouel is an esteemed Associate Professor of Physics at the Faculty of Sciences and Technology, Cadi Ayyad University in Marrakech, Morocco. With a deep passion for Mathematical Physics and cutting-edge research in nanomaterials, Dr. Zriouel has made significant contributions in various areas of condensed matter physics. Her academic journey spans multiple prestigious institutions in Morocco, and she has established herself as a key figure in the academic and scientific communities.

👨‍🎓Profile

Google scholar

Scopus

Early Academic Pursuits 📚

Dr. Zriouel’s journey began with a Bachelor’s degree in Physical Science from Ibn Tofail University, Morocco, followed by a Master’s degree in Mathematical Physics at Mohammed V University, Morocco. Her academic prowess was evident from early on, as she earned the highest distinctions in her Master’s and later in her PhD in Mathematical Physics from the same institution. She furthered her education with an Engineer’s degree in Electro-mechanics from ENSMR, Rabat, Morocco.

Professional Endeavors 🌍

Dr. Zriouel’s career in academia includes various teaching and research roles. She is currently an Associate Professor at Cadi Ayyad University, where she has been since 2022. Prior to this, she held positions as an Assistant Professor at Sultan Moulay Slimane University, Beni Mellal, and worked as a Dr. Researcher at Mohammed V University, where she developed a profound interest in nanomaterials and theoretical physics. Her roles are not limited to academia; she has been actively involved in multiple administrative responsibilities, serving as an elected member of university councils and commissions that contribute to the growth and development of scientific research and academic programs.

Contributions and Research Focus 🔬

Dr. Zriouel’s research interests include Graphene and related materials, the physics of 2D nanostructures, topological insulators, and chalcopyrite semiconductors. She has worked extensively on quantum dots, ab-initio calculations, and Monte Carlo simulations. Her work on spintronic properties, magnetocaloric effects, and the phase transitions of new materials has been instrumental in advancing our understanding of the physical properties of materials at the nano-scale. She has authored over 10 impactful scientific papers, contributing significant knowledge to materials science and theoretical physics.

Impact and Influence 🌟

Dr. Zriouel has had a far-reaching impact on both research and education. Her work has influenced various collaborations with institutions such as the Institut Néel, CNRS, Yildiz Technical University, and Abdus Salam International Centre for Theoretical Physics. Additionally, she has received recognition as a scientific visitor to prestigious institutions across the globe, including in Turkey, Italy, and France. Her leadership roles, including coordinating projects like the Extended African Network for Advanced 2D Materials, demonstrate her commitment to scientific collaboration and her efforts to foster an international exchange of ideas.

Academic Cites 📑

Dr. Zriouel’s research papers have been widely cited in the scientific community. Her work on half-metallic ferromagnetic properties, phase transitions in graphene, and DFT-based materials simulations has paved the way for significant advancements in spintronics and quantum materials. Notable publications include her contributions to Computational Condensed Matter and Modern Physics Letters. Her research continues to be cited globally, influencing the fields of nanotechnology, magnetism, and advanced materials.

Research Skills 🧠

Dr. Zriouel possesses a remarkable set of research skills that span theoretical physics and computational simulations. She is proficient in C++, Fortran, MATLAB, and other programming languages used for numerical simulations and ab-initio calculations. Her expertise includes tools like Quantum Espresso, LAMMPS, Wien2k, and SPRKKR, which she uses to explore the properties of advanced graphene-based materials, quantum dots, and other nanomaterials.

Teaching Experience 🎓

Dr. Zriouel is a dedicated educator, teaching a wide array of courses in physics at both the undergraduate and graduate levels. She teaches courses such as Quantum Mechanics, Electromagnetism, and Thermodynamics. Over the years, she has supervised more than 30 students, including Bachelor’s, Master’s, and PhD candidates. Her mentorship extends beyond coursework, as she is involved in guiding students in their research projects and helping them navigate the world of theoretical physics and computational modeling.

Awards and Honors 🏆

Dr. Zriouel has been recognized for her academic excellence with several prestigious awards. Notable honors include being awarded Full Membership of the Organization for Women in Science for the Developing World (OWSD) in 2020, and receiving the Award of Excellence from the National Center of Scientific Research of Morocco in 2014. In addition, she was the Valedictorian of both her Engineering program and her Physics graduate program. These accolades underline her exceptional academic achievements and her dedication to the advancement of science.

Legacy and Future Contributions 🔮

Dr. Zriouel’s legacy lies not only in her groundbreaking research but also in the impact she has had on the next generation of scientists. She has inspired and mentored numerous students, guiding them toward their own successful academic and research careers. Her contributions to the field of nanomaterials and quantum physics are set to influence future developments in green energy, quantum computing, and material science.

Publications Top Notes

In-depth study of double perovskite Sr₂NiTaO₆: Structural, electronic, thermoelectric, and spintronic properties for sustainable and high-performance applications

  • Authors: JU Ahsan, MR Rather, K Sultan, S Zriouel, E Hlil
    Journal: Computational Condensed Matter
    Year: 2025

Investigating thermodynamic and magnetic behavior of graphullerene-like nanostructure using Monte Carlo techniques

  • Authors: S Zriouel, A Mhirech, B Kabouchi, L Bahmad, Z Fadil, FM Husain
    Journal: Philosophical Magazine
    Year: 2025

Magnetic properties and magnetocaloric effects of the graphullerene-like 4-(Mg₄C) nanostructure: A Monte Carlo study

  • Authors: N Saber, S Zriouel, A Mhirech, B Kabouchi, L Bahmad, Z Fadil
    Journal: Modern Physics Letters B
    Year: 2024

Phase transitions and critical dielectric phenomena of janus transition metal oxides

  • Authors: S Zriouel
    Journal: Materials Science and Engineering: B
    Year: 2021

Effect of p–d hybridization on half metallic properties of some diluted II–IV–V₂ chalcopyrites for spintronic applications

  • Authors: S Zriouel, B Taychour, B Drissi
    Journal: Physica Scripta
    Year: 2020

 

 

Muhammad Danish Sultan | High energy physics | Best Researcher Award

Mr. Muhammad Danish Sultan | High energy physics | Best Researcher Award

Visiting Lecturer at Emerson University | Pakistan

Muhammad Danish Sultan is an emerging researcher and educator specializing in the field of Black Hole Physics. He is currently a Visiting Lecturer at Emerson University in Multan, Pakistan, where he shares his knowledge and expertise with aspiring students. His academic journey has been marked by deep theoretical exploration into the nature of black holes, particularly focusing on their thermodynamics, Hawking evaporation, acceleration processes, and shadow images. Sultan’s research is known for its innovative approach, leading to numerous published works in high-impact journals.

👨‍🎓Profile

Scopus

Early Academic Pursuits 🎓

Sultan’s academic foundation was laid during his BS in Physics at Govt. College University Faisalabad, where he developed a strong understanding of core physics principles. He further enhanced his academic depth with a Master’s degree (MS) in Black Holes Physics from Riphah International University, where his specialization included complex phenomena like Hawking radiation and black hole accretion. Sultan also pursued an MA in Education to bridge his passion for science with teaching methodology, solidifying his commitment to both research and education.

Professional Endeavors 📚

Sultan’s professional trajectory reflects a profound commitment to education and research. He began his teaching career as a Physics Teacher at Ravi College in Mian Channu (2021-2022), where he imparted knowledge on fundamental physics concepts. In his current role as a Visiting Lecturer at Emerson University Multan, he is recognized for his ability to make complex topics in theoretical physics accessible and engaging for students. His focus on innovative teaching methods enhances students’ learning experiences, positioning him as a dynamic figure in the academic community.

Contributions and Research Focus 🔬

Sultan’s research contributions in black hole physics have been extensive and groundbreaking. He has co-authored numerous papers on subjects like the Hawking evaporation of black holes, thermodynamics of black holes, and greybody factors. His research on Kerr-Newman-Kasuya black holes and Charged Ads black holes has been instrumental in broadening the understanding of phase transitions, stability analysis, and the impact of modified gravity on black holes. His focus is primarily on understanding advanced theoretical phenomena in black hole physics, contributing valuable insights into how gravity theories affect accretion disks, quasinormal modes, and shadow images of black holes.

Impact and Influence 🌍

Sultan’s research publications have made a significant impact in the field of astrophysics, especially within high-energy astrophysics. With contributions to journals such as Physica Scripta, Nuclear Physics B, and High Energy Astrophysics, his work is cited by many in the theoretical physics community. Sultan’s studies on the optical aspects of black holes, along with the dynamic stability of charged dilatonic black holes, reflect his deep understanding and innovative approach to black hole dynamics. His work influences not only theoretical physics but also astronomical observations in terms of black hole imaging and radiation.

Academic Citations 📑

Sultan’s work has already garnered attention in the scientific community, with multiple papers published in high-impact journals and several others under submission. His publications on topics like Hawking Evaporation, Accretion Disk Dynamics, and Greybody Factors are frequently cited by researchers in the fields of general relativity and cosmology. His comprehensive studies on the thermodynamic geometry of black holes have become an essential reference for anyone working in the domain of astrophysical research.

Research Skills 🧑‍🔬

Sultan is well-versed in utilizing advanced computational tools for his research, including Mathematica, Maple, and WinEdt. His proficiency in these tools has enabled him to perform complex calculations, simulations, and data analysis, which are crucial for modeling phenomena such as black hole accretion and shadow images. His ability to engage with complex theories and translate them into computational results further strengthens his research.

Teaching Experience 📚

In addition to his research, Sultan’s teaching career has played a vital role in shaping his professional journey. He has taught undergraduate and postgraduate students at Emerson University and Ravi College, focusing on general physics, theoretical physics, and astrophysics. His teaching philosophy is centered on promoting active learning and fostering critical thinking in students. Sultan’s commitment to pedagogical development is evident through his participation in various workshops, such as Classroom Management and Computational Tools in Research.

Awards and Honors 🏅

Throughout his academic career, Sultan has been recognized for his outstanding contributions to both teaching and research. He has received Certificates of Appreciation for his participation in several prestigious workshops, including those on Nanotechnology Innovations, Classroom Management, and Computational Research Tools. These accolades reflect his dedication to enhancing both his research skills and his teaching effectiveness.

Legacy and Future Contributions 🔮

Muhammad Danish Sultan’s career is marked by his growing influence in the realm of black hole physics and astrophysics. With a solid foundation in both theoretical research and education, Sultan is poised to leave a lasting legacy in the scientific community. His future contributions are likely to push the boundaries of gravitational physics, and his work in emerging gravity theories could lead to new theoretical models and observational technologies in astrophysics. His dedication to research, teaching, and professional development ensures that he will continue to have a significant impact in the academic world, influencing both future researchers and students.

Publications Top Notes

Analysis of Hawking evaporation, shadows, and thermodynamic geometry of black holes within the Einstein SU(N) non-linear sigma model

  • Authors: Shahid Chaudhary, Muhammad Danish Sultan, Asifa Ashraf, Awatef Abidi, Ali M. Mubaraki
    Journal: Journal of High Energy Astrophysics
    Year: 2025

Effect of Modified Gravity in the Hawking Evaporation of Charged Ads Black Hole

  • Authors: Shahid Chaudhary, Muhammad Danish Sultan et al.
    Journal: Physica Scripta
    Year: 2023

Images and stability of black hole with cloud of strings and quintessence in EGUP framework

  • Authors: Shahid Chaudhary, Muhammad Danish Sultan et al.
    Journal: Nuclear Physics B
    Year: 2024

Optical Aspects of Born-Infeld BTZ Black Holes in Massive Gravity

  • Authors: Muhammad Danish Sultan, Shahid Chaudhary et al.
    Journal: Physica Scripta
    Year: 2024

Greybody Factor and Accretion Disk Around Regular Black Holes in Verlinde Emergent Gravity

  • Authors: Shahid Chaudhary, Muhammad Danish Sultan et al.
    Journal: High Energy Astrophysics
    Year: 2025

Ugur Yahsi | Experimental methods | Best Researcher Award

Prof. Ugur Yahsi | Experimental methods | Best Researcher Award

Head of the General Physics Department | Marmara University | Turkey

Prof. Dr. Uğur Yahşi is a Full Professor in the Physics Department at Marmara University, Istanbul, Turkey. With an academic background spanning Physics at institutions such as Istanbul University (BSc), University of Wisconsin (MSc), and Case Western Reserve University (PhD), he has made notable contributions to the scientific community in both research and education.

👨‍🎓Profile

Google scholar

Scopus

ORCID

Early Academic Pursuits 📚

Prof. Dr. Yahşi’s academic journey began with a BSc in Physics from Istanbul University in 1983. He pursued an MSc at the University of Wisconsin from 1987-1988, followed by a PhD at Case Western Reserve University, completing his studies in 1994. His early research laid the foundation for his future work in material science and applied physics.

Professional Endeavors 💼

Prof. Yahşi’s professional career has been extensive, with a continuous academic presence at Marmara University, where he has held positions from Assistant Professor to Full Professor since 1996. Additionally, he has served as a Visiting Scientist at the University of Missouri-Kansas City and contributed significantly to various administrative roles within the university, such as Senator and Director of the Institute of Pure and Applied Sciences.

Contributions and Research Focus 🔬

Prof. Dr. Yahşi’s research is at the forefront of material science, particularly in nanomaterials, macromolecular physics, and defect structures. His research spans across multiple topics, including vacancy structures, dendrimers, polymer-ion interactions, and nanometric defects in materials. He is a leading figure in applying positron annihilation spectroscopy and other advanced techniques to study the electronic properties of materials, advancing nanotechnology and material engineering.

Impact and Influence 🌍

Prof. Yahşi’s impact extends beyond his research, as he has shaped the academic environment at Marmara University. He has mentored numerous students through undergraduate, master’s, and doctoral research projects. His leadership roles have fostered growth in the Physics Department and research programs, contributing to collaborations with other institutions and research organizations globally.

Academic Cites 📑

Prof. Dr. Yahşi has been extensively cited in scientific journals for his work on positron annihilation and material defect structures. His influence can be seen in the academic advancements in polymer science, nanotechnology, and material characterization techniques. The funding from projects such as TÜBİTAK and Marmara University underscores the significance of his work in advancing scientific discovery.

Research Skills 🔧

Prof. Yahşi possesses a diverse set of research skills, including expertise in positron annihilation spectroscopy, experimental physics, and materials characterization. He is skilled in various computational tools such as Fortran, Mathematica, and MatLab, enabling him to model complex physical systems and conduct numerical simulations in support of his theoretical work.

Teaching Experience 🎓

Prof. Yahşi’s teaching spans over decades, with experience in courses ranging from Advanced Classical Mechanics to Computer Programming in Fortran. His commitment to student development is evident through his role in shaping curriculum and teaching courses in Technical English, Solid-State Physics, and Numerical Methods. He has also contributed significantly to the translation and localization of key texts in Physics, ensuring that students have access to high-quality educational resources.

Awards and Honors 🏆

Prof. Yahşi has been the recipient of numerous fellowships and awards, such as the Turkish Educational Ministry Fellowship for his graduate studies. His work has earned research grants from prominent Turkish organizations like TÜBİTAK, demonstrating his recognized contributions to scientific progress. He continues to receive support for innovative projects, including the BİDEB Mentorship Support Program and various Marmara University projects.

Legacy and Future Contributions 🌱

Prof. Dr. Uğur Yahşi’s legacy lies in his commitment to advancing physics education and research, particularly in material science and nanotechnology. His ongoing projects, such as the investigation of flash sintering in doped ZnO structures and polymer materials, are paving the way for future breakthroughs. With continued administrative roles and research leadership, Prof. Yahşi is poised to make lasting contributions to both academic knowledge and scientific innovation.

Publications Top Notes

Free volume impact on ionic conductivity of PVdF/GO/PVP solid polymer electrolytes via positron annihilation approach

  • Authors: M. Yilmazoğlu, H. Okkay, U. Abacı, C. Tav, U. Yahşi
    Journal: Radiation Physics and Chemistry, 2025

The Influence of Defects on the Structural, Optical, and Antibacterial Properties of Cr/Cu Co-Doped ZnO Nanoparticles

  • Authors: L. Arda, Z. Ra’ad, S. Veziroğlu, C. Tav, U. Yahşi
    Journal: Journal of Molecular Structure, 2025

Correlation of proton conductivity and free volume in sulfonated polyether ether ketone electrolytes: A positron annihilation lifetime spectroscopy study

  • Authors: M. Lahmuni, M. Yilmazoğlu, U. Abacı, C. Tav, U. Yahşi
    Journal: Radiation Physics and Chemistry, 2025

A novel approach for the atomic scale characterization of Li-ion battery components probed by positron annihilation lifetime spectroscopy

  • Authors: R. Bakar, S. Koç, A. Yumak Yahşi, C. Tav, U. Yahşi
    Journal: Materials Research Bulletin, 2024

Free-volume analysis of the structural and dielectric properties of PMMA/TeO2 composites via positron annihilation lifetime spectroscopy

  • Authors: S. Kuzeci, E. Özcan, A.U. Kaya, R. Bakar, C. Tav, U. Yahşi, K. Esmer
    Journal: Journal of Alloys and Compounds, 2024

 

Faustino WAHAIA | Quantum Physics | Best Researcher Award

Dr. Faustino WAHAIA | Quantum Physics | Best Researcher Award

Millennium Institte for Research in Optics (MIRO), Institute of Physics , ANID and PUC | Chile

Dr. Faustino Wahaia is a distinguished researcher and academic professional in the fields of lasers, quantum optics, and terahertz (THz) photonics. He is currently affiliated with the Institute of Physics at Pontificia Universidad Católica de Chile as part of the Millennium Institute for Research in Optics (MIRO). His research has had a significant impact in the realms of biomedical applications, nanomaterials characterization, and advanced laser technologies. Faustino’s multidisciplinary expertise integrates lasers, ultrafast systems, and photonics, contributing to both theoretical and practical advancements.

👨‍🎓Profile

Scopus

ORCID

Early Academic Pursuits 📚

Dr. Wahaia’s academic journey has been remarkable, marked by a robust educational foundation across multiple international institutions. He earned his Ph.D. in Engineering Physics from the University of Porto in Portugal, with his dissertation focusing on spectroscopic and imaging techniques using the terahertz frequency band for biomedical applications. His pursuit of knowledge began with an MSc in Physics Engineering from the University of Lisbon – IST, where he specialized in the diagnostic and control of terawatt laser systems. Faustino’s academic journey expanded further through his research at University of Sofia and the Center for Physical Sciences and Technology in Vilnius, Lithuania. His early academic pursuits laid the groundwork for his cutting-edge research in THz photonics and quantum optics.

Professional Endeavors 🏢

Throughout his career, Dr. Wahaia has held prestigious positions at various research institutes across the globe. He has contributed significantly to the Institute for Nanotechnology and Nano-Sciences in Porto, Portugal, and Center for Physical Sciences and Technology in Vilnius, Lithuania. His work has focused on developing and characterizing ultrashort pulse lasers, THz spectroscopic systems, and biomedical imaging technologies. His role in the Institute for Research and Innovation in Health (i3S) reflects his commitment to applying his scientific expertise to real-world problems in biomedical science, particularly through terahertz techniques for nanomaterials and biomedical studies.

Contributions and Research Focus 🔬

Dr. Wahaia’s research spans several cutting-edge technologies, such as ultrafast lasers, THz communications, and spectroscopic techniques like Raman spectroscopy and ellipsometry. His work in terahertz photonics for biomedical applications, hazardous residue detection, and pharmaceutical quality assessment has had substantial contributions to fields such as materials science, food safety, and security. Additionally, Faustino has delved deeply into quantum optics, advancing the understanding of laser-matter interactions, plasma physics, and spectral selection devices.

Impact and Influence 🌍

Dr. Wahaia’s work has influenced several scientific and industrial domains, notably in biomedical diagnostics, photonics-based security systems, and advanced materials research. His terahertz imaging systems and laser-based technologies have been groundbreaking in medical imaging and nanomaterials characterization. Faustino’s contributions to nanotechnology and THz photonics have significantly shaped the research landscape in these areas. Through his involvement with international organizations and his role in the Millennium Institute for Research in Optics (MIRO), his influence extends globally, positioning him as a key leader in optical and quantum sciences.

Academic Cites 📊

Dr. Wahaia’s research is widely recognized, with numerous citations in highly regarded journals, particularly in optics, quantum photonics, and terahertz science. His peer-reviewed publications in journals such as Frontiers in Physics, Sensors, and MDPI highlight the impact of his contributions to lasers and photonics technologies. Additionally, Faustino has been instrumental in editing influential books such as “Ellipsometry: Principles and Techniques for Materials Characterization” and “Quantum Electronics”, which have further solidified his standing in the scientific community.

Research Skills 💡

Dr. Wahaia possesses a broad range of highly specialized research skills, including:

  • Laser System Design: Expertise in developing terawatt lasers and related technologies.
  • Terahertz Spectroscopy: In-depth experience in terahertz wave generation, detection, and characterization.
  • Biomedical Imaging: Significant contributions to Optical Computed Tomography (OCT) and Raman spectroscopy for medical applications.
  • Materials Characterization: Pioneering work in THz photonics for the study of nanomaterials and pharmaceutical quality control.

His technical expertise spans ultrafast lasers, laser-plasma interactions, pulse amplification techniques, and fiber-coupled terahertz systems.

Teaching Experience 🎓

Dr. Wahaia has made substantial contributions to education through his roles as a doctoral adviser and master’s student mentor. He has supervised cutting-edge research in areas like atomic force microscopy and Raman spectroscopy for biomedical applications. He has taught engineering physics at the University of Maputo and radiological physics at the Higher Institute of Health Sciences of Maputo, contributing significantly to the education and development of future scientists in quantum optics and laser technologies.

Awards and Honors 🏅

Throughout his career, Faustino has been recognized with several prestigious awards and fellowships:

  • Ph.D. Fellowship in Physics Engineering focusing on lasers and quantum optics.
  • MSc Fellowship in diagnostics and wavefront control of terawatt lasers.
  • PostDoc Grant in Ultrafast Lasers and THz Photonics, contributing to biomedical and nanomaterial studies.

These honors reflect his academic excellence and his dedication to advancing the fields of optics, photonics, and terahertz science.

Legacy and Future Contributions 🔮

Dr. Faustino Wahaia’s legacy in laser and THz photonics research is set to continue shaping the future of biomedical imaging, nanomaterials research, and photonics-based technologies. As a mentor, his guidance is ensuring that the next generation of scientists will carry forward his contributions. His future work is poised to further advance applications of terahertz waves in security, agriculture, and pharmaceuticals, and to develop new solutions that address global challenges in healthcare and environmental safety.

Publications Top Notes

Optical properties of millimeter-size metal-organic framework single crystals using THz techniques

  • Authors: Faustino Wahaia, Irmantas Kašalynas, Daniil Pashnev, Gintaras Valušis, Andrzej Urbanowicz, Mindaugas Karaliunas, Dinesh Pratap Singh, Sascha Wallentowitz, Birger Seifert
    Journal: Journal of Molecular Structure
    Year: 2025

Terahertz spectroscopy and imaging for gastric cancer diagnosis

  • Authors: Faustino Wahaia, Irmantas Kašalynas, Linas Minkevičius, Catia Carvalho Silva, Andrzej Urbanowicz, Gintaras Valušis
    Journal: Journal of Spectral Imaging
    Year: 2020

Spectroscopic Terahertz Imaging at Room Temperature Employing Microbolometer Terahertz Sensors and Its Application to the Study of Carcinoma Tissues

  • Authors: Irmantas Kašalynas, Rimvydas Venckevičius, Linas Minkevičius, Aleksander Sešek, Faustino Wahaia, Vincas Tamošiūnas, Bogdan Voisiat, Dalius Seliuta, Gintaras Valušis, Andrej Švigelj, et al.
    Journal: Sensors
    Year: 2016