Emmanuel Adeyefa | Theoretical Physics | Member

Assoc Prof Dr. Emmanuel Adeyefa | Theoretical Physics | Member

PHD at University of Ilorin, Nigeria

Dr. Emmanuel Oluseye Adeyefa is a distinguished mathematician and academic leader from Nigeria. With a Ph.D. in Mathematics from the University of Ilorin, he currently serves as a Reader at the Department of Mathematics, Federal University Oye-Ekiti. His administrative roles include acting as Head of Department and Postgraduate Coordinator. With a passion for teaching, he has instructed various courses and supervised numerous undergraduate and postgraduate projects. A committed scholar, he actively participates in conferences and workshops, contributing to advancements in mathematics and cryptography. Beyond academia, he engages in community service and enjoys activities such as reading, football, and music.

Professional Profiles:

Education

Ph.D. in Mathematics, University of Ilorin, 2014 M.Sc. in Mathematics, University of Ilorin, 2007 B.Sc. in Mathematics, University of Ilorin, 2003 PGD in Education, Obafemi Awolowo University, 2014

Administrative Experience

Acting Head, Department of Mathematics Postgraduate Coordinator University Examination Committee Member Level Adviser/Coordinator Departmental Seminar Coordinator Staff Secretary Various Committee Memberships and Chairmanships. Federal University Wukari, Taraba State Oduduwa University, Osun State Southern Institute of Innovative Technology (SNIIT Polytechnic), Osun State

Teaching Experience

Various courses in Mathematics including Linear Algebra, Mathematical Packages, Vector and Tensor Analysis, Real Analysis, Mathematical Methods, Analytical Dynamics, Fluid Dynamics, and Numerical Analysis.

Awards

Recipient of various awards including Departmental Best Graduating Student and Best Lecturer of the year.

Research Focus:

Dr. Emmanuel Oluseye Adeyefa’s research focus primarily revolves around the development and application of advanced numerical methods for solving various classes of ordinary and partial differential equations. His work spans topics such as direct integration methods, orthogonal basis function formulations, hybrid block methods, and collocation approaches. Additionally, he explores the use of polynomial and orthogonal basis functions, particularly Chebyshev polynomials, in continuous formulations of numerical solvers. Adeyefa’s contributions bridge mathematical theory with practical applications, showcasing his expertise in computational mathematics and algorithm development, with potential applications in cryptography and queueing systems.

Publications

  1. Error estimation of the integral tau method for fourth order overdetermined ODES, Publication: 2023.
  2. Integral tau Method for Certain Over-determined Fourth-Order Ordinary Differential Equations., Publication: 2023.
  3. A Generalized Series Solution of š¯’¸š¯’•š¯’‰ Order Ordinary Differential Equations, Publication: 2023.
  4. Improved 2-Point Hybrid Block Model for Direct Integration of Third and Fourth-Order Initial Value Problems, Publication: 2023.
  5. Algebraic characterization of Ifa main divination codes, Publication: 2023.
  6. Ninth-order Multistep Collocation Formulas for Solving Models of PDEs Arising in Fluid Dynamics: Design and Implementation Strategies, Publication: 2023.
  7. Hybrid block methods with constructed orthogonal basis for solution of third-order ordinary differential equations, Publication: 2023.
  8. A continuous five-step implicit block unification method for numerical solution of second-order elliptic partial differential equations,Ā Publication: 2023.
  9. Implicit hybrid block methods for solving second, third and fourth orders ordinary differential equations directly, Publication: 2022.
  10. New developed numerical formula for solution of first and higher order ordinary differential equations, Publication: 2022.
.

Seyyed Abdollahi | High energy physics | Member

Mr. Seyyed Abdollahi | High energy physics | Member

Scholarship at Tabriz University, Iran

I was B.Sc. Student in Mechanical Engineering at Tabriz University and I was among the top 5%, I also received a full scholarship from Tabriz University for the master’s degree, and now I am a master’s student in energy conversion trend at Tabriz University. I was also a Teacher assistant in the Strength of Materials and Design of Machine Elements courses, and I have been working with Dr. Seyyed Faramarz Ranjbar and Dr. Farid Vakili Tahami for 1 year. I am also interested in researching the topics of Power Plants, Thermodynamics, Fluid mechanics, Air conditioning, Energy and Solar energy. Which led to the writing three books I am also interested in working and researching on these topics in the future: 1-Renewable Energy 2-Exergy Analysis 3-Piezoelectric Micropumps 4-Photovoltaics(PV) 5-Nanofluids 6-Energy Analysis 7-Fuel Cells 8-Analysis of Wind Turbin

Professional Profiles:

Education

Master of Mechanical Engineering Branch: Energy Conversion Institute/University: Tabriz University Tabriz , East Azerbaijan, Iran 2022 – Present Bachelor of Mechanical Engineering Institute/University: Tabriz University Tabriz , East Azerbaijan, Iran 2018 – 2022 GPA : 17.90(out of 20)

Work Experience

Internship Tabeiz Thermal Power Station Tabriz , East Azerbaijan, Iran July 2021 – August 2021 Tasks and Achievements Teacher Assistant in the Design of Machine Elements course Tabriz University Tabriz , East Azerbaijan, Iran September 2021 – Present Tasks and Achievements Teacher Assistant in the Power Plants course Tabriz University Tabriz , East Azerbaijan, Iran September 2022 – January 2023 Email: s.a_abdollahi@yahoo.com Mobile: (+98)9380596289 Website: www.linkedin.com/in/seyyed-amirrezaabdollahi-powerplants-renewableenergy Address: Tabriz , East Azerbaijan, Iran DoB: 1998-09-24 Marital Status: Single Military Service: Educational Exemption Seyyed Amirreza Abdollahi Mechanical Engineering Profile Summary Education Work Experience I went to the Tabriz Thermal Power Plant for a training course. There i observed the things that i studied theoretically in the Thermodynamics course. I visited the important parts ofthe power plant such as ControlRoom, Steam Turbines, Boilers, Cooling Towers and the Chemical Department . Results of my research led me to write a book called “Tabriz Thermal Power Plant” As a teacher’s assistant, I solved additional exercises forthe students and supervised their

Research Focus:

The research focus of SA Abdollahi spans across various fields, primarily centered around computational fluid dynamics (CFD), heat transfer, nanofluids, porous media techniques, and numerical analysis. Their work encompasses simulations of heat transfer and fluid flow in microchannel heat sinks, investigation of blood hemodynamics in aneurysms, optimization of chemical processes, and modeling the separation capabilities of membranes. Additionally, they explore topics such as magnetohydrodynamics, biomaterial phase equilibria, and the application of machine learning techniques in estimating biomass properties. Abdollahi’s research demonstrates a broad interest in advancing understanding and optimization across diverse engineering and scientific domains.

Publications

  1. Computer simulation of Cu: AlOOH/water in a microchannel heat sink using a porous media technique and solved by numerical analysis AGM and FEM, cited by: 37, Publication: 2023.
  2. Investigating heat transfer and fluid flow betwixt parallel surfaces under the influence of hybrid nanofluid suction and injection with numerical analytical technique, cited by: 29, Publication: 2023.
  3. Computational study of blood hemodynamic in ICA aneurysm with coiling embolism, cited by: 18, Publication: 2023.
  4. Numerical study of heat transfer of wavy channel supercritical CO2 PCHE with various channel geometries, cited by: 11, Publication: 2023.
  5. Influence of extruded injector nozzle on fuel mixing and mass diffusion of multi fuel jets in the supersonic cross flow: computational study, cited by: 9, Publication: 2023.
  6. Removal of ciprofloxacin and cephalexin antibiotics in water environment by magnetic graphene oxide nanocomposites; optimization using response surface methodology, cited by: 7, Publication: 2023.
  7. Optimizing the amount of concentration and temperature of substances undergoing chemical reaction using response surface methodology, cited by: 7, Publication: 2023
  8. Phase Equilibria Simulation of Biomaterial-Hydrogen Binary Systems Using a Simple Empirical Correlation,Ā cited by: 6, Publication: 2023
  9. Modeling the CO2Ā separation capability of poly(4-methyl-1-pentane) membrane modified with different nanoparticles by artificial neural networks,Ā Ā cited by: 5, Publication: 2023
  10. Applying feature selection and machine learning techniques to estimate the biomass higher heating value,Ā cited by: 3, Publication: 2023
.

Sobia Sadiq | Astrophysics | Member

Assist Prof Dr. Sobia Sadiq | Astrophysics | Member

PHD at the University of the Punjab, Pakistan

Dr. Sobia Sadiq is an Assistant Professor at the University of Education, Lahore, Pakistan. She holds a Ph.D. in General Relativity (2019) and an M.Phil. in Applied Mathematics (2015) from the University of the Punjab. With a keen interest in Cosmology and Relativistic Astrophysics, she has presented her research at international conferences and seminars. Dr. Sadiq’s academic journey includes notable achievements such as receiving the HEC Indigenous Ph.D. Fellowship and organizing academic events. Her commitment to teaching and research underscores her dedication to advancing the field of Mathematics and Physics.

Professional Profiles:

Education

Feb. 2019 Ph.D. in General Relativity Thesis: Study of Physical Characteristics of Stellar Configurations Supervisor: Prof. Dr. Muhammad Sharif, Dean, Faculty of Science, University of the Punjab, Lahore 4.00 CGPA (Course Work) 4.00 CGPA (Comprehensive) University of the Punjab, Lahore Aug. 2015 M.Phil. in Applied Mathematics Thesis: Conformally Flat Anisotropic Polytropes Supervisor: Prof. Dr. Muhammad Sharif, Dean, Faculty of Science, University of the Punjab, Lahore 3.80 CGPA University of the Punjab, Lahore Jul. 2013 BS Mathematics 3.91 CGPA University of the Punjab, Lahore

Administrative Experience

Organizer, One Day Conference on Gravitation and Cosmology, Department of Mathematics, University of the Punjab, Lahore (2016). Organizer, PU 1st International Conference on Gravitation and Cosmology, Department of Mathematics, University of the Punjab, Lahore (2019). TEACHING EXPERIENCE Visiting Assistant Professor at Department of Mathematics, University of Education, Jauharabad Campus from November 04, 2019 to March 04, 2020. Assistant Professor (TTS) at Department of Mathematics, University of Education, Bank Road Campus, Lahore from December 01, 2021 to to-date.

Awards Scholarships and Honors

3 rd position in Intermediate with merit certificates and prizes awarded by BISE Sargodha and government of the Punjab, Pakistan. Merit Scholarship awarded by Punjab University during BS and M.Phil. 3 rd position in BS Mathematics. HEC Indigenous Ph.D. Fellowship for 5000 Scholars, Phase-II, Batch-III.

Research Interest

Cosmology, Electromagnetic Field Theory, Geometry, Special and General Relativity, Relativistic Astrophysics Mathematical Techniques.

Research Focus:

Dr. Sobia Sadiq’s research focuses on theoretical physics, specifically in the areas of gravitational decoupled solutions, anisotropic geometries, and electromagnetic effects on polytropes. Her work, often in collaboration with Prof. M. Sharif, has contributed significantly to understanding the behavior of charged and anisotropic systems, such as cylindrical and spherical configurations. Additionally, she has explored the thermodynamics of charged black holes and studied tidal effects in regular black holes. Dr. Sadiq’s research addresses fundamental questions in cosmology and astrophysics, shedding light on the intricate dynamics of gravitational and electromagnetic fields within diverse geometric settings.

Publications

  1. Thermodynamics of Charged Black Hole in Symmetric Teleparallel Gravity, cited by: 17, Publication: 2023.
  2. A comparative study of new generic wormhole models with stability analysis via thin-shell, cited by: 11, Publication: 2022.
  3. Charged anisotropic gravitational decoupled strange stars via complexity factor, cited by: 3, Publication: 2022.
  4. Anisotropic stellar solutions in torsion-trace gravity under Karmarkar condition, cited by: 3, Publication: 2022.
  5. Criticality and phase transition of Kerrā€“anti-de Sitter black hole with quintessence and cloud of strings, cited by: 2, Publication: 2023.
  6. Study of Cylindrical Polytropes with Cosmological Constant, cited by: 1, Publication: 2019.
  7. 2+ 1-dimensional gravitational decoupled anisotropic solutions, cited by: 15, Publication: 2019.
  8. Study of gravitational decoupled anisotropic solution, cited by: 6, Publication: 2019.
  9. Study of conformally flat polytropes with tilted congruence, cited by: 5, Publication: 2018.
  10. Stable anisotropic dissipative quark star with tilted observer, cited by: 2, Publication: 2018.
.

Rabia Saleem | General Relativity | Member

Assist Prof Dr. Rabia Saleem | General Relativity | Member

PHD at University of the Punjab, Pakistan

Dr. Rabia Saleem, an esteemed HEC Approved Ph.D. Supervisor, is a prominent figure in mathematics, specializing in General Relativity. With 59 research papers in ISI impact factor journals and supervision of 17 MS students, her contributions are substantial. She has taught 50 courses at COMSATS University Islamabad, Lahore Campus. Rabia completed her Ph.D. in General Relativity from the University of the Punjab, Lahore, and has received numerous accolades, including the Indigenous Ph.D. Fellowship and a Research Productivity Award. Her administrative roles include organizing international conferences and serving on committees. Rabia’s expertise and leadership make her a vital asset to the academic community.

Professional Profiles:

Education

Ph.D. in General Relativity (2012-2015) University: University of the Punjab, Lahore Supervisor: Prof. Dr. Muhammad Sharif Thesis Title: “Some Inflationary and Cosmic Issues in General Relativity”

Awards, Scholarships, and Honors:

Indigenous Ph.D. Fellowship, Higher Education Commission, Pakistan (2012-2015) Research Productivity Award (2015-2017) Travel grant from PHEC to attend V Italian-Pakistani Workshop on Relativistic Astrophysics, MXP, Italy (2016) Selected as a Young TWAS Affiliate from Pakistan (2021)

Practical Exposure

Assistant Professor, Department of Mathematics, Govt. College University, Lahore (Jan. 2016 to Jan. 2017) Assistant Professor, Department of Mathematics, COMSATS University Islamabad, Lahore Campus (Feb. 2017 to Present)

Administrative and Social Experience

Organizer of International Conference on Relativistic Astrophysics, 2015 Member of Admission Committee in COMSATS University Islamabad, Lahore Campus (2017-Present) Organizer of 2nd International Conference on Recent Advances in Applied Mathematics, COMSATS University Islamabad, Lahore Campus (2019) Member of Lindau Alumni Network (2019) Lindau Alumni Peer Reviewer (2020) Member of International Research Conference Committee (2021)

Research Focus:

The research focus of R. Saleem appears to be primarily centered around various aspects of theoretical cosmology and gravitational physics. Their work encompasses topics such as warm inflationary universe models, exact wormhole solutions, compact stars, dark energy models, and gravitational theories like f(T, T) gravity. They explore diverse phenomena like inflationary dynamics, cosmological gases, anisotropic models, and the effects of viscous pressure on cosmological evolution. Saleem’s research also delves into interdisciplinary areas, including electrochemical properties of nanomaterials for supercapacitors. Overall, their work contributes significantly to understanding the fundamental aspects of the universe and its evolution through theoretical frameworks and observational implications.

PublicationsĀ 

  1. Interior solutions of compact stars in f (T, T) gravity under Karmarkar condition, cited by: 24, Publication date: 2020.
  2. The optical appearance of charged four-dimensional Gaussā€“Bonnet black hole with strings cloud and non-commutative geometry surrounded by various accretions profiles,Ā cited by: 18, Publication date: 2023.
  3. Confronting the warm vector inflation in Rastall theory of gravity with Planck 2018 data,Ā cited by: 17, Publication date: 2020.
  4. Physical aspects of anisotropic compact stars in gravity with off diagonal tetrad,Ā cited by: 12, Publication date: 2021.
  5. Dynamical study of interacting Ricci dark energy model using Chevallier-Polarsky-Lindertype parametrization,Ā cited by: 9, Publication date: 2020.
  6. Anisotropic spherical solutions via EGD using isotropic Durgapalā€“Fuloria model,Ā cited by: 8, Publication date: 2021.
  7. Cosmological inflation in f (X) gravity theory,Ā cited by: 8, Publication date: 2019.
  8. Exact wormholes solutions without exotic matter inĀ Ā gravity,Ā cited by: 34, Publication date: 2019.
  9. Electromagnetic field and dark dynamical scalars for spherical systems,Ā cited by: 11, Publication date: 2019.
  10. Synthesis, characterization and electrochemical properties of Ī±-MnO2 nanowires as electrode material for supercapacitors,Ā cited by: 32, Publication date: 2018.

 

.

Sunil Kumar Maurya | The Relativity theory | Member

Assoc Prof Dr. Sunil Kumar Maurya | The Relativity theory | Member

PHD at IIT Roorkee, India

Dr. Sunil Kumar Maurya is an Associate Professor and Assistant Dean for Graduate Studies and Research at the University of Nizwa, Oman. With a Ph.D. in Mathematics from IIT Roorkee, India, his expertise lies in Differential Equations, Mathematical Physics, and General Relativity. He has taught a wide range of courses and supervised numerous graduation projects and international Ph.D. students. Dr. Maurya has presented and attended conferences globally, contributing significantly to research in cosmology, astrophysics, and modified gravity theories. With over 3955 Google Scholar citations, he continues to advance the field through extensive publications and funded research projects.

Professional Profiles:

Academic Qualifications

Ph.D. in Mathematics, IIT Roorkee ā€“ India, March 2013 M.Sc. in Mathematics, BHU ā€“ India, 2008 B.Sc. in Mathematics and Physics, Lucknow University ā€“ India, June 2006

Position/Designation: Assistant Dean for Graduate Studies and Research, and Associate Professor Department: Department of Mathematical and Physical Sciences College: Arts and Sciences University: University of Nizwa, Sultanate of Oman

Research interests:

Differential Equations, Similarity Transformations Method, Exact Solutions of Einsteinā€™s Field Equations, Mathematical Physics, Applied Mathematics, General Relativity and Cosmology, Modelling of Compact Stars, Astronomy and Astrophysics, Wormholes, Modified Theory of Gravity, Gravitational Decoupling.

Research Projects

Title: The Astrophysical and Cosmological Implications: From Dark Energy to Modified Theory of Gravity Application Date: December 2019 Amount: 19,504 USD Status: Completed in September 2022 as a Principal Investigator

Research Focus:

Dr. Sunil Kumar Maurya’s research primarily focuses on theoretical astrophysics and general relativity, with a specific emphasis on anisotropic models for compact stars. Through various publications in reputable journals like The European Physical Journal C and Physical Review D, he has extensively explored the properties and behaviors of anisotropic compact objects, investigating their structural characteristics and gravitational effects. Dr. Maurya’s work delves into the intricate interplay between matter and geometry within these compact stellar systems, contributing significantly to our understanding of relativistic astrophysics and providing insights into the fundamental nature of compact stars.

PublicationsĀ 

  1. Anisotropic models for compact stars, cited by: 162, Publication date: 2015.
  2. Study of anisotropic strange stars inĀ Ā gravity: An embedding approach under the simplest linear functional of the matter-geometry coupling, cited by: 156, Publication date: 2019.
  3. Generalised model for anisotropic compact stars,Ā cited by: 145, Publication date: 2016.
  4. A new exact anisotropic solution of embedding class one, cited by: 139, Publication date: 2016.
  5. Anisotropic compact stars in the Buchdahl model: A comprehensive study, cited by: 133, Publication date: 2019.
  6. Charged anisotropic compact star in f (R, T) gravity: A minimal geometric deformation gravitational decoupling approach, cited by: 126, Publication date: 2020.
  7. Generalized relativistic anisotropic compact star models by gravitational decoupling, cited by: 117, Publication date: 2019.
  8. Class I approach as MGD generator,Ā cited by: 102, Publication date: 2020.
  9. Gravitational decoupling minimal geometric deformation model in modified f (R, T) gravity theory, cited by: 97, Publication date: 2020.
  10. Anisotropic relativistic fluid spheres: an embedding class I approach, cited by: 82, Publication date: 2019.

 

 

 

.

Gravitational Waves

 

Introduction to Gravitational Waves:

Gravitational waves are ripples in the fabric of spacetime, a phenomenon predicted by Albert Einstein's theory of general relativity in 1915. These waves are produced by the acceleration of massive objects, such as merging black holes or neutron stars, and they travel at the speed of light, carrying with them information about the violent cosmic events that created them.

Gravitational Wave Detectors:

Explore the technology and techniques behind the construction and operation of gravitational wave detectors like LIGO (Laser Interferometer Gravitational-Wave Observatory) and Virgo, which are crucial for capturing these elusive waves.

Astrophysical Sources of Gravitational Waves:

Investigate the various astrophysical events that can produce gravitational waves, including binary black hole mergers, neutron star mergers, supernovae, and cosmic inflation, and their implications for our understanding of the cosmos.

Data Analysis and Signal Processing:

Delve into the sophisticated data analysis and signal processing methods used to detect and analyze gravitational wave signals, separating them from background noise and extracting information about the sources.

Cosmology and Gravitational Waves:

Focus on the role of gravitational waves in cosmology, including their potential to reveal information about the early universe, the cosmic microwave background, and the nature of dark matter and dark energy.

Gravitational Wave Astrophysics:

Examine the interdisciplinary field of gravitational wave astrophysics, which combines data from gravitational wave detectors with observations from traditional telescopes to gain deeper insights into astrophysical phenomena and the nature of gravity.

 

  Introduction of Chiral spinors and helicity amplitudes Chiral spinors and helicity amplitudes are fundamental concepts in the realm of quantum field theory and particle physicsĀ  Ā  They play a
  Introduction to Chiral Symmetry Breaking: Chiral symmetry breaking is a pivotal phenomenon in the realm of theoretical physics, particularly within the framework of quantum chromodynamics (QCD) and the study
  Introduction to Effective Field Theory and Renormalization: Effective field theory (EFT) and renormalization are foundational concepts in theoretical physics, particularly in the realm of quantum field theory. They provide
  Introduction to Experimental Methods: Experimental methods are the backbone of scientific investigation, enabling researchers to empirically explore and validate hypotheses, theories, and concepts. These techniques encompass a wide array
  Introduction to Free Particle Wave Equations: Free particle wave equations are fundamental concepts in quantum mechanics, describing the behavior of particles that are not subject to external forces. These
  Introduction to High Energy Physics: High-energy physics, also known as particle physics, is a branch of science dedicated to the study of the most fundamental building blocks of the
  Introduction to Interactions and Fields: Interactions and fields form the foundation of modern physics, providing the framework for understanding how particles and objects interact with one another and the
  Introduction to Invariance Principles and Conservation Laws: Invariance principles and conservation laws are fundamental concepts in physics that play a pivotal role in understanding the behavior of the physical
  Introduction to Lepton and Quark Scattering and Conservation Laws: Lepton and quark scattering processes are fundamental phenomena in particle physics, allowing us to probe the structure and interactions of
  Introduction to Particle Physics and Cosmology: Particle physics and cosmology are two closely intertwined fields of scientific inquiry that seek to unravel the mysteries of the universe at both