Ujjal Kumar Dey | Particle physics and cosmology | Best Researcher Award

Dr. Ujjal Kumar Dey | Particle physics and cosmology | Best Researcher Award

Assistant Professor at IISER Berhampur | India

Dr. Ujjal Kumar Dey is an Assistant Professor at IISER Berhampur, Odisha, India, specializing in High Energy Physics with a focus on Beyond the Standard Model (BSM) Physics, Neutrino Physics, Dark Matter, Gravitational Waves, and the Particle Physics interface. With an extensive academic background in theoretical physics, he has made significant strides in the areas of gravitational wave astronomy and neutrino physics. His research is deeply rooted in fundamental questions regarding the universe’s unseen components, such as dark matter and cosmic neutrinos.

👨‍🎓Profile

Google scholar

Scopus

ORCID

📚 Early Academic Pursuits

Dr. Dey’s academic journey began with his Integrated M.Sc.-Ph.D. in Physics at Harish-Chandra Research Institute (2008-2014), where he specialized in Minimal and Non-minimal Universal Extra Dimensions under the supervision of renowned physicists Amitava Raychaudhuri and Biswarup Mukhopadhyaya. His thesis, “Some Studies on Minimal and Non-minimal Universal Extra Dimension”, focused on extra-dimensional theories, setting the stage for his research into higher-dimensional models and their implications in particle physics. His strong academic performance has been evident throughout, achieving first class honors in both his M.Sc. and B.Sc. degrees.

Professional Endeavors 🏫

Since 2019, Ujjal Kumar Dey has served as an Assistant Professor at IISER Berhampur, where he continues to explore the frontiers of High Energy Physics. Prior to this, he gained invaluable experience through Post-Doctoral Fellowships at esteemed institutions across South Korea, Taiwan, and India. He has made substantial contributions to neutrino physics, dark matter studies, and gravitational wave research. His collaborations with international researchers have significantly expanded his research network and elevated his profile in the global scientific community.

Contributions and Research Focus🔬

Ujjal’s research focuses on understanding phenomena beyond the Standard Model, particularly Minimal and Non-minimal Universal Extra Dimensions, dark matter, and gravitational waves. He is also involved in neutrino physics and superradiance. Ujjal has authored numerous publications, including works on ultra-light bosons, primordial black holes, and cosmic neutrino backgrounds. His work bridges astrophysics and particle physics, with implications for understanding the early universe and cosmic evolution.

Impact and Influence 🌍

Ujjal Kumar Dey’s work is widely recognized for its impact on theoretical physics. His contributions to the understanding of light dark matter, quark mixing, and extra dimensions have advanced the global discourse in High Energy Physics. Through international collaborations and speaking engagements at leading conferences like WHEPP and SUSY, Ujjal has influenced the direction of research in BSM physics. His work on gravitational waves and primordial black holes has also opened new avenues for astrophysical research.

Academic Citations & Research Skills 📑

Ujjal Kumar Dey’s academic output has been cited in leading physics journals, including Physics Letters B, Physical Review Letters, and Nuclear Physics B. His research is highly regarded in the areas of neutrino physics and dark matter. His expertise in theoretical analysis, computational techniques, and data interpretation makes him a sought-after collaborator and reviewer. He has contributed significantly to peer-reviewed publications and is known for his rigorous approach to complex theoretical problems.

Teaching Experience 🎓

Ujjal Kumar Dey is an accomplished educator. He teaches graduate-level courses at IISER Berhampur in subjects like Quantum Mechanics, Statistical Mechanics, General Relativity, and Quantum Field Theory. His ability to simplify advanced topics and foster critical thinking among students has earned him recognition both within IISER Berhampur and at international platforms. In 2024, he taught Advanced Quantum Mechanics at the Arab Physical Society Summer School in Cairo, Egypt. His mentorship extends to PhD students, post-doctoral researchers, and MS thesis students, providing them with the guidance to excel in theoretical physics.

Awards and Honors 🏆

Ujjal’s contributions to science have been recognized through several prestigious awards:

  • Core Research Grant (CRG) from SERB, Government of India (2024)

  • Start-up Research Grant (SRG) from SERB, Government of India (2020)

  • Marie Sklodowska-Curie Actions Seal of Excellence (2017)

  • National Post-Doctoral Fellowship (NPDF) (2016)
    He has also been recognized for his reviewing contributions in journals such as Physics Letters B, where he received a Certificate of Outstanding Contribution in Reviewing (2017).

Legacy and Future Contributions 🔮

Ujjal Kumar Dey’s legacy in the field of High Energy Physics is still evolving. With ongoing research in gravitational waves, dark matter, and neutrino physics, he is poised to make significant contributions to the understanding of the universe’s most fundamental questions. His future work will likely lead to new insights in gravitational wave detection, dark matter particle candidates, and early universe cosmology. Ujjal’s dedication to teaching and mentoring will continue to inspire the next generation of physicists. His influence will grow as he plays an integral role in shaping high-energy physics in the coming years.

Publications Top Notes

Primordial Black Holes and Gravitational Waves in the U(1)B−L extended inert doublet model: a first-order phase transition perspective
  • Authors: Indra Kumar Banerjee, Ujjal Kumar Dey, Shaaban S. Khalil

  • Journal: Journal of High Energy Physics

  • Year: 2024

Spinning primordial black holes from first order phase transition
  • Authors: Indra Kumar Banerjee, Ujjal Kumar Dey

  • Journal: Journal of High Energy Physics

  • Year: 2024

Gravitational wave probe of primordial black hole origin via superradiance
  • Authors: Indra Kumar Banerjee, Ujjal Kumar Dey

  • Journal: JCAP

  • Year: 2024

Probing the origin of primordial black holes through novel gravitational wave spectrum
  • Authors: Indra Kumar Banerjee, Ujjal Kumar Dey

  • Journal: JCAP

  • Year: 2023

Neutrino decoherence from generalised uncertainty
  • Authors: Indra Kumar Banerjee, Ujjal Kumar Dey

  • Journal: European Physical Journal C

  • Year: 2023

 

Beyond Standard Model

 

Introduction to Beyond Standard Model (BSM):

The Beyond Standard Model (BSM) represents an exciting frontier in particle physics, where researchers explore physics that extends beyond the framework of the Standard Model. While the Standard Model successfully describes the known particles and their interactions, it leaves several fundamental questions unanswered, including the nature of dark matter, the unification of fundamental forces, and the origin of neutrino masses. BSM theories and experiments aim to address these mysteries by proposing new particles, symmetries, and interactions.

Supersymmetry (SUSY):

Investigate supersymmetry, a BSM theory that posits a symmetry between fermions and bosons, potentially explaining dark matter, unification of forces, and resolving the hierarchy problem.

Extra Dimensions and String Theory:

Explore theories that propose the existence of extra spatial dimensions beyond the familiar three, including concepts from string theory and Kaluza-Klein theories, offering insights into gravity and the unification of forces.

Grand Unified Theories (GUTs):

Delve into grand unified theories that seek to unify the electromagnetic, weak, and strong forces into a single force, offering a deeper understanding of the fundamental interactions in the universe.

Neutrino Mass Mechanisms:

Focus on mechanisms that explain neutrino mass generation, such as the seesaw mechanism and neutrino oscillations, and their implications for the BSM and neutrino physics.

Composite Models and Technicolor:

Examine composite models and technicolor theories that propose new dynamics, involving composite particles or strong interactions, as alternatives to the Higgs mechanism for mass generation.

 

 

 

  Introduction of Chiral spinors and helicity amplitudes Chiral spinors and helicity amplitudes are fundamental concepts in the realm of quantum field theory and particle physics    They play a
  Introduction to Chiral Symmetry Breaking: Chiral symmetry breaking is a pivotal phenomenon in the realm of theoretical physics, particularly within the framework of quantum chromodynamics (QCD) and the study
  Introduction to Effective Field Theory and Renormalization: Effective field theory (EFT) and renormalization are foundational concepts in theoretical physics, particularly in the realm of quantum field theory. They provide
  Introduction to Experimental Methods: Experimental methods are the backbone of scientific investigation, enabling researchers to empirically explore and validate hypotheses, theories, and concepts. These techniques encompass a wide array
  Introduction to Free Particle Wave Equations: Free particle wave equations are fundamental concepts in quantum mechanics, describing the behavior of particles that are not subject to external forces. These
  Introduction to High Energy Physics: High-energy physics, also known as particle physics, is a branch of science dedicated to the study of the most fundamental building blocks of the
  Introduction to Interactions and Fields: Interactions and fields form the foundation of modern physics, providing the framework for understanding how particles and objects interact with one another and the
  Introduction to Invariance Principles and Conservation Laws: Invariance principles and conservation laws are fundamental concepts in physics that play a pivotal role in understanding the behavior of the physical
  Introduction to Lepton and Quark Scattering and Conservation Laws: Lepton and quark scattering processes are fundamental phenomena in particle physics, allowing us to probe the structure and interactions of
  Introduction to Particle Physics and Cosmology: Particle physics and cosmology are two closely intertwined fields of scientific inquiry that seek to unravel the mysteries of the universe at both

Beyond Standard Model

 

Introduction to Beyond Standard Model (BSM):

The Beyond Standard Model (BSM) represents an exciting frontier in particle physics, where researchers explore physics that extends beyond the framework of the Standard Model. While the Standard Model successfully describes the known particles and their interactions, it leaves several fundamental questions unanswered, including the nature of dark matter, the unification of fundamental forces, and the origin of neutrino masses. BSM theories and experiments aim to address these mysteries by proposing new particles, symmetries, and interactions.

Supersymmetry (SUSY):

Investigate supersymmetry, a BSM theory that posits a symmetry between fermions and bosons, potentially explaining dark matter, unification of forces, and resolving the hierarchy problem.

Extra Dimensions and String Theory:

Explore theories that propose the existence of extra spatial dimensions beyond the familiar three, including concepts from string theory and Kaluza-Klein theories, offering insights into gravity and the unification of forces.

Grand Unified Theories (GUTs):

Delve into grand unified theories that seek to unify the electromagnetic, weak, and strong forces into a single force, offering a deeper understanding of the fundamental interactions in the universe.

Neutrino Mass Mechanisms:

Focus on mechanisms that explain neutrino mass generation, such as the seesaw mechanism and neutrino oscillations, and their implications for the BSM and neutrino physics.

Composite Models and Technicolor:

Examine composite models and technicolor theories that propose new dynamics, involving composite particles or strong interactions, as alternatives to the Higgs mechanism for mass generation.

 

 

 

Introduction of Chiral spinors and helicity amplitudes Chiral spinors and helicity amplitudes are fundamental concepts in the realm of quantum field theory and particle physics    They play a pivotal
  Introduction to Chiral Symmetry Breaking: Chiral symmetry breaking is a pivotal phenomenon in the realm of theoretical physics, particularly within the framework of quantum chromodynamics (QCD) and the study
Introduction to Effective Field Theory and Renormalization: Effective field theory (EFT) and renormalization are foundational concepts in theoretical physics, particularly in the realm of quantum field theory. They provide a
  Introduction to Experimental Methods: Experimental methods are the backbone of scientific investigation, enabling researchers to empirically explore and validate hypotheses, theories, and concepts. These techniques encompass a wide array
  Introduction to Free Particle Wave Equations: Free particle wave equations are fundamental concepts in quantum mechanics, describing the behavior of particles that are not subject to external forces. These
  Introduction to High Energy Physics: High-energy physics, also known as particle physics, is a branch of science dedicated to the study of the most fundamental building blocks of the
  Introduction to Interactions and Fields: Interactions and fields form the foundation of modern physics, providing the framework for understanding how particles and objects interact with one another and the
  Introduction to Invariance Principles and Conservation Laws: Invariance principles and conservation laws are fundamental concepts in physics that play a pivotal role in understanding the behavior of the physical
  Introduction to Lepton and Quark Scattering and Conservation Laws: Lepton and quark scattering processes are fundamental phenomena in particle physics, allowing us to probe the structure and interactions of
  Introduction to Particle Physics and Cosmology: Particle physics and cosmology are two closely intertwined fields of scientific inquiry that seek to unravel the mysteries of the universe at both