Marilyn Bishop | Theoretical Advances | Best Researcher Award

Dr. Marilyn Bishop | Theoretical Advances | Best Researcher Award

Associate Professor at Virginia Commonwealth University | United States

Marilyn F. Bishop is a tenured Associate Professor of Physics at Virginia Commonwealth University since 1986. She earned her Ph.D. in Physics from the University of California, Irvine in 1976. With a strong foundation in mathematics and physics, she has developed a multifaceted academic career blending theoretical physics with biophysical research. Bishop’s extensive work spans decades, contributing to both scientific understanding and educational advancements, making her a respected figure in physics education and research communities.

👨‍🎓Profile

Scopus

ORCID

🎓 Early Academic Pursuits

Bishop’s academic journey began with dual Bachelor’s degrees in Physics (1971) and Mathematics (1972) from UC Irvine, followed by a Master’s (1973) and Ph.D. in Physics (1976) from the same institution. She started as a Research Assistant at UC Irvine, honing her skills in theoretical physics. Early postdoctoral work at Purdue University and a visiting scientist role at Technische Universität München reflect her deep engagement with surface physics and condensed matter topics, establishing a strong foundation for her future research and teaching career.

đź’Ľ Professional Endeavors

Since 1986, Marilyn Bishop has been a key faculty member at VCU, earning tenure in 1990. Her earlier roles include Assistant Professor at Drexel University and consulting for Purdue University’s Physics Department. She has also been a Fellow at the Center for the Study of Biological Complexity, integrating physics with biological applications. Her professional work balances academic research, collaborative projects, and consulting, emphasizing both theoretical and computational physics, alongside mentoring students and contributing to interdisciplinary scientific communities.

🔬 Contributions and Research Focus

Bishop’s research emphasizes surface polaritons, spatially dispersive materials, and light scattering phenomena, particularly relating to biophysical systems like sickle hemoglobin polymerization. She has published extensively on surface exciton polaritons, Raman scattering, and spin susceptibility in electron gases. Her interdisciplinary work bridges physics and biology, supported by NIH grants focused on computational modeling of cardiopulmonary physiology. Her innovative use of photonic band structure methods to study biological tissues, such as the eye’s cornea, marks a notable contribution to biophysics.

🌟 Impact and Influence

Marilyn Bishop’s impact is seen through her numerous publications, presentations, and invited talks at major physics conferences like the APS March Meetings. She has helped shape understanding in condensed matter physics and biophysics, fostering collaboration between physics and biological sciences. Her research has influenced studies on electron interactions, spin susceptibility, and optical properties of materials, inspiring new computational approaches. She is a mentor to students and colleagues, advancing physics education and encouraging interdisciplinary exploration.

đź“– Academic Cites

Her scholarly work has been cited widely in condensed matter physics and biophysics, particularly her studies on surface polaritons and electron gas spin susceptibility. Papers published in prestigious journals like Physical Review B and Physical Review Letters demonstrate her research rigor and relevance. Participation in workshops such as the NSF’s Materials Theory and her role in presenting at over 50 conferences have further solidified her standing in the scientific community, influencing ongoing research in theoretical and applied physics.

đź§  Research Skills

Marilyn Bishop possesses advanced skills in theoretical modeling, computational physics, and light scattering techniques. She developed Mathematica programs for physics visualization and data analysis, pioneering online homework systems in physics education. Her expertise extends to Monte Carlo simulations, photonic band structure calculations, and modeling complex biological systems. Her research methodology combines rigorous mathematical frameworks with computational tools to explore physical phenomena at both micro and macro scales, enhancing interdisciplinary research capabilities.

👩‍🏫 Teaching Experience

Bishop has a rich teaching portfolio, delivering courses from introductory physics labs to advanced graduate seminars in quantum mechanics, electromagnetism, and theoretical mechanics. She created new courses like Physics of Sound and Music and integrated Mathematica visualization tools into the curriculum. Known for developing online homework and detailed instructional materials, Bishop has mentored numerous students and collaborated with colleagues to enhance physics pedagogy at VCU, combining research insights with effective teaching strategies.

🏆 Awards and Honors

Her accolades include the Drexel University Research Scholar Award, membership in Sigma Xi, and the VCU SEED Award (2022-2023) for innovative research proposals. She also earned recognition early in her career with the First Place in the Writer’s Division of the Advertiser-Press Awards (1969). Bishop has secured multiple NIH grants supporting research and education, as well as industry funding, underscoring her research’s impact and her commitment to scientific excellence and mentorship.

đź”® Legacy and Future Contributions

Marilyn F. Bishop’s legacy lies in her interdisciplinary research bridging physics and biology, innovative teaching methods, and mentorship. Her ongoing work on sickle-cell hemoglobin structure and computational biophysics continues to push boundaries. As a tenured professor and research fellow, she is poised to influence future generations through continued scholarship, course development, and collaborative projects. Her integration of computational tools and physical theory sets a strong foundation for future scientific and educational advancements.

Publications Top Notes

Entropies of the Classical Dimer Model

  • Authors: John C. Baker, Marilyn F. Bishop, Tom McMullen
    Journal: Entropy
    Year: 2025

An α-chain modification rivals the effect of fetal hemoglobin in retarding the rate of sickle cell fiber formation

  • Authors: E.H. Worth, M.K. Fugate, K.C. Grasty, P.J. Loll, Marilyn F. Bishop, F.A. Ferrone
    Journal: Scientific Reports
    Year: 2023

Entropy of Charge Inversion in DNA including One-Loop Fluctuations

  • Authors: M.D. Sievert, Marilyn F. Bishop, Tom McMullen
    Journal: Entropy
    Year: 2023

Superlinear increase of photoluminescence with excitation intensity in Zn-doped GaN

  • Authors: M.A. Reshchikov, A.J. Olsen, Marilyn F. Bishop, Tom McMullen
    Journal: Physical Review B – Condensed Matter and Materials Physics
    Year: 2013

The Sickle-Cell Fiber Revisited

  • Authors: Marilyn F. Bishop, Frank A. Ferrone
    Journal: Biomolecules
    Year: 2023

 

 

Joseph Brizar Okaly | Theoretical Advances | Best Researcher Award

Dr. Joseph Brizar Okaly | Theoretical Advances | Best Researcher Award

Researcher at GHS Minkama | Cameroon

Dr. Okaly Joseph Brizar is a distinguished physicist, educator, and academic leader. Holding a Ph.D. in Physics from the University of Yaounde I, he currently serves as the Vice-Principal and Physics Lecturer at Government High School Minkama, under the Ministry of Secondary Education, Cameroon. His research spans biophysics, statistical physics, and nonlinear systems, earning him international recognition. Married and a father of six, Dr. Okaly balances a robust academic career with administrative duties and remains committed to scientific excellence and educational reform in Cameroon.

👨‍🎓Profile

Scopus

ORCID

🎓 Early Academic Pursuits

Dr. Okaly’s academic journey began with a Baccalaureate in Mathematics and Physics in 2000 from GHS Obala. He pursued higher education at the University of Yaounde I, obtaining a Bachelor’s (2008), Master’s (2013), and ultimately a Ph.D. in Physics (2019). His training included teacher certification programs (Grades 1 & 2) from the High Teacher Training College, equipping him with both scientific acumen and pedagogical skills. His doctoral thesis, “Base pairs opening and bubble transport in DNA systems,” laid the foundation for his research in biological and condensed matter systems.

đź’Ľ Professional Endeavors

With over 20 years of professional experience, Dr. Okaly has held diverse academic and administrative roles. He has taught Physics across secondary schools and higher institutions, including Polytech d’Obala and the University of Yaounde I. Rising through the ranks, he served as Head of Department, Level Responsible, and now as Vice-Principal at GHS Minkama. His dual roles reflect strong leadership, strategic oversight, and dedication to education management. His career exemplifies the integration of academic rigor and institutional development in Cameroon’s education sector.

🔬 Contributions and Research Focus

Dr. Okaly’s research is rooted in nonlinear dynamics, particularly in DNA systems, earthquake modeling, and long-range interactions. He has authored 12 peer-reviewed publications in respected journals like Chaos, Phys. Rev. E, and Physica A. His work on bubble transport in DNA, damped systems, and statistical modeling demonstrates a deep commitment to biophysics and molecular simulations. He has collaborated extensively with notable researchers, exploring themes such as soliton dynamics, hydrodynamic friction, and external force interactions bridging theoretical physics with real-world biological and geological systems.

🌍 Impact and Influence

Dr. Okaly’s scholarly work significantly advances the understanding of complex physical systems, particularly in biomolecular physics and earthquake wave modeling. His contributions have improved theoretical models used in medical research and environmental studies. As a senior educator and administrator, he has mentored hundreds of students, fostering a new generation of physicists in Cameroon. His influence extends beyond the classroom into national science policy through curriculum reform and educational leadership. His research has gained international recognition, shaping the discourse in condensed matter and statistical physics communities.

📚 Academic Citations

Dr. Okaly’s research has been cited in global academic literature, underscoring its relevance in nonlinear science, biophysics, and geophysics. Articles such as “Nonlinear dynamics of damped DNA systems with long-range interaction” and “Base pair opening in damped helicoidal models” are often referenced by scholars exploring molecular dynamics and DNA stability. His 2025 publication in the European Physical Journal Plus reflects continued momentum in cutting-edge research. The increasing citation rate of his work showcases his growing impact on the international physics research community.

đź§Ş Research Skills

Dr. Okaly demonstrates exceptional skill in theoretical modeling, differential equations, numerical simulations, and interdisciplinary analysis. His expertise in simulating molecular systems, such as DNA, showcases a deep understanding of long-range interaction effects and damped dynamics. He skillfully integrates mathematical physics, statistical tools, and computational methods to model complex phenomena in biological and physical systems. This blend of skills allows him to contribute to a wide range of physics applications, from molecular biology to earthquake wave propagation a true reflection of scientific versatility and innovation.

👨‍🏫 Teaching Experience

A seasoned educator, Dr. Okaly has taught Physics at various academic levels since 2004. His experience ranges from secondary schools (GHS Guéré, GHS Niga, GTHS Ngaoundéré) to higher institutions like the University of Yaounde I. His teaching combines conceptual clarity, experimental insights, and technology-integrated learning. As Vice-Principal and Department Head, he has introduced pedagogical reforms, mentored junior teachers, and led curriculum innovations. His dedication to teaching has impacted thousands of students, many of whom have pursued STEM careers, thereby contributing to national development.

🏅 Awards and Honors

While formal awards are not explicitly listed, Dr. Okaly’s appointments to leadership positions (such as Vice-Principal and Head of Department) reflect institutional recognition of his academic excellence, integrity, and professionalism. His selection to collaborative research projects with senior physicists and publication in renowned international journals is a testament to his merit and contribution to science. He remains a strong candidate for future academic awards, especially in physics research, science education, and educational leadership, with a proven record of impactful scholarship and service.

🌟 Legacy and Future Contributions

Dr. Okaly Joseph Brizar is establishing a lasting legacy through his contributions to science, education, and community leadership. He is actively shaping the next generation of Cameroonian scientists while producing cutting-edge research on DNA dynamics and earthquake modeling. Looking ahead, he aims to expand international collaborations, secure research funding, and promote scientific innovation in Africa. His long-term vision includes bridging education and research, developing science policy, and enhancing Africa’s presence in the global scientific arena. His legacy will reflect knowledge, mentorship, and visionary leadership.

Top Noted Publications

Nonlinear dynamics of damped DNA systems with long-range interaction

  • Authors: J. B. Okaly*, A. Mvogo, R. L. WoulachĂ©, T. C. KofanĂ©
    Journal: Communications in Nonlinear Science and Numerical Simulation
    Year: 2018

Semi-discrete Breather in a Helicoidal DNA Double Chain-Model

  • Authors: J. B. Okaly*, A. Mvogo, R. L. WoulachĂ©, T. C. KofanĂ©
    Journal: Wave Motion
    Year: 2018

Nonlinear dynamics of DNA systems with inhomogeneity effects

  • Authors: J. B. Okaly*, A. Mvogo, R. L. WoulachĂ©, T. C. KofanĂ©
    Journal: Chinese Journal of Physics
    Year: 2018

Base pairs opening and bubble transport in damped DNA dynamics with transport memory effects

  • Authors: J. B. Okaly*, F. II Ndzana, R. L. WoulachĂ©, C. B. Tabi, T. C. KofanĂ©
    Journal: Chaos: An Interdisciplinary Journal of Nonlinear Science
    Year: 2019

Solitary wavelike solutions in nonlinear dynamics of damped DNA systems

  • Authors: J. B. Okaly*, F. II Ndzana, R. L. WoulachĂ©, T. C. KofanĂ©
    Journal: European Journal of Physics Plus
    Year: 2019

 

Waseem Razzaq | Mathematical Physics | Member

Dr. Waseem Razzaq | Mathematical Physics | Member

PHD at COMSETS Vehari Campus, Pakistan

Waseem Razzaq, a dedicated mathematician based in Vehari, Pakistan, holds a PhD in Mathematics and specializes in applied mathematics, fractional calculus, and exact solutions of differential equations. With a strong academic background, including an MPhil and MSc in Mathematics, Razzaq has authored numerous research articles published in reputable journals. He excels in teaching and has held various positions in educational institutions. Recognized as “The Best Teacher of the Year 2011,” Razzaq is passionate about supporting humanitarian actions, enjoys sports and book reading, and actively contributes to educational resources through his YouTube channel “Math Center.”

Professional Profiles:

Education

PhD: Institution: COMSETS Vehari Campus Subject: Mathematics Session: 2022 Fall – Continue Master of Philosophy: Institution: ISP, Multan, Pakistan Subject: Mathematics Session: 2018-2020 Master of Science: Institution: BZU, Vehari campus, Pakistan Subject: Mathematics Session: 2015-017 B.Ed: Institution: AIOU Islamabad Subjects: Math, Physics Session: 2016 B.Sc: Institution: BZU, Multan, Pakistan Subjects: Math-A&B/Comp Session: 2015

Work Experience

V.Principal, Vehari Leads College Pipli Adda Vehari (Feb 2021 – Present) Lecturer (Mathematics), Aspire Groups of Colleges Machiwal campus (July 2019 – Sep 2020) Visiting Lecturer (Mathematics), The Govt. Degree College Vehari (2018) Teacher (Math & Phy), The Smart School Vehari (2016) Teacher (Mathematics), The Educator College (girls campus) Vehari (2014-2015) Teacher (Math & Phy), Allied School Vehari (2013-2014) Teacher (Mathematics), The Public School Vehari (2009-2012)

Achievement

Awarded “The Best Teacher of the Year 2011” in The Public School Vehari.

Research Interests

Applied Mathematics Fractional Calculus Exact solutions of PDEs and ODEs Optimization Numerical solutions of PDEs and ODEs

Research Focus:

Waseem Razzaq’s research focuses on the theoretical and analytical aspects of nonlinear wave equations in optical and oceanographic sciences. He specializes in deriving exact soliton solutions and wave behaviors using various mathematical techniques, including the simplest equation method and fractional calculus. Razzaq’s contributions extend to diverse fields such as nonlinear optics, ocean engineering, and modern physics, as evidenced by his publications in reputable journals. His work significantly advances our understanding of nonlinear phenomena and contributes to the development of mathematical tools for modeling complex systems in optics and oceanography.

Publications

  1. Construction of Solitons and Other Wave Solutions for Generalized Kudryashov’s Equation with Truncated M-Fractional Derivative Using Two Analytical Approaches, cited by: 1, Publication: 2024.
  2. The complex hyperbolic Schrödinger dynamical equation with a truncated M-fractional by using simplest equation method, Publication: 2024.
  3. Applications of the Simplest Equation Procedure to Some Fractional Order Differential Equations in Mathematical Physics, Publication: 2024.
  4. The kink solitary wave and numerical solutions for conformable non-linear space–time fractional differential equations, Publication: 2024.
  5. Searching the new exact wave solutions to the beta-fractional Paraxial nonlinear Schrödinger model via three different approaches, cited by: 3, Publication: 2024.
  6. New analytical wave solitons and some other wave solutions of truncated M-fractional LPD equation along parabolic law of non-linearity, cited by: 4, Publication: 2023.
  7. Solitary wave solutions of coupled nerve fibers model based on two analytical techniques, cited by: 2, Publication: 2023.
  8. Optical solitons to the beta-fractional density dependent diffusion-reaction model via three different techniques, Publication: 2023.
  9. New Three Wave and Periodic Solutions for the Nonlinear (2+ 1)-Dimensional Burgers Equations, Publication: 2023.
  10. Research Article Solitary Wave Solutions of Conformable Time Fractional Equations Using Modified Simplest Equation Method, Publication: 2022.
.