Basaad Hamza | Theoretical Advances | Editorial Board Member

Assist. Prof. Dr. Basaad Hamza | Theoretical Advances | Editorial Board Member

Mustansiriyah university | Iraq

Dr. Basaad Hadi Hamza is an Assistant Professor in Electro-Optical Physics at Mustansiriyah University, College of Sciences. With a Ph.D. in Electro-Optical Physics (2004) from Mustansiriyah University, his academic expertise spans simulation programs for electro-optical tracking systems and optical systems. His commitment to advancing the field of electro-optical physics is evident through his teaching and research contributions.

👨‍🎓Profile

Google scholar

Scopus

ORCID

Early Academic Pursuits 🎓

Dr. Basaad’s academic journey began at Mustansiriyah University, where he earned his B.Sc. in Physics (1992), followed by a M.Sc. in Nuclear Physics (1998), and eventually his Ph.D. in Electro-Optical Physics (2004). His doctoral thesis focused on the development of a simulation program for electro-optical tracking systems, laying the foundation for his career in applied physics.

Professional Endeavors 💼

Dr. Basaad has an extensive teaching background, contributing to the development of future scientists and engineers. He taught various undergraduate courses in Physics 1, Electricity and Magnetism, Thermodynamics, and Analytical Mechanics. He has also guided graduate students, particularly in specialized topics for Ph.D. comprehensive examinations. His professional affiliations include serving as the Chairman of the Diversity Committee, overseeing curriculum preparation, and leading both undergraduate and graduate examination committees.

Contributions and Research Focus 🔬

Dr. Basaad’s research focus includes polarization effects on soliton propagation, radiance calculations, and the discrimination of targets from background in infrared (IR) imagery. He is particularly interested in the development of simulation programs for transforming IR images across various bands, a significant contribution to remote sensing and infrared imaging technologies. His work also includes improving detector performance in optical spectral ranges to enhance the accuracy of images.

Impact and Influence 🌍

Dr. Basaad’s research has had a broad impact, particularly in IR imaging, target discrimination, and optical physics. His innovative work on transforming IR images from band to band, coupled with his simulation techniques, has contributed to advancements in defense technologies, remote sensing, and optical systems. His publications, including in journals like the International Journal of Application or Innovation in Engineering & Management and Mustansiriyah Journal of Science, highlight his significant role in these fields.

Research Skills 🔍

Dr. Basaad possesses strong analytical skills, particularly in the areas of simulation programming, optical imaging, and IR technology. His proficiency in simulation software and knowledge of IR wavelength bands make him a leader in image transformation techniques. His work on target discrimination using multi-channel data and threshold methods highlights his ability to solve complex problems in infrared imagery.

Teaching Experience 📘

Dr. Basaad’s teaching experience spans over two decades, during which he has taught a range of undergraduate and graduate-level physics courses. He has taught Physics 1, Electricity and Magnetism, Thermodynamics, and Analytical Mechanics, and has supervised graduate theses. His guidance on special topics for Ph.D. students and his role in preparing students for comprehensive exams demonstrates his deep commitment to academic development.

Legacy and Future Contributions 🌱

Dr. Basaad’s legacy is marked by his contributions to electro-optical physics, especially in the development of simulation techniques for infrared imaging. Looking ahead, he plans to continue advancing research in target discrimination and optical systems, with potential applications in remote sensing, security, and environmental monitoring. His ongoing mentorship of graduate students will further ensure his influence in academic research and scientific innovation.

Publications Top Notes

Green Synthesis of Silver Nanoparticles and Their Effect on the Skin Determined Using IR Thermography

  • Authors: Alaabedin Alrabab Ali Zain, Majeed Aseel Musafa Abdul, Basaad Hadi Hamza
    Journal: Kuwait Journal of Science
    Year: 2024

Infrared Imaging of Skin Cancer Cell Treated with Copper Oxide and Silver Nanoparticles

  • Authors: M.M. Mowat, M.S. Khallaf, B.H. Hamza
    Journal: Bionatura
    Year: 2023

People Identification via Tongue Print Using Fine-Tuning Deep Learning

  • Authors: A.S. Obaid, M.Y. Kamil, B.H. Hamza
    Journal: International Journal of Reconfigurable and Embedded Systems
    Year: 2023

People Recognition via Tongue Print Using Deep and Machine Learning

  • Authors: A.S. Obaid, M.Y. Kamil, B.H. Hamza
    Journal: Journal of Artificial Intelligence and Technology
    Year: 2023

Improved Detector Performance Rendering in the Optical Spectral Ranges to Provide Accurate Image

  • Authors: Basaad Hadi Hamza
    Journal: Mustansiriyah Journal of Science
    Year: 2019

 

Ugur Yahsi | Experimental methods | Best Researcher Award

Prof. Ugur Yahsi | Experimental methods | Best Researcher Award

Head of the General Physics Department | Marmara University | Turkey

Prof. Dr. Uğur Yahşi is a Full Professor in the Physics Department at Marmara University, Istanbul, Turkey. With an academic background spanning Physics at institutions such as Istanbul University (BSc), University of Wisconsin (MSc), and Case Western Reserve University (PhD), he has made notable contributions to the scientific community in both research and education.

👨‍🎓Profile

Google scholar

Scopus

ORCID

Early Academic Pursuits 📚

Prof. Dr. Yahşi’s academic journey began with a BSc in Physics from Istanbul University in 1983. He pursued an MSc at the University of Wisconsin from 1987-1988, followed by a PhD at Case Western Reserve University, completing his studies in 1994. His early research laid the foundation for his future work in material science and applied physics.

Professional Endeavors 💼

Prof. Yahşi’s professional career has been extensive, with a continuous academic presence at Marmara University, where he has held positions from Assistant Professor to Full Professor since 1996. Additionally, he has served as a Visiting Scientist at the University of Missouri-Kansas City and contributed significantly to various administrative roles within the university, such as Senator and Director of the Institute of Pure and Applied Sciences.

Contributions and Research Focus 🔬

Prof. Dr. Yahşi’s research is at the forefront of material science, particularly in nanomaterials, macromolecular physics, and defect structures. His research spans across multiple topics, including vacancy structures, dendrimers, polymer-ion interactions, and nanometric defects in materials. He is a leading figure in applying positron annihilation spectroscopy and other advanced techniques to study the electronic properties of materials, advancing nanotechnology and material engineering.

Impact and Influence 🌍

Prof. Yahşi’s impact extends beyond his research, as he has shaped the academic environment at Marmara University. He has mentored numerous students through undergraduate, master’s, and doctoral research projects. His leadership roles have fostered growth in the Physics Department and research programs, contributing to collaborations with other institutions and research organizations globally.

Academic Cites 📑

Prof. Dr. Yahşi has been extensively cited in scientific journals for his work on positron annihilation and material defect structures. His influence can be seen in the academic advancements in polymer science, nanotechnology, and material characterization techniques. The funding from projects such as TÜBİTAK and Marmara University underscores the significance of his work in advancing scientific discovery.

Research Skills 🔧

Prof. Yahşi possesses a diverse set of research skills, including expertise in positron annihilation spectroscopy, experimental physics, and materials characterization. He is skilled in various computational tools such as Fortran, Mathematica, and MatLab, enabling him to model complex physical systems and conduct numerical simulations in support of his theoretical work.

Teaching Experience 🎓

Prof. Yahşi’s teaching spans over decades, with experience in courses ranging from Advanced Classical Mechanics to Computer Programming in Fortran. His commitment to student development is evident through his role in shaping curriculum and teaching courses in Technical English, Solid-State Physics, and Numerical Methods. He has also contributed significantly to the translation and localization of key texts in Physics, ensuring that students have access to high-quality educational resources.

Awards and Honors 🏆

Prof. Yahşi has been the recipient of numerous fellowships and awards, such as the Turkish Educational Ministry Fellowship for his graduate studies. His work has earned research grants from prominent Turkish organizations like TÜBİTAK, demonstrating his recognized contributions to scientific progress. He continues to receive support for innovative projects, including the BİDEB Mentorship Support Program and various Marmara University projects.

Legacy and Future Contributions 🌱

Prof. Dr. Uğur Yahşi’s legacy lies in his commitment to advancing physics education and research, particularly in material science and nanotechnology. His ongoing projects, such as the investigation of flash sintering in doped ZnO structures and polymer materials, are paving the way for future breakthroughs. With continued administrative roles and research leadership, Prof. Yahşi is poised to make lasting contributions to both academic knowledge and scientific innovation.

Publications Top Notes

Free volume impact on ionic conductivity of PVdF/GO/PVP solid polymer electrolytes via positron annihilation approach

  • Authors: M. Yilmazoğlu, H. Okkay, U. Abacı, C. Tav, U. Yahşi
    Journal: Radiation Physics and Chemistry, 2025

The Influence of Defects on the Structural, Optical, and Antibacterial Properties of Cr/Cu Co-Doped ZnO Nanoparticles

  • Authors: L. Arda, Z. Ra’ad, S. Veziroğlu, C. Tav, U. Yahşi
    Journal: Journal of Molecular Structure, 2025

Correlation of proton conductivity and free volume in sulfonated polyether ether ketone electrolytes: A positron annihilation lifetime spectroscopy study

  • Authors: M. Lahmuni, M. Yilmazoğlu, U. Abacı, C. Tav, U. Yahşi
    Journal: Radiation Physics and Chemistry, 2025

A novel approach for the atomic scale characterization of Li-ion battery components probed by positron annihilation lifetime spectroscopy

  • Authors: R. Bakar, S. Koç, A. Yumak Yahşi, C. Tav, U. Yahşi
    Journal: Materials Research Bulletin, 2024

Free-volume analysis of the structural and dielectric properties of PMMA/TeO2 composites via positron annihilation lifetime spectroscopy

  • Authors: S. Kuzeci, E. Özcan, A.U. Kaya, R. Bakar, C. Tav, U. Yahşi, K. Esmer
    Journal: Journal of Alloys and Compounds, 2024

 

Shuxia Zhao | Theoretical Advances | Best Researcher Award

Assoc. Prof. Dr. Shuxia Zhao | Theoretical Advances | Best Researcher Award

Associate Professor at Dalian University of Technology, China

Dr. Shuxia Zhao is an Associate Professor at the Dalian University of Technology, with a specialization in electronegative and inductively coupled plasmas. She has an extensive academic background, with degrees in Physics, Materials Science, and Plasma Physics from Hebei Normal University and Dalian University of Technology, followed by Postdoctoral Research at the University of Antwerp. Dr. Zhao’s expertise lies in exploring the complex discharge structures of plasma and establishing interdisciplinary links across various fields of plasma physics.

👨‍🎓Profile

Early Academic Pursuits 🎓

Dr. Zhao began her academic journey at Hebei Normal University in 2000, where she completed her Bachelor’s degree in Physics. She continued her studies at the same institution, earning her Master’s degree in Physics and Chemistry of Material in 2007. Further refining her expertise, she pursued her Doctorate at Dalian University of Technology, specializing in Plasma Physics. Dr. Zhao also enriched her research experience as a Postdoctoral Researcher at the University of Antwerp, focusing on fluorocarbon inductively coupled plasmas.

Professional Endeavors 💼

Dr. Zhao has contributed to various significant research projects funded by the National Natural Science Foundation of China. In her current role as Associate Professor at DUT since 2013, she continues to advance knowledge in electronegative plasmas and inductively coupled plasmas. Dr. Zhao has led industry collaborations, notably with North microelectronics base, enhancing plasma source technologies.

Contributions and Research Focus 🔬

Dr. Zhao’s research explores the discharge mechanism and etching processes of fluorocarbon plasmas, as well as the complex discharge structures of electronegative plasmas. She is particularly interested in low-temperature plasmas and their potential connections with high-temperature fusion plasmas and astrophysical plasmas. Her work on mode transition and hysteresis in inductively coupled plasma sources has provided critical insights into plasma behavior and interactions.

Impact and Influence 🌍

Dr. Zhao’s groundbreaking work in plasma science has impacted both the academic community and the industry. Her research has provided important theories and models that enhance the understanding of plasma behaviors and their applications in various fields, including microelectronics and fusion energy. Her published books and articles have been well-cited, showcasing her role in advancing plasma physics.

Academic Citations 📊

Dr. Zhao’s research contributions are widely recognized, with a Web of Science ResearcherID of AFT-8684-2022. She has published 39 journals in renowned international databases like SCI and Scopus. Her work is highly cited and continues to shape plasma science research globally.

Research Skills 🧑‍🔬

Dr. Zhao is skilled in fluid modeling, plasma diagnostics, and theoretical plasma physics. She has developed innovative software for modeling argon inductively coupled plasmas and ionic species transport coefficients in low-pressure RF plasmas, securing patents for these developments. Her expertise extends to data analysis, numerical simulations, and plasma characterization.

Teaching Experience 🍎

Dr. Zhao has been an educator at Dalian University of Technology for over a decade. She is deeply invested in nurturing the next generation of plasma scientists and engineers. Dr. Zhao’s commitment to teaching and mentoring extends beyond the classroom, as she actively supervises graduate students and postdoctoral researchers in their own academic pursuits.

Legacy and Future Contributions 🌱

As Dr. Zhao continues to explore the complexities of inductively coupled plasmas, her future work will likely further advance the field of plasma physics, especially in the context of microelectronics and fusion energy. Her research legacy is one of interdisciplinary collaboration, innovative discoveries, and educational excellence, contributing to both scientific advancements and technological applications.

Publications Top Notes

Simulation of mode transitions in capacitively coupled Ar/O2 plasmas

  • Authors: X. Liu, S. Zhang, S. Zhao, H. Li, X. Ren
    Journal: Plasma Science and Technology
    Year: 2024

Self-Coagulation Theory and Related Comet- and Semi-Circle-Shaped Structures in Electronegative and Gaseous Discharging Plasmas in the Laboratory

  • Authors: Y. Tian, S. Zhao
    Journal: Applied Sciences (Switzerland)
    Year: 2024

Effect of gas flow on the nanoparticles transport in dusty acetylene plasmas

  • Authors: X. Liu, W. Liu, X. Zhang, X. Dong, S. Zhao
    Journal: Plasma Science and Technology
    Year: 2023

 

 

Emmanuel Adeyefa | Theoretical Physics | Member

Assoc Prof Dr. Emmanuel Adeyefa | Theoretical Physics | Member

PHD at University of Ilorin, Nigeria

Dr. Emmanuel Oluseye Adeyefa is a distinguished mathematician and academic leader from Nigeria. With a Ph.D. in Mathematics from the University of Ilorin, he currently serves as a Reader at the Department of Mathematics, Federal University Oye-Ekiti. His administrative roles include acting as Head of Department and Postgraduate Coordinator. With a passion for teaching, he has instructed various courses and supervised numerous undergraduate and postgraduate projects. A committed scholar, he actively participates in conferences and workshops, contributing to advancements in mathematics and cryptography. Beyond academia, he engages in community service and enjoys activities such as reading, football, and music.

Professional Profiles:

Education

Ph.D. in Mathematics, University of Ilorin, 2014 M.Sc. in Mathematics, University of Ilorin, 2007 B.Sc. in Mathematics, University of Ilorin, 2003 PGD in Education, Obafemi Awolowo University, 2014

Administrative Experience

Acting Head, Department of Mathematics Postgraduate Coordinator University Examination Committee Member Level Adviser/Coordinator Departmental Seminar Coordinator Staff Secretary Various Committee Memberships and Chairmanships. Federal University Wukari, Taraba State Oduduwa University, Osun State Southern Institute of Innovative Technology (SNIIT Polytechnic), Osun State

Teaching Experience

Various courses in Mathematics including Linear Algebra, Mathematical Packages, Vector and Tensor Analysis, Real Analysis, Mathematical Methods, Analytical Dynamics, Fluid Dynamics, and Numerical Analysis.

Awards

Recipient of various awards including Departmental Best Graduating Student and Best Lecturer of the year.

Research Focus:

Dr. Emmanuel Oluseye Adeyefa’s research focus primarily revolves around the development and application of advanced numerical methods for solving various classes of ordinary and partial differential equations. His work spans topics such as direct integration methods, orthogonal basis function formulations, hybrid block methods, and collocation approaches. Additionally, he explores the use of polynomial and orthogonal basis functions, particularly Chebyshev polynomials, in continuous formulations of numerical solvers. Adeyefa’s contributions bridge mathematical theory with practical applications, showcasing his expertise in computational mathematics and algorithm development, with potential applications in cryptography and queueing systems.

Publications

  1. Error estimation of the integral tau method for fourth order overdetermined ODES, Publication: 2023.
  2. Integral tau Method for Certain Over-determined Fourth-Order Ordinary Differential Equations., Publication: 2023.
  3. A Generalized Series Solution of 𝒏𝒕𝒉 Order Ordinary Differential Equations, Publication: 2023.
  4. Improved 2-Point Hybrid Block Model for Direct Integration of Third and Fourth-Order Initial Value Problems, Publication: 2023.
  5. Algebraic characterization of Ifa main divination codes, Publication: 2023.
  6. Ninth-order Multistep Collocation Formulas for Solving Models of PDEs Arising in Fluid Dynamics: Design and Implementation Strategies, Publication: 2023.
  7. Hybrid block methods with constructed orthogonal basis for solution of third-order ordinary differential equations, Publication: 2023.
  8. A continuous five-step implicit block unification method for numerical solution of second-order elliptic partial differential equations, Publication: 2023.
  9. Implicit hybrid block methods for solving second, third and fourth orders ordinary differential equations directly, Publication: 2022.
  10. New developed numerical formula for solution of first and higher order ordinary differential equations, Publication: 2022.
.

Al-Hattab Mohamed | Physics | Member

Dr. Al-Hattab Mohamed | Physics | Member

PHD at Sultan Moulay Slimane University, Morocco

Mohamed Al-Hattab is a dedicated researcher specializing in Physics of Materials and Energy. He completed his Ph.D. at Sultan Moulay Slimane University, focusing on the properties of the semiconductor GaSe. With expertise in scanning electron microscopy, X-ray crystallography, and spectroscopy, Mohamed has contributed to various publications in prestigious journals like Solar Energy and Nanoparticle Research. He actively engages in educational activities, supervising students and presenting at international conferences. As a reviewer for prominent journals, Mohamed continues to advance research in his field, affiliated with the Research Laboratory in Physics and Sciences for Engineers at Sultan Moulay Slimane University.

Professional Profiles:

Education

Ph.D. in Physics of Materials and Energies Sultan Moulay Slimane University, Beni Mellal, Morocco (2018 – 2022) Advisor: Khalid Rahmani Dissertation: Study of the structural, electronic, optical, and elastic properties of the lamellar semiconductor (GaSe) Master in Advanced Materials Sultan Moulay Slimane University, Beni Mellal, Morocco (2015 – 2018) Bachelor’s degree in Physical Sciences, Electronics option Cadi Ayyad University, Marrakech, Morocco (2011 – 2015) Advisor: Amal Rajirae Dissertation: Study of the properties of the lamellar material GaSe used as an absorber in photovoltaic cells

Skills

Scanning Electron Microscope X-ray Crystallography UV-Visible Spectroscopy and Raman Spectroscopy Simulation (Biovia Material Studio 2017, SCAPS-1D, MATLAB, Silvako

Research Focus:

Mohamed Al-Hattab is a versatile researcher with a primary focus on materials science and renewable energy technologies. His contributions span various aspects of solar cell design and optimization, including numerical modeling, density functional theory (DFT) investigations, and experimental studies. With expertise in tandem solar cells, perovskite materials, and semiconductor physics, Mohamed’s research aligns with advancing eco-friendly and efficient photovoltaic devices. He collaborates extensively with multidisciplinary teams, emphasizing the integration of theoretical insights with practical applications. Through his work, Mohamed strives to enhance the performance and sustainability of solar energy technologies for a greener future. Physics

Publications 

  1. Experimental and numerical study of the CIGS/CdS heterojunction solar cell,  Publication date: 2023.
  2. Novel Simulation and Efficiency Enhancement of Eco-friendly Cu2FeSnS4/c-Silicon Tandem Solar Device, cited by: 4, Publication date: 2023.
  3. Ab Initio Investigation for Solar Technology on the Optical and Electronic Properties of Double Perovskites Cs2AgBiX6(X=Cl, Br, I), Publication date: 2023.
  4. Thermodynamic, optical, and morphological studies of the Cs2AgBiX6 double perovskites (X = Cl, Br, and I): Insights from DFT study, cited by: 16, Publication date: 2023.
  5. Ag2BeSnX4(S, Se,Te)-based kesterite solar cell modeling: A DFT investigation and Scaps-1 danalysis,Publication date: 2023.
  6. Numerical Simulation of CdS/GaSe Solar Cell Using SCAPs Simulation Software, Publication date: 2022.
  7. Density Functional Theory Study on the Electronic and Optical Properties of Graphene, Single-Walled Carbon Nanotube and C60, Publication date: 2022.
  8. Quantum confinement in GaN/AlInN asymmetric quantum wells for terahertz emission and field of optical fiber telecommunications, Publication date: 2024.
  9. Cu2BaSnS4/Cu2FeSnS4 combination for a good light absorption in thin-film solar cells—a numerical model, Publication date: 2024.
  10. Performance assessment of an eco-friendly tandem solar cell based on double perovskite Cs2AgBiBr6Publication date: 2024.

 

.