Ahmed Abdelsalam | Theoretical Advances | Best Researcher Award

Mr. Ahmed Abdelsalam | Theoretical Advances | Best Researcher Award

Teaching assistant at Cairo University | Egypt

Ahmed Gamal Abdelsalam is a passionate theoretical physicist and teaching assistant at Cairo University, with deep involvement in quantum mechanics, plasma physics, and high-energy particle research. Originating from Giza, Egypt, Ahmed has consistently combined academic excellence with community service, showing both intellectual and social commitment. His journey from volunteer educator to published researcher reflects a blend of discipline, leadership, and scientific rigor. Known for his multi-disciplinary expertise, he contributes actively to Egypt’s academic and scientific development, with a strong potential to make lasting international contributions in physics and data modeling.

👨‍🎓Profile

Google scholar

🎓 Early Academic Pursuits

Ahmed began his academic career with a B.Sc. in Science from Cairo University in 2016. He enhanced his learning through prestigious summer schools at Zewail University and hands-on training at the National Research Center. His pursuit of knowledge led him to complete a Pre-Master’s program in 2019 and an M.Sc. in Science in 2021, specializing in theoretical physics. Through these experiences, Ahmed demonstrated early interest in particle interactions and quantum potentials, setting the foundation for future research. His commitment to academic excellence is supported by continuous training in plasma physics and modern physical theories.

💼 Professional Endeavors

Ahmed’s professional journey began with volunteer teaching in a literacy project (2011–2012), where he rose to team leader. From 2016 to 2018, he served as a military officer, leading operations with precision. Since 2018, he has worked as a teaching assistant at Cairo University, supporting courses in physics, research guidance, and laboratory instruction. These roles exhibit his leadership, discipline, and mentorship capabilities. His seamless transition between education, national service, and academia reflects strong adaptability, professional responsibility, and a dedication to societal development alongside academic growth.

🔬 Contributions & Research Focus

Ahmed’s research spans quarkonium spectroscopy, spin splitting, and magnetic interactions in particle systems. His most cited work “Bound state of heavy quarks using a general polynomial potential”—proposes novel models in quantum chromodynamics. He also co-authored a paper on space plasma phenomena in Scientific Reports (2025), marking his entry into applied space physics. His work explores complex mathematical approaches using Nikiforov-Uvarov methods, Schrödinger equations, and analytical modeling. Through this, Ahmed contributes significantly to modern theoretical physics, bridging foundational theory with computational applications in quantum systems and astrophysical plasmas.

🌍 Impact and Influence

Ahmed’s research impact is evident through citations, interdisciplinary topics, and recognition in global journals. His 2018 publication has 35 citations, reflecting its academic reach. By addressing subjects like quark-antiquark systems and Venusian magnetospheric behavior, his work influences both particle physics and space research domains. His research contributions provide analytical tools and spectral data for understanding subatomic forces and cosmic interactions, fostering cross-disciplinary innovation. Ahmed’s influence is not just in numbers but in the applicability of his findings to future space exploration and high-energy experiments, paving paths for emerging physicists in Egypt and beyond.

📊 Academic Citations

Ahmed has co-authored six notable publications. His standout paper on heavy quarks (2018) is cited 35 times, while other works such as the meson spectra (2022) and spin splitting (2020) have also drawn attention. His arXiv preprint and additional contributions collectively amount to over 50 citations, underscoring a growing academic presence. Published in respected journals like Advances in High Energy Physics, Results in Physics, and Scientific Reports, his works are referenced in research related to quantum theory, plasma physics, and nuclear interactions, affirming his role as a rising voice in theoretical and applied physics research.

🧠 Research Skills

Ahmed possesses advanced research skills in mathematical modeling, data fitting, and simulation of physical systems. He is proficient in programming languages like Python, Fortran, C, C++, and analytical tools such as IDL, Matlab, and Origin software. He applies numerical methods and theoretical frameworks to solve quantum field problems and interpret experimental data. His expertise in problem-solving, statistical analysis, and computational physics allows him to work across multiple physics disciplines. Ahmed also leverages Google Drive, Microsoft Office, and scientific visualization tools to organize, communicate, and present his findings clearly and professionally.

👨‍🏫 Teaching Experience

Ahmed has served as a teaching assistant at Cairo University since 2018, supporting undergraduate and postgraduate physics courses. His role includes lab instruction, tutorial sessions, and student mentoring, making complex theories accessible to learners. His earlier experience as a literacy teacher (2011–2012) equipped him with communication and leadership skills, further honed during his military officer training. Ahmed is known for fostering student engagement, using both traditional and digital platforms. His ability to blend academic rigor with student support makes him a well-rounded educator and a role model for aspiring Egyptian physicists.

🏅 Awards and Honors

While Ahmed has not listed formal awards, his academic journey reflects prestigious participation in elite programs like Zewail University’s Theoretical Physics School and BUE’s Plasma Physics Courses. His publications in indexed journals and the 2025 article in Scientific Reports signify a high level of peer recognition. His promotion within volunteer work and successful completion of military service also indicate commendable leadership and integrity. With growing citation counts and participation in national research programs, Ahmed has laid the groundwork for future awards in physics research, education, and innovation.

🚀 Legacy and Future Contributions

Ahmed is poised to become a leading researcher in theoretical and plasma physics. With experience in quantum mechanics, space physics, and analytical modeling, he is well-positioned to contribute to cutting-edge discoveries in astrophysics and particle interactions. He envisions deeper involvement in international collaborations, contributing to Egypt’s academic global presence. By mentoring future students and publishing impactful work, he aims to leave a lasting legacy of excellence, innovation, and service. His future may include Ph.D. studies, grant-winning research, and expanding his influence across global scientific communities.

Top Noted Publications

  • Bound state of heavy quarks using a general polynomial potential
    Authors: H. Mansour, A. Gamal
    Journal: Advances in High Energy Physics
    Year: 2018

  • Meson spectra using Nikiforov-Uvarov method
    Authors: H. Mansour, A. Gamal
    Journal: Results in Physics
    Year: 2022

  • Spin splitting spectroscopy of heavy Quark and Antiquarks systems
    Authors: H. Mansour, A. Gamal, M. Abolmahassen
    Journal: Advances in High Energy Physics
    Year: 2020

  • Two body problems with magnetic interactions
    Authors: H. Mansour, A. Gamal
    Year: 2019

  • Spectroscopy of the Quarkonium Systems for Heavy Quarks
    Authors: H. Mansour, A. Gamal
    Year: 2020

 

 

Ravishankar Ambi | High energy physics | Best Researcher Award

Assist. Prof. Dr. Ravishankar Ambi | High energy physics | Best Researcher Award

Assistant Professor at Jaysingpur College, Jaysingpur | India

Dr. Ravishankar Ramesh Ambi is a dedicated physicist specializing in material science and thin film gas sensor technology. Awarded a Ph.D. in Physics from Shivaji University, Kolhapur in July 2024, he has established himself as an emerging researcher focusing on advanced nanomaterials for energy conversion and storage devices. His academic journey reflects a consistent pursuit of knowledge, culminating in innovative research outputs and contributions to both science and education.

👨‍🎓Profile

Scopus

🎓 Early Academic Pursuits

Dr. Ambi’s educational foundation is rooted in physics, starting with a Bachelor of Science (B.Sc.) from Jaysingpur College, followed by a Master of Science (M.Sc.) from Shivaji University, where he secured First Class with a percentage of 55.21%. His academic diligence from the early stages set the stage for his advanced research, culminating in a Ph.D. thesis on “Studies on Metal Oxide NiO coated ZnO thin films for gas sensing application,” showcasing his growing expertise in nanomaterial sciences.

💼 Professional Endeavors

Since July 2024, Dr. Ambi has been contributing as a faculty member in the Department of Physics at Jaysingpur College, engaging in both teaching and research. Alongside his academic duties, he has taken on roles such as Theory Exam Junior Supervisor and Practical Lab Expert, reflecting his commitment to academic integrity and student development. His participation in workshops and seminars further demonstrates his proactive engagement with the evolving educational landscape.

🔬 Contributions and Research Focus

Dr. Ambi’s primary research areas include material science, thin film gas sensors, and energy conversion and storage devices. His significant research work has led to the publication of several papers in reputable international journals, including those with high impact factors (up to 4.1). He holds a patent for vertically aligned ZnO nanorod films aimed at highly sensitive and selective NO2 gas detection, highlighting his contribution to applied science and sensor technology innovation.

🌟 Impact and Influence

Through his research on metal oxide coated ZnO thin films and gas sensors, Dr. Ambi addresses critical challenges in environmental monitoring and energy technologies. His work on NiO nanosheets and hierarchical heterostructures has enhanced the sensitivity and selectivity of gas sensors, contributing to improved air quality detection methods. His active participation in international conferences and national workshops amplifies his influence in the scientific community.

📚 Academic Cites and Publications

Dr. Ambi has published at least five significant research papers, including contributions in Applied Physics A, Materials Science & Engineering B, and Sensors and Actuators A: Physical, journals recognized for their academic rigor and impact. His papers focus on novel nanostructures for gas sensing, reflecting both theoretical insight and practical applications. These publications contribute to his growing academic reputation and serve as references for ongoing research in the field.

🧰 Research Skills

Dr. Ambi exhibits strong competencies in thin film deposition techniques, chemical synthesis of nanomaterials, and characterization methods such as spectroscopy and microscopy. His expertise extends to fabricating nanostructured sensors with enhanced performance, and he has experience managing funded research projects, including a notable project with IIT Bombay’s Centre of Excellence in Nano-electronics. These skills position him as a valuable asset for both academic and applied research.

👨‍🏫 Teaching Experience

Since his appointment in July 2024, Dr. Ambi has actively contributed to the academic growth of physics students at Jaysingpur College. He has taught undergraduate courses aligned with the new NEP-2020 curriculum, participated in curriculum workshops, and overseen laboratory practicals. His role extends beyond teaching, including organizing examinations and serving on committees, showcasing a holistic approach to education.

🏆 Awards and Honors

Dr. Ambi’s notable achievement includes the award of his Ph.D. in 2024 and securing research grants for projects on ZnO thin films. His published patent further emphasizes his innovative capabilities. Though early in his career, his consistent research output and academic contributions position him well for future awards and recognitions.

🌱 Legacy and Future Contributions

With a strong foundation in nanomaterials and sensor technology, Dr. Ambi is poised to make significant contributions to environmental monitoring and sustainable energy solutions. His dedication to research, combined with his active teaching role, suggests a promising future as both a scientist and educator. Continuing to expand his research network and international collaborations will further enhance his impact and legacy in the scientific community.

Top Noted Publications

NiO nanosheet-assembled chemiresistive for NO2 detection

  • Authors: R. R. Ambi, R. A. Mali, A. B. Pawar, M. G. Mulla, R. K. Pittala
    Journal: Applied Physics A (Appl. Phys A)
    Year: 2025

Highly porous hierarchical NiO coated ZnO p-n heterostructure for NO2 detection

  • Authors: R. R. Ambi, A. A. Mane, V. B. Patil, R. D. Mane
    Journal: Materials Science & Engineering B
    Year: 2024

Highly porous NiO microstructure for NO2 detection

  • Authors: R. R. Ambi, A. A. Mane, R. D. Tasgaonkar, R. D. Mane
    Journal: Physica B: Condensed Matter
    Year: 2024

NO2 Sensing properties of chemically deposited vertically aligned flowerlike hexagonal ZnO nanorods

  • Authors: R. R. Ambi, M. G. Mulla, R. J. Pittala
    Journal: Sensors and Actuators A: Physical (Sens. Actuators: A Phys.)
    Year: 2024

Synthesis and Characterization of CdO Thin Films by Spray Pyrolysis Method

  • Authors: R. D. Mane, A. B. Patil, R. R. Ambi, U.E. Mote, R. D. Tasgaonkar
    Journal: Research Journal of Life Science, Bioinformatics, Pharmaceutical and Chemical Science
    Year: 2022

 

ROHIT YADAV | Computational Particle Physics | Best Researcher Award

Mr. ROHIT YADAV | Computational Particle Physics | Best Researcher Award

Scientific Officer at BHABHA ATOMIC RESEARCH CENTRE | India

Rohit Yadav is a Scientific Officer at the Radiological Physics and Advisory Division of the Bhabha Atomic Research Centre (BARC), India. With a strong foundation in Physics and advanced specialization in radiation dosimetry, he contributes to national radiation safety and simulation-based research using Monte Carlo methods. His work bridges academic rigor with practical impact in radiation protection and cosmic ray shielding.

👨‍🎓Profile

Scopus

ORCID

🎓 Early Academic Pursuits

Rohit began his academic journey with a B.Sc. (Honors) in Physics from the prestigious Hansraj College, University of Delhi, and went on to earn his M.Sc. in Physics from the Indian Institute of Technology (IIT) Roorkee. This elite academic training laid the groundwork for his scientific career in applied radiation physics and simulation technologies.

🧑‍💼 Professional Endeavors

As a Scientific Officer at BARC, Mumbai, Rohit plays a pivotal role in radiological safety, with responsibilities encompassing radiation measurement, dosimetry, and protection standards. His expertise is central to public safety, particularly in scenarios involving space radiation, nuclear facilities, and retrospective environmental dose assessments.

🔬 Contributions and Research Focus

Rohit’s research centers on Monte Carlo simulations (FLUKA, GEANT4), thermoluminescent dosimeters (TLDs), cosmic ray shielding, and dose monitoring. His peer-reviewed work includes TLD response analysis, aluminum shielding effectiveness, beta dose estimation via CWOSL, and personal dose equivalent measurements. These contributions have significantly enhanced applied dosimetric methods and advanced radiation protection techniques, making his work impactful for both theoretical modeling and practical implementation in high-radiation environments.

🌍 Impact and Influence

His work has direct implications for national safety in nuclear and space sectors. By improving simulation techniques and phantom modeling, he enhances dosimetric accuracy, which benefits occupational health, environmental radiation monitoring, and cosmic radiation protectionan essential area for aerospace and defense.

🧪 Research Skills

Rohit demonstrates expertise in Monte Carlo Simulations (FLUKA, GEANT4), dosimetry instrumentation, and radiation transport analysis. He excels in phantom modeling, shielding design, and working with advanced phosphor materials like LiCaAlF₆:Eu,Y. His technical proficiency supports high-precision radiation studies essential for developing effective radiation protection protocols in both terrestrial and space environments. These research skills make him a valuable contributor to the field of computational dosimetry and applied radiation science.

📈 Legacy and Future Contributions

Rohit Yadav is on track to become a leading figure in radiation simulation and protection research in India. His ongoing contributions will likely shape national radiation safety standards, influence dosimetry policies, and expand applications of Monte Carlo methods in medical physics, space missions, and environmental monitoring.

Publications Top Notes

Response of CaSO₄:Dy Teflon embedded thermoluminescent dosimeter badge on different ISO phantoms for photons and beta sources using FLUKA and GEANT4

  • Authors: Rohit Yadav, Madhumita Bhattacharya, A.K. Bakshi, B.K. Sapra
    Journal: Radiation Physics and Chemistry
    Year: 2025

Beta dose rate estimation of soil samples with CW-OSL technique using LiCaAlF₆:Eu,Y phosphor for retrospective dosimetry

  • Authors: S. Kadam, S.N. Menon, P. Rama, R. Yadav, S. Dawn, B. Dhabekar
    Journal: Radiation Physics and Chemistry
    Year: 2024

Simulation-based estimation of dosimetric quantities for different phantom compositions and the effectiveness of aluminum shielding against galactic cosmic rays

  • Authors: Rohit Yadav, Sandipan Dawn, A.K. Bakshi, B.K. Sapra
    Journal: Radiation Protection and Environment
    Year: 2024

Estimation of personal dose equivalent HP(0.07) using CaSO₄:Dy Teflon disc-based extremity dosemeter

  • Authors: M. Bhattacharya, K. Samuel, S. Patil, R. Yadav, A.K. Bakshi, S.K. Singh, B.K. Sapra
    Journal: Radiation Protection Dosimetry
    Year: 2022

 

 

WAEL CHOUK | High energy physics | Young Scientist Award

Dr. WAEL CHOUK | High energy physics | Young Scientist Award

Post-Doc at Faculty of Sciences of Bizerte | Tunisia

Dr. Wael Chouk is a dedicated Tunisian physicist specializing in materials physics, particularly in the field of dielectric and superconducting materials. With a PhD earned from the Faculty of Sciences of Bizerte, University of Carthage, he has demonstrated a consistent track record of academic excellence, international research experience, and pedagogical commitment. His profile reflects a unique blend of technical expertise, research passion, and community involvement.

👨‍🎓Profile

Scopus

📘 Early Academic Pursuits

Dr. Chouk began his academic journey with a preparatory cycle in engineering (Math-Physics) from 2012 to 2015 at the Preparatory Institute for Engineering Studies, Nabeul. He then pursued a Fundamental Physics degree (2015–2017) and a Master’s in Physics (2017–2020), graduating with honors. His early research centered on materials structure and properties, laying the foundation for his future in high-impact experimental physics.

🧑‍🏫 Professional Endeavors

Wael’s career is marked by consistent involvement in academic teaching and research supervision. As a part-time lecturer at the Faculty of Sciences of Bizerte (2021–2022), he taught practical physics and later co-supervised Master’s research projects in 2023 and 2024. His teaching was not just instructional but also developmental, helping students build critical skills in dielectric materials and experimental analysis.

🔬 Contributions and Research Focus

His PhD work (2021–2024) explores the superconducting-supercapacitance transition in the complex ceramic YBa₂₋ₓCaₓCuβOδ, synthesized using the sol-gel method. His research involves advanced characterization techniques such as XRD, SEM, TEM, XPS, PPMS, and VSM, highlighting his expertise in materials synthesis and structural/magnetic analysis. His contributions to the field include two co-authored scientific papers on phase transitions and intrinsic permittivity in ceramic compounds.

🌍 Impact and Influence

Dr. Chouk has enhanced his research impact through international internships a two-month stay at BAU University in Turkey and a three-month program at ICMM in Madrid, part of CSIC. He has also presented at prestigious events like SMS’2024 and AdAMFM 2022, and showcased his work at the Innovation Fair by the ANPR, where his stand on electro-ceramics for high-energy-density capacitors demonstrated both academic relevance and real-world application.

📊 Academic Citations and Publications

Dr. Wael Chouk has authored notable publications including “Study of phase transition behavior and high dielectric properties in YBa₂₋ₓCaₓCu₃Oδ ceramics” and “Novel high intrinsic permittivity in new perovskite ceramic GdCa₂Cu₃Oδ”. These studies significantly contribute to the scientific understanding of ceramic-based high-performance materials, with impactful applications in electronics, energy storage, and superconductivity. His research enhances the academic literature and reflects a growing influence in the field of materials physics.

🧪 Research Skills

Dr. Wael Chouk demonstrates strong experimental and analytical skills, especially in material synthesis (sol-gel, ceramic fabrication) and advanced characterization techniques such as XRD, TEM, SEM, XPS, and EPR. He is also proficient in simulation and analysis tools including MATLAB, Origin, and Gaussian. His expertise in laboratory instrumentation and data interpretation equips him to contribute effectively to cross-disciplinary research and lead complex experimental projects, reflecting a robust and versatile research capability.

🧑‍🏫 Teaching Experience

His years as a part-time teacher and student supervisor reveal a solid commitment to academic mentorship. He has taught practical physics to undergraduate students and supported Master’s candidates in achieving their academic goals, especially in materials physics and dielectric behavior analysis.

🏅 Awards and Honors

While formal award titles are not specified, Dr. Wael Chouk’s participation in international conferences, prestigious research internships, and representation at innovation fairs reflect peer recognition and academic credibility. He holds valuable certifications in ISO 9001, ISO 50001, X-ray diffraction, project management, stress management, public speaking, and first aid. These accomplishments highlight his professional competence, leadership potential, and strong alignment with high research standards and institutional trust.

🌱 Legacy and Future Contributions

Dr. Wael Chouk is poised to leave a lasting impact on the field of applied materials physics. His future contributions are likely to lie at the intersection of ceramic materials, energy storage technologies, and magnetic-electrical coupling. With a strong foundation in both academic teaching and experimental research, he is a promising candidate for collaborative international projects, postdoctoral fellowships, and innovative research leadership.

Publications Top Notes

Study of phase transition behavior and high dielectric properties in YBa₂₋ₓCaₓCu₃Oδ ceramics

  • Authors: Wael Chouk, Khouloud Moualhi, Abdelhak Othmani, Mouldi Zouaoui
    Journal: Materials Chemistry and Physics
    Year: 2023

Novel high intrinsic permittivity in new perovskite ceramic GdCa₂Cu₃Oδ

  • Authors: Khouloud Moualhi, Wael Chouk, Youssef Moualhi, Abdelhak Othmani, Mouldi Zouaoui
    Journal: Materials chemistry and physics
    Year: 2024

Multifunctional chitosan/montmorillonite/TiO₂ nanocomposites: Correlating microstructure with dielectric and photocatalytic properties

  • Authors: Lahbib M., Mejri C., Bejaoui M., Chadha C., Oueslati A., Oueslati W.
    Journal: Journal of the Indian Chemical Society
    Year: 2025

Conduction mechanism investigation in YCa₂Cu₃Oδ colossal permittivity ceramics

  • Authors: Wael Chouk, Mohamed Annabi, Mouldi Zouaoui
    Journal: Results in Physics
    Year:2025

 

 

Yang Lei | High energy physics | Best Researcher Award

Prof. Yang Lei | High energy physics | Best Researcher Award

Associate Professor at Soochow University | China

Prof. Yang Lei is a distinguished theoretical physicist at the Institute of Advanced Study, Soochow University, specializing in black hole physics, holography, and quantum field theory. With extensive training and research experience from world-renowned institutions such as Peking University, Durham University, and Niels Bohr Institute, Prof. Lei is recognized for his cutting-edge work on AdS/CFT correspondence and non-relativistic holography, making him a rising voice in the global high-energy physics community.

👨‍🎓Profile

Scopus

ORCID

🎓 Early Academic Pursuits

Prof. Lei began his academic journey at the prestigious Yuanpei College, Peking University, earning his Bachelor’s degree in 2011, with a second major in Mathematics a testament to his foundational strength in formal theoretical reasoning. He pursued his MSc in Particles, Strings, and Cosmology at Durham University, supervised by Simon Ross, followed by a PhD in Mathematics, with a focus on Singularities in holographic non-relativistic spacetimes an area of deep relevance in modern quantum gravity.

👨‍🔬 Professional Endeavors

Following his PhD, Prof. Yang Lei embarked on an impressive journey through several prestigious postdoctoral positions at top-tier institutions including the Institute of Theoretical Physics, CAS, University of the Witwatersrand, Niels Bohr Institute, and Kavli Institute of Theoretical Science (KITS), UCAS. In 2022, he was appointed as an Associate Professor at Soochow University, where he continues to lead cutting-edge research and mentor young physicists, contributing meaningfully to the field of theoretical high-energy physics.

🔬 Contributions and Research Focus

Prof. Lei’s research is centered on black holes, holography, AdS/CFT duality, non-relativistic limits of field theories, and quantum gravity. His studies on spin matrix theory, EVH (Extremal Vanishing Horizon) black holes, and modular factorization in superconformal indices showcase his theoretical versatility and original insights into foundational questions of physics.

🌍 Impact and Influence

Prof. Lei has delivered more than 20 invited talks at prestigious international conferences, including String 2016, Tsinghua University, and Joburg Workshop on String Theory. His presence at academic forums and black hole workshops affirms his growing influence in the global theoretical physics community. He also demonstrates leadership in academic outreach through organizing workshops like the SUIAS HEP Workshop and KITS Summer School, promoting collaborative learning in high-energy physics.

📈 Academic Citations

While specific citation metrics were not detailed in the current profile, Prof. Lei’s consistent conference participation, grants awarded, and long-term collaborations with major institutions indicate a highly regarded academic presence, especially within holography and black hole research circles.

🛠️ Research Skills

Prof. Yang Lei possesses a sophisticated toolkit of theoretical and mathematical techniques, including AdS/CFT duality calculations, non-relativistic quantum field theory, spin matrix theory analysis, black hole thermodynamics, modular invariance, and superconformal indices, as well as advanced perturbation theory and resurgence. These research capabilities enable him to tackle some of the most complex and unsolved problems in quantum gravity and holographic dualities, reinforcing his role as a leading thinker in high-energy theoretical physics.

👨‍🏫 Teaching Experience

Prof. Yang Lei is a highly engaged educator, teaching core physics courses in English at Soochow University, such as Quantum Mechanics (Autumn 2023) and Solid State Physics (Spring 2023). He also contributed to the KITS Summer School, guiding students on black hole microstates and the information paradox. During his PhD, he served as a Teaching Assistant at Durham University, showcasing his well-rounded dedication to both academic instruction and research mentorship in theoretical physics.

🏅 Awards and Honors

Prof. Yang Lei‘s exceptional contributions have earned him prestigious awards and competitive grants, such as the National Natural Science Foundation of China Young Researcher Grant (2024–2026), the China Postdoc Surface Grant (2021–2022), and the Overseas Postdoc Introduction and Communication Grant (2016–2018). He also received the Peter Rowe Memorial Postgraduate Prize (2012) and the Durham Teaching and Learning Award (UK HEA Associate Fellowship, 2016). These accolades highlight his scholarly excellence, peer recognition, and international collaboration.

🌟 Legacy and Future Contributions

With a solid academic foundation, global collaborations, and an ever-expanding research portfolio, Prof. Yang Lei is on a trajectory to become a leading voice in quantum gravity and holography. His future contributions are expected to shape our understanding of black hole dynamics, non-AdS holography, and quantum field theories under extreme conditions. He is well-positioned to continue his impactful journey as a scholar, educator, and thought leader in modern theoretical physics.

Publications Top Notes

Conformal mapping of non-Lorentzian geometries in SU(1, 2) Conformal Field Theory

  • Authors: Stefano Baiguera, Troels Harmark, Yang Lei, Ziqi Yan
    Journal: Journal of High Energy Physics
    Year: 2025

Modularity in d > 2 free conformal field theory

  • Authors: Yang Lei, Sam van Leuven
    Journal: Journal of High Energy Physics
    Year: 2024

Quasinormal modes of C-metric from SCFTs

  • Authors: Yang Lei, Hongfei Shu, Kilar Zhang, Ruidong Zhu
    Journal: Journal of High Energy Physics
    Year: 2024

Modular factorization of superconformal indices

  • Authors: Vishnu Jejjala, Yang Lei, Sam van Leuven, Wei Li
    Journal: Journal of High Energy Physics
    Year: 2023

The Panorama of Spin Matrix theory

  • Authors: Stefano Baiguera, Troels Harmark, Yang Lei
    Journal: Journal of High Energy Physics
    Year: 2023

 

 

Jie Fan | Electroweak Physics | Best Researcher Award

Assoc. Prof. Dr. Jie Fan | Electroweak Physics | Best Researcher Award

Associate Researcher at Changchun University of Science and Technology  | China

Dr. Jie Fan is an Associate Researcher, Doctoral Supervisor, and Research Teacher at Changchun University of Science and Technology. Recognized as a High-Level D Talent in Jilin Province, Dr. Fan is a rising force in the field of semiconductor laser technology. With more than 30 academic publications and involvement in innovative laser device development, Dr. Fan is carving a significant niche in optoelectronic device research.

👨‍🎓Profile

Scopus

🎓 Early Academic Pursuits

Dr. Fan pursued advanced studies in semiconductor optoelectronics, laying a robust academic foundation in laser device physics and engineering. The academic journey was defined by an early focus on semiconductor light sources and beam quality enhancement, which later evolved into targeted, high-impact research directions.

💼 Professional Endeavors

Currently serving at the Changchun University of Science and Technology, Dr. Fan has taken on multiple roles including research leader, doctoral mentor, and project investigator. Leading 9 scientific research projects showcases not only scientific depth but also the ability to manage complex, long-term research efforts effectively.

🔬 Contributions and Research Focus

Dr. Fan’s core research revolves around high-power and high beam quality semiconductor laser technology. A standout contribution is the monolithic integration of DBR master oscillator and tapered power amplifier (MOPA) structure, enabling lasers with enhanced beam quality and peak power. Another key innovation is the development of dual-wavelength semiconductor laser devices using double Bragg grating diffraction feedback, achieving stable dual-output modes. Furthermore, Dr. Fan has addressed the challenge of transverse multi-lobe output in high-power lasers, enhancing near-fundamental mode performance—a vital step for real-world applications.

🌐 Impact and Influence

Despite a currently low citation index (1), the originality and applied relevance of Dr. Fan’s work present strong potential for future academic and industrial impact. The submission of 8 additional patents underlines continuous innovation and the intention to bridge research with practical solutions in optoelectronics.

📚 Academic Citations

With 27 SCI/Scopus-indexed journal articles, including contributions to Optics Letters and Optics Communications, Dr. Fan has made substantial efforts in academic dissemination. While the current citation index reflects early-stage impact, the volume and quality of publications indicate strong groundwork for rising academic influence.

🧠 Research Skills

Dr. Fan brings expertise in semiconductor laser modeling, structural integration, diffraction feedback design, and device fabrication. The ability to move from conceptual design to physical realization of complex laser systems showcases a rare combination of theoretical insight and experimental skill.

👨‍🏫 Teaching Experience

As a doctoral supervisor, Dr. Fan is deeply involved in mentoring graduate students and guiding cutting-edge research topics. The integration of teaching and research helps foster a new generation of optoelectronics researchers equipped with both academic rigor and applied skills.

🏆 Awards and Honors

Dr. Fan is listed among the High-Level D Talents in Jilin Province, recognizing his scientific excellence and research leadership. This designation is a testament to his growing status as a key contributor in China’s advanced optoelectronics research landscape.

🧬 Legacy and Future Contributions

Looking ahead, Dr. Fan is poised to further influence the semiconductor laser industry through scalable device designs and collaborative innovation. While more visibility through citations, industry partnerships, and global collaboration will enhance his profile, the foundational research already promises a lasting legacy in high-performance laser device engineering.

Publications Top Notes

Research on the Asymmetric Phase-Shift Laterally-Coupled DFB Semiconductor Lasers with High Single Longitudinal Mode Yield

  • Authors: Zhang, Naiyu; Qiu, Bocang; Zou, Yonggang; Li, Qingmin; Ma, Xiaohui
    Journal: Optics Express
    Year: 2025

Study on Mode Characteristics of Supersymmetric Transversally Coupled Array Semiconductor Lasers

  • Authors: Wang, Zelong; Fan, Jie; Zou, Yonggang; Li, Yan; Ma, Xiaohui
    Journal: Optics Communications
    Year: 2025

Thermal Characteristics Analysis of Multi-Material Composite Heat Sink Structure Based on VCSEL Array

  • Authors: Wang, Chenxin; Zou, Yonggang; Fan, Jie; Song, Yingmin; Liang, Hongjin
    Journal: Laser and Optoelectronics Progress
    Year: 2025

Near 1050 nm Laterally Coupled DFB Laser with Tightened-Ridge-Waveguide for Improving Grating Coupling Capability and Controlling Lateral Modes

  • Authors: Hou, Huilong; Fan, Jie; Fu, Xiyao; Zou, Yonggang; Ma, Xiaohui
    Journal: Optics Letters
    Year: 2025

Dual-Wavelength Composite Grating Semiconductor Laser for Raman Detection

  • Authors: Huang, Zhuoer; Zou, Yonggang; Fu, Xiyao; Wang, Xiaozhuo; Cheng, Biyao
    Journal: Optics and Laser Technology
    Year: 2025

 

 

Sathish Panneer Selvam | Theoretical Advances | Best Scholar Award

Dr. Sathish Panneer Selvam | Theoretical Advances | Best Scholar Award

Assistant Professor at Gachon university | South Korea

Dr. Sathish Panneer Selvam is a dynamic Assistant Professor at Gachon University, South Korea, specializing in electrochemical biosensors, nanomaterials, and density functional theory (DFT). With a strong foundation in experimental chemistry and computational modeling, Dr. Selvam’s interdisciplinary research bridges the gap between biomedical diagnostics and renewable energy catalysis, contributing significantly to next-generation sensor technologies.

👨‍🎓Profile

Google scholar 

Scopus

ORCID

🎓 Early Academic Pursuits

Dr. Selvam began his academic journey with a Master’s degree in Electrochemical Sensing and Water Splitting under Prof. Kyusik Yun, where he focused on DNA-based nanomaterials and self-assembled sensors. He pursued his PhD (2020–2024) under Prof. Sungbo Cho, contributing to sensor development for disease diagnostics and reaction mechanism analysis via DFT. This formative period laid the groundwork for his future breakthroughs in smart diagnostics.

💼 Professional Endeavors

Starting as a Quality Control Executive at Biocon Biopharmaceutical Ltd., Dr. Selvam transitioned seamlessly into academia. His current role as an Assistant Professor (2024–2025) at Gachon University involves leading advanced biosensing projects, such as cancer diagnostics, enzyme activity detection, and nanocomposite development. His hands-on expertise spans fabrication, characterization, and computational modeling.

🔬 Contributions and Research Focus

Dr. Selvam’s research is distinguished by its interdisciplinary depth and real-world relevance. He has designed single-atom catalyst biosensors for detecting pancreatic and breast cancer. Additionally, he has explored molecularly imprinted polymers for biomarker detection and utilized DFT and molecular dynamics to simulate reaction pathways. His development of triboelectric nanogenerators for self-powered bacterial detection reflects his ability to address critical challenges in medical diagnostics, environmental monitoring, and energy applications.

🌍 Impact and Influence

Dr. Selvam has authored 16+ peer-reviewed publications, many in high-impact journals such as Chemical Engineering Journal, Small Methods, and Biosensors and Bioelectronics, with impact factors ranging from 8 to 23. His contributions to cancer biosensing, H2 evolution, and COVID-19 detection have attracted international collaborations with researchers from UK, France, and India, solidifying his global influence.

📊 Academic Cites & Recognition

Dr. Selvam’s work is increasingly cited by peers in the fields of biosensors, nanotechnology, and theoretical chemistry. With several publications already gaining traction in the academic community, he is on track for significant citation growth and thought leadership in applied quantum chemistry and nanomedicine.

🧪 Research Skills

Dr. Selvam demonstrates a robust technical skill set that seamlessly bridges experimental techniques with computational modeling. He excels in electrochemical characterization using systems like Iviumstat, Biologics, and PARSTAT. His expertise in structural analysis includes SEM, TEM, XRD, EXAFS, and Raman spectroscopy. Additionally, he is proficient in High-Performance Liquid Chromatography (HPLC) and a variety of spectroscopic tools. On the theoretical side, he utilizes DFT simulations, molecular docking, and molecular dynamics, allowing for deep insights into complex reaction mechanisms.

🎓 Teaching Experience

As an Assistant Professor, Dr. Selvam is engaged in mentoring undergraduate and graduate students. He fosters a research-driven learning environment that encourages critical thinking, scientific writing, and interdisciplinary collaboration, essential for shaping future scientists.

🌟Patents

Dr. Selvam holds several patents, including the Chalcogenide Loaded Cobalt MOF for Patulin Mycotoxin Detection (KR Patent 10-2437215), an Electrochemical Biosensing Platform for Rheumatoid Arthritis Biomarker detection (KR Patent 10-2381031), and a Nanocomposite modified electrode for Etidronic acid detection (KR Patent 10-2475238), co-authored with Sungbo Cho and Kyusik Yun. These innovations demonstrate his expertise in biosensing, electrochemical platforms, and biomarker detection.

📘 Legacy and Future Contributions

Dr. Selvam has a strong portfolio of patents, a growing reputation in academic publishing, and a unique ability to synthesize experimental and computational insights. As a thought leader in smart biosensing and energy catalysis, his future contributions are expected to include the development of scalable diagnostic tools for global health, AI-integrated sensor platforms, and further exploration of quantum chemistry for bio-interfaces. His work promises significant advances in both healthcare and energy solutions.

Publications Top Notes

EXAFS and spectroscopic insights into Mn, Tc, and Re-doped phthalocyanines: A multifaceted DFT study of electronic and optical properties

  • Authors: Sathish Panneer Selvam, Zeeshan, Sungbo Cho
    Journal: Surfaces and Interfaces
    Year: 2025

Cerium single atom anchored silver selenide: A high-performance catalyst for hydrogen evolution reaction with ultra-low activation energy and enhanced stability

  • Authors: Sathish Panneer Selvam, Sungbo Cho
    Journal: Surfaces and Interfaces
    Year: 2024

Experimental insights and DFT analysis of metal-free DNA nanocatalyst with enhanced hydrogen evolution via phosphate-mediated proton acceptance

  • Authors: Sathish Panneer Selvam, Shanmugasundaram Kamalakannan, K. Rudharachari Maiyelvaganan, Muthuramalingam Prakash, Sivalingam Gopi, Hansa Mahajan, Kyusik Yun, Sungbo Cho
    Journal: International Journal of Hydrogen Energy
    Year: 2024

Highly Synergistic Co3+ and Pyridinic‐N‐Rich Bifunctional Electrocatalyst for Ultra‐Low Energy-Driven Effective Hydrogen Production and Urea Oxidation

  • Authors: Sathish Panneer Selvam, Sungbo Cho
    Journal: Advanced Sustainable Systems
    Year: 2022

Novel SeS2-loaded Co MOF with Au@PANI comprised electroanalytical molecularly imprinted polymer-based disposable sensor for patulin mycotoxin

  • Authors: Sathish Panneer Selvam
    Journal: Biosensors and Bioelectronics
    Year: 2021

 

André Aimé ATANGANA LIKENE | High energy physics | Best Researcher Award

Dr. André Aimé ATANGANA LIKENE | High energy physics | Best Researcher Award

Research Officer at Research Centre for Nuclear Science and Technology, Institute of Geological and Mining Research | Cameroon

Dr. Atangana Likéné André Aimé is a highly accomplished Research Officer specializing in Nuclear Physics, Dosimetry, and Radiation Protection. Holding a PhD in Physics from the University of Yaoundé I, his academic journey has been marked by excellence in both teaching and research. He currently works at the Research Center of Nuclear Science and Technology, part of the Institute of Geological and Mining Research, contributing to cutting-edge scientific endeavors in the field of nuclear science.

👨‍🎓Profile

Scopus 

ORCID

Early Academic Pursuits 🎓

Dr. Atangana’s academic foundation was built at the University of Douala, where he completed his Master’s Degree in Physics with a focus on Physics of Matter and Radiation. His initial research projects, including an experimental study on atoms and molecules in strong laser fields, showcased his deep engagement with experimental physics. He also earned a D.E.A in Physics from the same university, demonstrating his growing specialization in mathematical physics.

His stellar academic performance earned him multiple Academic Excellence Scholarships, which facilitated his progression through advanced studies. With a Bachelor’s degree in Physics and Mechanics, he laid the groundwork for a future in high-level research and teaching.

Professional Endeavors 💼

Dr. Atangana’s professional journey spans both academic teaching and practical research applications. Early in his career, he contributed as a part-time high school teacher, teaching Physics and Mathematics to secondary school students. His teaching journey expanded into higher education where he worked as a part-time lecturer at Einstein Group, and later at the University of Yaoundé I, where he currently teaches Nuclear and Atomic Physics to undergraduate students. Simultaneously, his professional experience has been diverse, from working at the National Radiation Protection Agency (NRPA) to being part of the Institute of Geological and Mining Research, where he works with ionizing radiation metrology in alpha, beta, and gamma spectrometry.

Contributions and Research Focus 🔬

Dr. Atangana’s research focuses on Nuclear Physics, Quantum Chromodynamics, and Particle Physics, particularly in hadron spectroscopy and the quark model. His doctoral research on the effect of topological defects on hadron spectra and quark confinement has significantly advanced the field. He also explores non-gravitational scalar fields and their impact on particle interactions in a Schwarzschild-like space-time. His contributions also span environmental radiation studies, where he has analyzed indoor radon concentrations and measured background radiation in uranium-rich zones in Cameroon.

Impact and Influence 🌍

Dr. Atangana’s research has had a lasting impact on both the academic community and global scientific organizations. He is a member of prominent scientific societies such as the Cameroon Radiological Protection Society (CRPS), African School of Physics (ASP), and the American Physical Society (APS). His collaborations with international research bodies like the International Atomic Energy Agency (IAEA) and his presentations at global conferences have enhanced international cooperation in radiation protection and nuclear science. His scientific publications in leading journals have advanced nuclear energy research and theoretical physics, focusing on heavy quarkonium, meson spectroscopy, and spin interactions in topological defect spaces.

Awards and Honors 🏆

Dr. Atangana has earned numerous awards and recognitions, including multiple Academic Excellence Scholarships and the distinction of being the Top of the 2015 Master’s Degree Promotion at the University of Douala. His sustained commitment to academic excellence and scientific discovery continues to earn him accolades both locally and internationally.

Teaching Experience 🍎

Dr. Atangana has substantial experience in teaching at both secondary and higher education levels. His roles as a part-time high school teacher and later as a university lecturer in Nuclear Physics reflect his passion for educating the next generation of physicists. He has been involved in mentoring undergraduate students and preparing course materials in Atomic and Nuclear Physics.

Research Skills 🛠️

With expertise in symbolic computations, scientific computing, and mathematical modeling, Dr. Atangana is proficient in tools such as Python, MATLAB, SageMath, Maple, and FORTRAN. His proficiency in machine learning applications for hadron spectroscopy is a key strength in his research. He also has hands-on experience in spectrometry and radiation protection techniques, making him an invaluable asset to his field.

Legacy and Future Contributions 🔮

Looking ahead, Dr. Atangana aims to continue his pioneering work in nuclear physics and radiation protection. He is committed to exploring new dimensions of quantum chromodynamics, advancing particle physics models, and contributing to sustainable energy solutions. His ongoing research promises to shape the future of nuclear science, particularly in the context of global radiation safety and environmental health. His future contributions will undoubtedly further his legacy in physics research and education, inspiring young minds and influencing both scientific communities and policy-making bodies in radiation protection.

Publications Top Notes

Effect of spin-spin interaction and fractional order on heavy pentaquark masses under topological defect space-times

  • Authors: D. Nga Ongodo, A. A. Atangana Likéné, J. M. Ema’a Ema’a, P. Ele Abiama, G. H. Ben-Bolie
    Journal: The European Physical Journal C
    Year: 2025

Hyperbolic tangent form of sextic potential in Bohr Hamiltonian: Analytical approach via extended Nikiforov–Uvarov and Heun equations

  • Authors: D. Nga Ongodo, A. Atangana Likéné, A. Zarma, J. M. Ema’a Ema’a, P. Ele Abiama, G. H. Ben-Bolie
    Journal: International Journal of Modern Physics E
    Year: 2025

Angular momentum dependence of nuclear decay of radon isotopes by emission of 14^{14}C nuclei and branching ratio relative to α\alpha -decay

  • Authors: A. A. Atangana Likéné, J. E. Ndjana Nkoulou II, Saïdou
    Journal: The European Physical Journal Plus
    Year: 2025

Non-compact extra dimensions and flavor dependence of cc̄ and bb̄ mesons masses in a hot QCD medium with lattice, LO and NLO parametrizations of the Debye mass

  • Authors: A. A. Atangana Likéné, L. B. Ungem, D. C. Mbah, D. Nga Ongodo, R. Houzibe, F. B. Djeuyi Ndafeun
    Journal: Modern Physics Letters A
    Year: 2025

Quantum chromodynamics Lagrangian density and SU(3) gauge symmetry: A fractional approach

  • Authors: A. A. Atangana Likéné, D. Nga Ongodo, P. Mah Tsila, A. Atangana, G. H. Ben-Bolie
    Journal: Modern Physics Letters A
    Year: 2024

 

 

 

Dieudonné NGA ONGODO | High energy physics | Best Researcher Award

Assist. Prof. Dr. Dieudonné NGA ONGODO | High energy physics | Best Researcher Award

University of Yaoundé I | Cameroon

Dr. Dieudonné NGA ONGODO is a Cameroonian nuclear physicist and Senior Lecturer at the University of Yaoundé I, Faculty of Science, Department of Physics. With over a decade of professional and academic engagement, Dr. Nga Ongodo stands out as a prominent scholar, researcher, and educator, whose work spans nuclear instrumentation, quantum mechanics, and radiation protection. His contributions are firmly rooted in both fundamental physics and applied technologies, making him a vital figure in the African and international scientific communities.

👨‍🎓Profile

Scopus 

ORCID

🎓 Early Academic Pursuits

Dr. Nga Ongodo’s academic foundation was laid with a Baccalaureate in Mathematics and Physics from Lycée d’Obala (2004–2005). He then enrolled at the University of Yaoundé I, completing his Undergraduate studies in Physics (2005–2010), followed by a Master’s Degree in Physics (2011–2013), and later earning a PhD in Nuclear Physics in 2020. His academic trajectory reflects a strong grounding in core and advanced physics disciplines, preparing him for a research-intensive career.

🧑‍🏫 Professional Endeavors

Over more than a decade, Dr. Nga Ongodo has built a distinguished academic career. Since May 2023, he serves as a Senior Lecturer at the University of Yaoundé I, having previously worked as an Assistant Lecturer (2021–2023) and Part-time Teacher (2014–2021) in the same department. Beyond academia, he also lectures at Institut Universitaire la Vision and previously at Institut Universitaire Sup Prépa, further demonstrating his commitment to educational development. Additionally, he plays a pivotal role in public contract regulation as a recognized expert for both the Regulatory Agency of Public Contracts (ARMP) and the Ministry of Public Contracts.

🧪 Contributions and Research Focus

Dr. Nga Ongodo is a dynamic and innovative researcher whose work spans several cutting-edge domains in physics. His expertise includes nuclear instrumentation, FPGA systems, digital signal and pulse processing (DSP, DPP), and radiation dosimetry. He has also contributed to the use of artificial neural networks in analyzing mass spectra, and explores quantum mechanics and SU(3) symmetry through advanced mathematical models. By integrating fractional calculus, Bohr Hamiltonian formalism, and quark models, he provides deep insight into atomic nuclei and particle interactions. His research bridges theory and application, advancing nuclear physics both locally and globally.

🌍 Impact and Influence

Dr. Nga Ongodo’s scientific influence transcends national borders. He has participated in prominent international workshops and seminars, including the African School of Fundamental Physics (Rwanda, 2016) and IAEA-AFRA training sessions across Cameroon and Ethiopia. His groundbreaking publications are featured in top-tier journals such as the European Physical Journal, Modern Physics Letters, and the International Journal of Modern Physics, attesting to the global relevance and visibility of his work.

📈 Academic Citations

With 13 peer-reviewed articles published between 2019 and 2025, Dr. Nga Ongodo’s work has received increasing academic attention. He has co-authored papers on topics including heavy pentaquark masses, Bohr Hamiltonian models, and charmonium resonances using both classical physics and AI techniques. His collaborations with other leading African physicists highlight his role as a central figure in nuclear modeling and quantum structure analysis.

🛠️ Research Skills

Dr. Nga Ongodo’s research expertise is deeply rooted in a diverse and robust technical skill set that empowers both his investigative pursuits and pedagogical approach. He possesses advanced mastery in nuclear and numerical electronics, as well as specialized experience in detector electronics and FPGA (Field Programmable Gate Array) systems, which are vital for real-time data acquisition and signal processing in nuclear experiments. His strong foundation in mathematical modeling, particularly through sophisticated frameworks such as the Nikiforov–Uvarov and Heun methods, allows him to derive analytical solutions for complex quantum systems.

👨‍🏫 Teaching Experience

A passionate and student-centered educator, Dr. Nga Ongodo has taught an extensive range of subjects including Quantum Physics, Electromagnetism, Fluid Mechanics, Thermodynamics, and Radiation Protection. He is well-versed in both theoretical instruction and practical laboratory supervision. His active engagement in pedagogical development seminars, such as the 2022 Competency-Based Teaching Workshop, showcases his dedication to educational innovation and student success.

🏅 Awards and Honors

While formal awards are not explicitly listed, Dr. Nga Ongodo’s appointments and invited participation in elite research events, including those organized by C.E.T.I.C and the IAEA, serve as implicit recognition of his expertise and leadership. His invitation to speak at the 2025 Radiological Protection Workshop in Cameroon underscores his role as a national thought leader in nuclear safety and public health.

🚀 Legacy and Future Contributions

Looking ahead, Dr. Nga Ongodo is set to play an even more significant role in African scientific development, particularly in areas of radiation protection, data-driven nuclear modeling, and sustainable electronics for physics research. His recent work involving Artificial Neural Networks, topological quantum mechanics, and quantum gravity analogues points to a future of interdisciplinary research that bridges AI, quantum systems, and high-energy physics. His legacy will not only be defined by the depth of his research, but also by his transformational impact on Cameroon’s scientific infrastructure, his mentorship of emerging scholars, and his efforts to elevate African research onto the global stage.

Publications Top Notes

Effect of spin-spin interaction and fractional order on heavy pentaquark masses under topological defect space-times

  • Authors: D. Nga Ongodo, A. A. Atangana Likéné, J. M. Ema’a Ema’a, P. Ele Abiama, G. H. Ben-Bolie
    Journal: The European Physical Journal C
    Year: 2025

Hyperbolic tangent form of sextic potential in Bohr Hamiltonian: Analytical approach via extended Nikiforov–Uvarov and Heun equations

  • Authors: D. Nga Ongodo, A. Atangana Likéné, A. Zarma, J. M. Ema’a Ema’a, P. Ele Abiama, G. H. Ben-Bolie
    Journal: International Journal of Modern Physics E
    Year: 2025

Electric quadrupole transitions of triaxial nuclei via the Bohr Hamiltonian within the screened Kratzer–Hellmann potential

  • Authors: D. Nga Ongodo, A. A. Atangana Likéné, A. Zarma, S. Haman Adama, J. M. Ema’a Ema’a, G. H. Ben-Bolie
    Journal: The European Physical Journal Plus
    Year: 2025

Non-compact extra dimensions and flavor dependence of cc̄ and bb̄ mesons masses in a hot QCD medium with lattice, LO and NLO parametrizations of the Debye mass

  • Authors: A. A. Atangana Likéné, L. B. Ungem, D. C. Mbah, D. Nga Ongodo, R. Houzibe, F. B. Djeuyi Ndafeun
    Journal: Modern Physics Letters A
    Year: 2025

Quantum chromodynamics Lagrangian density and SU(3) gauge symmetry: A fractional approach

  • Authors: A. A. Atangana Likéné, D. Nga Ongodo, P. Mah Tsila, A. Atangana, G. H. Ben-Bolie
    Journal: Modern Physics Letters A
    Year: 2024

Hanyang Li | High energy physics | Best Researcher Award

Prof. Hanyang Li | High energy physics | Best Researcher Award

Lab Director at Harbin Engineering University | China

Dr. Hanyang Li is a dedicated researcher and professor specializing in optical microcavity and laser propulsion technologies. With a background rooted in chemical engineering and physical chemistry, his journey spans top academic institutions and international collaborations. Currently a Professor at the College of Physics and Optoelectronic Engineering, Harbin Engineering University, Dr. Li integrates scientific innovation with practical applications, mentoring the next generation of photonics researchers and contributing extensively to high-impact journals.

👨‍🎓Profile

Scopus

📘 Early Academic Pursuits

Dr. Li’s academic foundation was laid at Heilongjiang University, where he earned a B.S. in Applied Chemistry (2003–2007). He then pursued a M.Eng. in Physical Chemistry (2007–2009) followed by a Ph.D. in Chemical Engineering and Technology (2009–2015) at the prestigious Harbin Institute of Technology. These formative years shaped his deep interest in optical systems, nanostructures, and laser-matter interactions, driving him toward cutting-edge interdisciplinary research.

💼 Professional Endeavors

Dr. Li has demonstrated exceptional academic progression, beginning as a Lecturer in the College of Science at Harbin Engineering University (2017–2021), rising to Associate Professor (2021–2024), and ultimately Professor in 2024. His global outlook is reflected in his role as a Visiting Research Fellow at the University of North Carolina at Charlotte (USA) from 2019–2020. These roles have not only enriched his teaching and research but also expanded his international collaborations.

🔬 Contributions and Research Focus

Dr. Li’s research revolves around fiber sensors, microresonators, whispering-gallery modes (WGM), and nano/microlaser systems. He has led groundbreaking projects funded by the National Natural Science Foundation of China, the Heilongjiang Provincial Foundation, and the China Postdoctoral Science Foundation. His work in co-doped nanofiber lasers, enzyme reaction monitoring in microcavities, and micropropulsion dynamics continues to push the boundaries of photonic innovation.

🌍 Impact and Influence

With over 110 SCI-indexed publications, including more than 50 as first/corresponding author, Dr. Li has significantly influenced the fields of microcavity optics and laser-based sensing systems. His H-index of 21 attests to the scholarly impact of his work. Two of his papers have earned cover-page recognition in ACS Photonics and Liquid Crystals, underscoring their novelty and scientific relevance. He also serves as a technical consultant to Harbin Kaimeisi Technology Co., Ltd., bridging academic research with industrial development.

📊 Academic Citations

Dr. Li’s research is widely cited in international journals, particularly in optics, nanomaterials, and sensor technologies. His works in Optics Letters, ACS Photonics, Applied Physics Letters, and Journal of Materials Chemistry C are frequently referenced, reflecting his status as a thought leader in integrated photonic systems and functional microdevices.

🧪 Research Skills

Dr. Li’s research arsenal includes optical design, microresonator fabrication, laser pulse diagnostics, and nanomaterial synthesis. He is adept in developing fiber-optic devices, performing real-time sensing, and constructing phase-change materials-based systems. His strength lies in multidisciplinary integration, combining chemistry, physics, and engineering to address fundamental and applied challenges.

📚 Teaching Experience

Since 2021, Dr. Li has taught “Microcavity Photonics Devices and Applications” at the graduate level and “Microcavity Optics” for undergraduates at Harbin Engineering University. These courses are crafted to empower students with both theoretical insight and experimental practice, preparing them to excel in modern photonics research.

🏅 Awards and Honors

Dr. Li’s academic excellence has been recognized through multiple research grants and fellowships, including support from the China Postdoctoral Science Foundation and the Natural Science Foundation of Heilongjiang Province. He is also an esteemed member of the Chinese Society for Optical Engineering, further attesting to his reputation in the scientific community.

🌟 Legacy and Future Contributions

Looking ahead, Dr. Li aims to deepen his work on optical microdevices and laser-driven micropropulsion, with plans to develop next-gen photonic systems for biomedical, aerospace, and energy applications. His commitment to scientific excellence, industry collaboration, and student mentorship positions him as a key figure in shaping the future of photonic technology in China and beyond.

Publications Top Notes

The experimental study on concentration disturbance pattern and conversion mechanism of underwater plasma laser propulsion

  • Authors: Y. Ge, X. Tang, Y. Chen, X. Yang, H. Li
    Journal: Optics and Lasers in Engineering
    Year: 2025

Fiber Bragg grating-based method for underwater object angular measurement

  • Authors: H. Li, Y. Song, J. Wang, X. Dou
    Journal: Measurement Science and Technology
    Year: 2025

Observation of microsphere clusters separated by pulsed laser in water environment

  • Authors: Y. Ge, G. Zhou, X. Yang, J. Sun, H. Li
    Journal: Laser Physics
    Year: 2025

Observation of spectral splitting of whispering-gallery modes in asymmetrical photonic molecules

  • Authors: J. Wang, J. Sun, Y. Zhang, Z.I. Liu, H. Li
    Journal: Optics Letters
    Year: 2024

Bragg grating-based all-optical continuous two-dimensional force perceptron

  • Authors: H. Li, Z. Wu, J. Dai, G. Zhou, J. Sun
    Journal: Measurement Science and Technology
    Year: 2024