Vien Vo Van | High-Energy Physics | Best Researcher Award

Assoc. Prof. Dr. Vien Vo Van | High-Energy Physics | Best Researcher Award

Lecturer at Tay Nguyen University | Vietnam

Dr. Vo Van Vien is a Senior Lecturer at Tay Nguyen University, specializing in Theoretical Physics with an emphasis on Neutrino Physics and Standard Model Extensions. He has an impressive academic background with a Bachelor’s degree from Vinh University, a Master’s from Ha Noi National University of Education, and a Doctorate from the Institute of Physics, Vietnam. His research primarily focuses on high-energy physics and particle phenomenology.

👨‍🎓Profile

Google scholar

Scopus

ORCID

Early Academic Pursuits 📚

Dr. Vien’s academic journey began with a Bachelor’s degree in Theoretical Physics from Vinh University (1999-2003), followed by a Master’s degree in Theoretical Physics and Mathematical Physics from Ha Noi National University of Education (2006-2008). He then pursued a PhD at the Institute of Physics (2009-2014), where his research deepened his expertise in neutrino physics and discrete symmetry models.

Professional Endeavors 💼

Dr. Vien has been a Senior Lecturer at Tay Nguyen University since 2004, where he continues to teach and mentor the next generation of physicists. His academic position has allowed him to lead several high-impact research projects in particle physics, neutrino mass mixing, and flavor symmetries. Notably, he has been the Principal Investigator for multiple funded projects including studies on lepton and quark mixings in extended Standard Models.

Contributions and Research Focus 🔬

Dr. Vien’s research contributions have been pivotal in extending the Standard Model, especially in neutrino physics, particle mass mixing, and discrete symmetries. His projects have explored a range of models like B-L models, flavor symmetries (e.g., A4, S4, Z4), and the muon anomaly. He has also contributed significantly to understanding neutrino oscillation phenomenology and the implications for dark matter in various extended models.

Impact and Influence 🌍

Dr. Vien’s work has significantly impacted the field of particle physics and neutrino phenomenology. His research on neutrino mass, mixing, and symmetry breaking models has been widely cited and recognized in global academic circles. His collaborations with prominent researchers and his leadership in international research projects underscore his influence in advancing high-energy physics.

📑 Academic Cites

Through his cutting-edge research, Dr. Vien has garnered significant recognition within the scientific community. His publications and citations have had a noticeable impact on the development of high-energy physics and mathematical models used in modern particle physics. His research has been cited by peers, especially those exploring theoretical extensions of the Standard Model and the neutrino sector.

Research Skills 🛠️

Dr. Vien has exceptional skills in Theoretical Physics, particularly in neutrino phenomenology, standard model extensions, and discrete symmetries. His expertise in mathematical models is complemented by proficiency in high-energy particle simulations and advanced theoretical methods, ensuring his research is at the cutting edge of particle physics.

Teaching Experience 🧑‍🏫

As a Senior Lecturer at Tay Nguyen University, Dr. Vien has mentored and inspired numerous students in theoretical physics and mathematical physics. He is known for his innovative teaching methods, combining advanced theoretical concepts with practical examples to help students understand complex phenomena in high-energy physics. His dedication to education ensures that his students are well-prepared to pursue careers in both academia and industry.

Awards and Honors 🏅

Dr. Vien has received several awards and accolades for his academic excellence and research leadership, including:

  • National Foundation for Science and Technology Development grants for his research on Fermion mass and mixing.

  • Tay Nguyen University Principal Investigator awards for his work in extending the Standard Model and exploring new physics.

  • Recognition in peer-reviewed journals for his groundbreaking research in neutrino physics and dark matter.

Legacy and Future Contributions 🌠

Dr. Vo Van Vien’s legacy lies in his substantial contributions to particle physics and his dedication to educating future generations of physicists. His ongoing research promises to further unravel the complexities of neutrino physics, dark matter, and the Standard Model extensions. With a vision of pushing the boundaries of high-energy physics, Dr. Vien is poised to make lasting contributions to theoretical physics that could have a profound impact on how we understand the universe.

Publications Top Notes

Realistic fermion mass and mixing in U(1)L model with A4 flavor symmetry for Majorana neutrino

  • Authors: V.V. Vien, Vo Van
    Journal: Indian Journal of Physics
    Year: 2025

Lepton masses and mixings with broken μ−τ symmetry in a B – L extended 3HDM based on (Z2×Z4)⋊Z2 (I) symmetry

  • Authors: V.V. Vien, Vo Van
    Journal: Chinese Journal of Physics
    Year: 2025

The μ−τ reflection symmetry breaking in a B−L model with T7×Z8×Z2 symmetry

  • Authors: V.V. Vien, Vo Van
    Journal: Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics
    Year: 2024

A4×Z2×Z4 flavor symmetry model for neutrino oscillation phenomenology

  • Authors: V.V. Vien, Vo Van
    Journal: Revista Mexicana de Fisica
    Year: 2024

Fermion masses and mixings and g − 2 muon anomaly in a Q6 flavored 2HDM

  • Authors: V.V. Vien, Vo Van, H.N. Long, A.E. Cárcamo Hernández, J. Marchant González
    Journal: Nuclear Physics, Section B
    Year: 2024

 

 

 

SHARJEEL AHMED | Particle Experiments | Best Researcher Award

Dr. SHARJEEL AHMED | Particle Experiments | Best Researcher Award

PhD Researcher at University of Science and Technology China (USTC), Chinese Academy of Science,Institute of Metal Research (CAS, IMR) | China

Dr. Sharjeel Ahmed is a PhD Researcher at the University of Science and Technology China (USTC), Chinese Academy of Science, Institute of Metal Research (CAS, IMR), China. He completed his master’s degree from Donghua University (DHU), China, and earned his PhD from USTC. His research specializes in photoresponsive nanomaterials and smart fluorescence coatings, focusing on oxygen-deficient nanomaterials for photocolorswitching properties and early-stage corrosion detection.

👨‍🎓Profile

Scopus

ORCID

Early Academic Pursuits 🎓

Dr. Ahmed’s academic journey began at Donghua University (DHU), where he obtained his master’s degree. Building on this foundation, he continued his research at USTC, a leading institution in nanotechnology and materials science. His early academic work laid the groundwork for his specialization in nanomaterials and coating technologies that can respond to environmental triggers like light, opening new avenues in corrosion detection and smart materials.

Professional Endeavors 🏢

Throughout his professional career, Dr. Ahmed has collaborated with eminent scholars, such as Prof. Liu Fuchun from Northwestern Polytechnical University, and has contributed significantly to research projects focused on the preparation technology of micro-nano structures and self-repair mechanisms for coatings. His work bridges academic research and industry applications, ensuring his contributions are impactful both in laboratories and in practical solutions.

Contributions and Research Focus 🔬

Dr. Ahmed’s main research interests lie in photoresponsive nanomaterials, particularly in smart fluorescence coatings and early-stage corrosion detection. He has developed oxygen-deficient nanomaterials for photocolorswitching properties, which react to light stimuli to produce fluorescent signals when exposed to corrosive environments. These innovations have been pivotal in solving the limitations of traditional coatings, which lack intelligent early-warning systems.

He has authored 21 research articles in high-impact journals, including top publications like Chemical Engineering Journal, Nanoscale, and Colloids and Surfaces A. Additionally, he holds a patent (CN111394094-A; CN111394094-B) for a dual-band light-responsive reversible color solution, showcasing his innovative contributions to smart materials.

Impact and Influence 🌍

Dr. Ahmed’s research has had a substantial impact on materials science, especially in the development of smart coatings for corrosion detection. His fluorescent smart coatings are expected to revolutionize industries such as aerospace, automotive, and marine engineering, where early detection of corrosion can prevent extensive damage and improve material longevity. His work has been widely cited and continues to influence both academic research and practical applications in coatings technology.

Academic Cites 📚

With 422 citations and an h-index of 10, Dr. Ahmed has garnered recognition for his influential contributions to the field of nanomaterials and coatings technology. His papers, particularly as the first author, in journals such as Materials Chemistry and Physics and Journal of Materials Science and Technology, reflect the significant impact of his work within the scientific community.

Research Skills 🛠️

Dr. Ahmed has mastered several advanced techniques in nanomaterials preparation, including synthesis of oxygen-deficient materials, fluorescence analysis, and computational modeling. His research is not only grounded in experimental work but also utilizes computational science to predict the behavior of materials under various environmental conditions. His ability to combine both experimental and computational approaches gives his work a robust scientific foundation.

Teaching Experience 👨‍🏫

Though primarily a researcher, Dr. Ahmed’s teaching experience is an integral part of his professional journey. At USTC, he has contributed to educating the next generation of materials scientists, particularly in the area of nanomaterials and smart coatings. He mentors students and provides them with invaluable guidance on research methodology and cutting-edge technologies in nanotechnology.

Awards and Honors 🏅

Dr. Ahmed’s excellence in research has earned him recognition in the form of publications in top-tier journals and inclusion in major collaborative projects. Although specific awards are not listed, his patent and high citation index suggest that his work is highly respected within the scientific community. His ongoing research and contributions place him in a strong position to receive further academic and professional accolades.

Legacy and Future Contributions 🔮

Dr. Sharjeel Ahmed is paving the way for future innovations in smart materials, particularly in nanomaterials that are both responsive and intelligent. As his work continues to evolve, it will likely contribute to environmentally sustainable and cost-effective solutions for industries ranging from coatings and corrosion detection to advanced textiles. His future endeavors may include expanding his patent portfolio, collaborating with industries, and broadening his research into emerging areas such as energy storage materials or biodegradable coatings.

Publications Top Notes

  • A review of advancement in fluorescence-based corrosion detection for metals and future prospects
    Authors: Sharjeel Ahmed, Hongwei Shi, Mustehsin Ali, Imran Ali, Fuchun Liu, En-Hou Han
    Journal: Journal of Materials Science & Technology
    Year: 2025

  • Epoxy coating containing CoMOF@MBT metal-organic framework for active protection of aluminum alloy
    Authors: Nwokolo, Izuchukwu K.; Shi, Hongwei; Ikeuba, Alexander I.; Liu, Fuchun; Ahmed, Sharjeel; Zhang, Wanyu
    Journal: Surface and Coatings Technology
    Year: 2024

  • Modified Graphene Micropillar Array Superhydrophobic Coating with Strong Anti-Icing Properties and Corrosion Resistance
    Authors: Zhang, Wanyu; Liu, Fuchun; Li, Yushan; Chen, Tao; Nwokolo, Izuchukwu Kenneth; Ahmed, Sharjeel; Han, En-Hou
    Journal: Coatings
    Year: 2024

  • UV light-triggered fluorescence corrosion sensing coatings for AA2024-T3 based on 8-hydroxyquinline loaded vanadium oxide nanorods
    Authors: Sharjeel Ahmed
    Journal: Colloids and Surfaces A: Physicochemical and Engineering Aspects
    Year: 2024

  • Catalytic degradability and anti-permeability of peelable coating based on organophosphate nerve agent simulants
    Authors: Gao, Ningjie; Ahmed, Sharjeel; Zhang, Wanyu; Li, Jiwen; Liu, Fuchun
    Journal: Colloids and Surfaces A: Physicochemical and Engineering Aspects
    Year: 2023

 

Shewa Getachew | High energy physics | Editorial Board Member

Mr. Shewa Getachew | High energy physics | Editorial Board Member

Lecturer at Wolkite University | Ethiopia

Shewa Getachew Mamo is a dedicated Physics Lecturer and researcher with a specialized focus on optical properties of nanocomposites, material science, refractive index, and group velocity. Passionate about advancing scientific knowledge, he is committed to both academic excellence and innovative research in the realm of condensed matter physics. His expertise extends to investigating local field enhancements, optical properties of nanostructures, and exploring nanoparticle-based materials and geometries.

👨‍🎓Profile

ORCID

Early Academic Pursuits 🎓

Shewa’s academic journey began at Wolkite University, where he earned his Bachelor’s degree in Physics (2016-2019) and later pursued a Master’s degree in Condensed Matter Physics (2022-2023). Throughout his education, he developed a strong foundation in experimental and theoretical physics, which propelled him into a career of teaching and research in the field.

Professional Endeavors 💼

Currently, Shewa serves as a Physics Teacher at Wolkite University (since December 2023). In this role, he is responsible for preparing and presenting undergraduate and sometimes postgraduate courses in various areas of physics, including mechanics, electromagnetism, thermodynamics, quantum mechanics, and material science. He plays a vital role in designing curricula, developing lesson plans, and selecting relevant textbooks to ensure effective learning outcomes. His academic influence extends to advising students on academic matters and guiding them through research projects.

Contributions and Research Focus 🔬

Shewa’s research focus is primarily on the optical properties of core-shell spherical nanocomposites and local field enhancements. His research aims to explore the interaction between optical fields and nanocomposites, as well as investigating the influence of depolarization on the local field enhancement factor in passive and active composites with pure metal spheroidal nanoinclusions. One of his notable research areas includes optical bistability in nanoparticle composites and the role of tunable dielectric cores in cylindrical core-shell nanocomposites.

Impact and Influence 🌍

Shewa’s research has led to significant contributions to the field of material science and nanotechnology, specifically in understanding the optical properties of nanostructured materials. His findings have been widely discussed in the scientific community, with numerous publications in prominent journals. He is committed to staying updated with the latest advancements in condensed matter physics and nanotechnology, consistently striving to push the boundaries of existing scientific knowledge.

Academic Cites 📚

Shewa’s work has been widely cited, with his contributions being recognized across several prestigious journals. His publications include studies such as:

  • Tsegaye, A., & Getachew, S. (2024). “Investigation Optical Properties of ZnTe@Ag Core-Shell Spherical Nanocomposites Within Varies Dielectric Host Matrices”. Advances in Materials, 13(4), 80-91.
  • Getachew, S. (2024). “Effect of Tunable Dielectric Core on Optical Bistability in Cylindrical Core-Shell Nanocomposites”. Advances in Condensed Matter Physics, 2024(1), 9911970.
  • Getachew, S. (2024). “Investigation of Refractive Index and Group Velocity Metal Coated Dielectric Spherical Nanocomposites”. Iranian Journal of Physics Research, 24(3), 75-87.

His academic citations are a testament to his research impact and scientific contributions.

Research Skills 🔍

Shewa possesses advanced knowledge in condensed matter physics, with strong analytical and problem-solving skills. He is proficient in a range of experimental and theoretical physics techniques. His technical expertise includes programs such as Matlab, Word, Excel, PowerPoint, OpenOffice, and Latex, and he is skilled in computer languages like Python, Fortran, and Gnuplot. He also has experience with Unix systems and software like xmgrace, showcasing his comprehensive research toolset.

Teaching Experience 📘

Shewa’s teaching experience is extensive, having taught various physics courses at the undergraduate and postgraduate levels. He designs engaging lesson plans and works closely with students to help them grasp key concepts in physics. By preparing and grading exams, assignments, and laboratory reports, he ensures students receive constructive feedback for their academic growth. His role as a mentor goes beyond the classroom, advising students on their academic and career paths and supervising their research projects.

Legacy and Future Contributions 🌱

Shewa is committed to leaving a lasting legacy in the fields of nanotechnology, material science, and condensed matter physics. His ongoing research will likely continue to make valuable contributions to the understanding of optical properties and nanocomposite materials. Looking ahead, Shewa is dedicated to mentoring the next generation of scientists and physicists, sharing his knowledge and advancing the boundaries of nanophysics and material science research. Through continuous publication and collaboration, his work is set to influence the scientific community for years to come.

Publications Top Notes

Effect of Tunable Dielectric Function of the Core on Optical Bistability in Small Spherical Metal-Dielectric Composite

  • Authors: Hawi Aboma, Shewa Getachew, Sisay Shewamare
    Journal: Ethiopian Journal of Applied Sciences
    Year: 2025

Investigation Optical Properties of ZnTe@Ag Core-Shell Spherical Nanocomposites Within Varies Dielectric Host Matrices

  • Authors: Tsegaye Atnaf, Shewa Getachew
    Journal: Advances in Materials
    Year: 2024

Investigating the Optical Bistability of Pure Spheroidal Nanoinclusions in Passive and Active Host Matrices

  • Authors: Shewa Getachew, Girma Berga
    Journal: Canadian Journal of Physics
    Year: 2024

Investigation of Refractive Index and Group Velocity Metal Coated Dielectric Spherical Nanocomposites Within Passive and Active Dielectric Cores

  • Authors: Shewa Getachew
    Journal: Iranian Journal of Physics Research (IJPR)
    Year: 2024

Effect of Tunable Dielectric Core on Optical Bistability in Cylindrical Core–Shell Nanocomposites

  • Authors: Shewa Getachew, Junjie Li
    Journal: Advances in Condensed Matter Physics
    Year: 2024

 

 

Faustino WAHAIA | Quantum Physics | Best Researcher Award

Dr. Faustino WAHAIA | Quantum Physics | Best Researcher Award

Millennium Institte for Research in Optics (MIRO), Institute of Physics , ANID and PUC | Chile

Dr. Faustino Wahaia is a distinguished researcher and academic professional in the fields of lasers, quantum optics, and terahertz (THz) photonics. He is currently affiliated with the Institute of Physics at Pontificia Universidad Católica de Chile as part of the Millennium Institute for Research in Optics (MIRO). His research has had a significant impact in the realms of biomedical applications, nanomaterials characterization, and advanced laser technologies. Faustino’s multidisciplinary expertise integrates lasers, ultrafast systems, and photonics, contributing to both theoretical and practical advancements.

👨‍🎓Profile

Scopus

ORCID

Early Academic Pursuits 📚

Dr. Wahaia’s academic journey has been remarkable, marked by a robust educational foundation across multiple international institutions. He earned his Ph.D. in Engineering Physics from the University of Porto in Portugal, with his dissertation focusing on spectroscopic and imaging techniques using the terahertz frequency band for biomedical applications. His pursuit of knowledge began with an MSc in Physics Engineering from the University of Lisbon – IST, where he specialized in the diagnostic and control of terawatt laser systems. Faustino’s academic journey expanded further through his research at University of Sofia and the Center for Physical Sciences and Technology in Vilnius, Lithuania. His early academic pursuits laid the groundwork for his cutting-edge research in THz photonics and quantum optics.

Professional Endeavors 🏢

Throughout his career, Dr. Wahaia has held prestigious positions at various research institutes across the globe. He has contributed significantly to the Institute for Nanotechnology and Nano-Sciences in Porto, Portugal, and Center for Physical Sciences and Technology in Vilnius, Lithuania. His work has focused on developing and characterizing ultrashort pulse lasers, THz spectroscopic systems, and biomedical imaging technologies. His role in the Institute for Research and Innovation in Health (i3S) reflects his commitment to applying his scientific expertise to real-world problems in biomedical science, particularly through terahertz techniques for nanomaterials and biomedical studies.

Contributions and Research Focus 🔬

Dr. Wahaia’s research spans several cutting-edge technologies, such as ultrafast lasers, THz communications, and spectroscopic techniques like Raman spectroscopy and ellipsometry. His work in terahertz photonics for biomedical applications, hazardous residue detection, and pharmaceutical quality assessment has had substantial contributions to fields such as materials science, food safety, and security. Additionally, Faustino has delved deeply into quantum optics, advancing the understanding of laser-matter interactions, plasma physics, and spectral selection devices.

Impact and Influence 🌍

Dr. Wahaia’s work has influenced several scientific and industrial domains, notably in biomedical diagnostics, photonics-based security systems, and advanced materials research. His terahertz imaging systems and laser-based technologies have been groundbreaking in medical imaging and nanomaterials characterization. Faustino’s contributions to nanotechnology and THz photonics have significantly shaped the research landscape in these areas. Through his involvement with international organizations and his role in the Millennium Institute for Research in Optics (MIRO), his influence extends globally, positioning him as a key leader in optical and quantum sciences.

Academic Cites 📊

Dr. Wahaia’s research is widely recognized, with numerous citations in highly regarded journals, particularly in optics, quantum photonics, and terahertz science. His peer-reviewed publications in journals such as Frontiers in Physics, Sensors, and MDPI highlight the impact of his contributions to lasers and photonics technologies. Additionally, Faustino has been instrumental in editing influential books such as “Ellipsometry: Principles and Techniques for Materials Characterization” and “Quantum Electronics”, which have further solidified his standing in the scientific community.

Research Skills 💡

Dr. Wahaia possesses a broad range of highly specialized research skills, including:

  • Laser System Design: Expertise in developing terawatt lasers and related technologies.
  • Terahertz Spectroscopy: In-depth experience in terahertz wave generation, detection, and characterization.
  • Biomedical Imaging: Significant contributions to Optical Computed Tomography (OCT) and Raman spectroscopy for medical applications.
  • Materials Characterization: Pioneering work in THz photonics for the study of nanomaterials and pharmaceutical quality control.

His technical expertise spans ultrafast lasers, laser-plasma interactions, pulse amplification techniques, and fiber-coupled terahertz systems.

Teaching Experience 🎓

Dr. Wahaia has made substantial contributions to education through his roles as a doctoral adviser and master’s student mentor. He has supervised cutting-edge research in areas like atomic force microscopy and Raman spectroscopy for biomedical applications. He has taught engineering physics at the University of Maputo and radiological physics at the Higher Institute of Health Sciences of Maputo, contributing significantly to the education and development of future scientists in quantum optics and laser technologies.

Awards and Honors 🏅

Throughout his career, Faustino has been recognized with several prestigious awards and fellowships:

  • Ph.D. Fellowship in Physics Engineering focusing on lasers and quantum optics.
  • MSc Fellowship in diagnostics and wavefront control of terawatt lasers.
  • PostDoc Grant in Ultrafast Lasers and THz Photonics, contributing to biomedical and nanomaterial studies.

These honors reflect his academic excellence and his dedication to advancing the fields of optics, photonics, and terahertz science.

Legacy and Future Contributions 🔮

Dr. Faustino Wahaia’s legacy in laser and THz photonics research is set to continue shaping the future of biomedical imaging, nanomaterials research, and photonics-based technologies. As a mentor, his guidance is ensuring that the next generation of scientists will carry forward his contributions. His future work is poised to further advance applications of terahertz waves in security, agriculture, and pharmaceuticals, and to develop new solutions that address global challenges in healthcare and environmental safety.

Publications Top Notes

Optical properties of millimeter-size metal-organic framework single crystals using THz techniques

  • Authors: Faustino Wahaia, Irmantas Kašalynas, Daniil Pashnev, Gintaras Valušis, Andrzej Urbanowicz, Mindaugas Karaliunas, Dinesh Pratap Singh, Sascha Wallentowitz, Birger Seifert
    Journal: Journal of Molecular Structure
    Year: 2025

Terahertz spectroscopy and imaging for gastric cancer diagnosis

  • Authors: Faustino Wahaia, Irmantas Kašalynas, Linas Minkevičius, Catia Carvalho Silva, Andrzej Urbanowicz, Gintaras Valušis
    Journal: Journal of Spectral Imaging
    Year: 2020

Spectroscopic Terahertz Imaging at Room Temperature Employing Microbolometer Terahertz Sensors and Its Application to the Study of Carcinoma Tissues

  • Authors: Irmantas Kašalynas, Rimvydas Venckevičius, Linas Minkevičius, Aleksander Sešek, Faustino Wahaia, Vincas Tamošiūnas, Bogdan Voisiat, Dalius Seliuta, Gintaras Valušis, Andrej Švigelj, et al.
    Journal: Sensors
    Year: 2016

 

Valeriu Savu | High energy physics | Best Researcher Award

Dr. Valeriu Savu | High energy physics | Best Researcher Award

INOE2000 | Romania

Valeriu Savu is a highly accomplished Technological Development Engineer with an extensive career spanning over 35 years. Currently working at the National Institute of Research and Development for Optoelectronics (INOE2000) in Măgurele, Romania, Savu has demonstrated significant expertise in research and development of electronic modules and optical equipment. His work primarily revolves around lasers, optical fibers, and nanotechnology, and his contributions have been instrumental in advancing applications within telecommunications and military systems.

👨‍🎓Profile

Google scholar

Scopus

ORCID

Early Academic Pursuits 🎓

Savu’s academic journey began at the Polytechnic Institute of Bucharest, where he obtained a Bachelor’s degree in Electronics and Telecommunications in 1986. Later, he pursued a Master’s degree in Nanostructures and Unconventional Engineering Processes at the Polytechnic University of Bucharest (2012-2014). This was followed by the completion of his PhD in Engineering Sciences in 2007-2014 with a thesis on radio pulse selection and processing. His doctoral work focused on cosmic ray detection, emphasizing advanced methodologies for high-precision data processing in complex environments like saline settings.

Professional Endeavors 💼

Savu’s professional career began in 1990 with the Research Design Institute of Electromechanics ICPEM, where he worked on military electronics systems. From 2000 to 2005, he served as an Engineer at Elettra Communications S.A., contributing to the telecommunications sector with an emphasis on testing and verification of military-grade equipment. Since 2005, Savu has been at INOE2000, leading the Department of Engineering Design and Technology, where he focuses on cutting-edge optical devices and laser systems. His experience spans across the creation of advanced lasers, fiber optics, and sensor technologies for both commercial and military applications.

Contributions and Research Focus 🔬

Valeriu Savu has made notable contributions to several fields, including laser technology, optical fibers, and military electronics. He is an expert in the design, testing, and characterization of laser systems, photovoltaics, and nanostructured materials. One of his major research focuses includes Cherenkov radiation detection and the application of nanotechnology for optical sensing. Savu has been involved in the development of innovative sensors, including UV sensors for organic materials and high-voltage power supplies used in medical laser systems.

Impact and Influence 🌍

Savu’s work has significantly advanced the field of optoelectronics and has been applied in medical, military, and telecommunications sectors. He has also patented several devices, including laser protection systems and cosmic radiation detectors for specialized environments like salt mines. His innovative solutions continue to influence scientific research and engineering practices globally.

Academic Cites 📚

Savu’s scholarly work has earned recognition within the academic community, with numerous scientific articles published in prominent journals. His research has appeared in the Romanian Journal of Physics, Romanian Journal of Biophysics, and other prestigious publications. He has contributed to international conferences and his research papers are frequently cited by peers. Notable academic publications include his studies on the Nd:YAG laser for microsurgical ophthalmology and breast tissue investigation using diffuse optical tomography.

Research Skills 🧑‍💻

Valeriu Savu is highly skilled in experimental research, device testing, and the design of optical systems. He has expertise in advanced signal processing, laser characterization, and system integration. Savu’s proficiency with software tools such as OrCAD, FabMaster, NI Multisim, and OriginLab has made him a highly versatile researcher, capable of modeling complex systems and optimizing experimental designs. His experience spans across lab-based investigations, field tests, and cross-disciplinary applications of advanced technologies.

Teaching Experience 🍏

While Savu’s career has been predominantly research-driven, his extensive academic background and technical expertise have made him a valuable contributor to teaching and training in the field of optoelectronics. He has actively mentored students at various stages of their careers, guiding them through engineering problems and sharing his knowledge of cutting-edge technologies. His role as a PhD advisor and involvement in academic projects has contributed to the development of future scientists and engineers in the optoelectronics field.

Awards and Honors 🏆

Throughout his career, Savu has received various certificates and awards recognizing his contributions to both military and civilian applications. His innovative work has been acknowledged by organizations and research institutions, and he has earned several certificates of innovation for his unique designs and systems. Savu’s patents are a testament to his creative and practical contributions to optical technology and laser applications.

Legacy and Future Contributions 🔮

Savu’s extensive body of work leaves a lasting legacy in the field of optoelectronics, particularly in laser applications, telecommunications, and military technology. His ongoing work in cosmic radiation detectors and laser safety will likely influence future technological advancements in various sectors. As he continues to develop new systems and devices, his future contributions are expected to further shape the landscape of optical technology and engineering research.

Patents and Innovations 💡

Valeriu Savu’s patents reflect his ingenuity and forward-thinking approach to technology. Some of his recent applications include systems for automated discharge protection in laser pumps and power supply disconnect systems. His patents focus on enhancing the safety and efficiency of electronic systems, laser devices, and telecommunications infrastructure, with an emphasis on providing innovative solutions for user protection and optimal performance in real-world applications.

Publications Top Notes

Power Dissipation Reduction System for Adjustable Power Supplies
  • Authors: V Savu, MI Rusu, D Savastru, D Manea
    Journal: Energies
    Year: 2025

Analysis of a high-power laser thermal phenomena induced onto a composite made UAV/drone in flight
  • Authors: D Savastru, V Savu, MI Rusu, M Tautan, A Stanciu
    Journal: Journal of Optoelectronics and Advanced Materials
    Year: 2024

Sampling the travel distance of a vehicle through an unconventional method for data acquisition
  • Authors: MI Rusu, V Savu, D Savastru, CH Gandescu, A Stan, DM Cotorobai
    Journal: Journal of Optoelectronics and Advanced Materials
    Year: 2023

Grating Optic Fiber Sensors Detection of Smart Polymer Composite Delamination
  • Authors: D Savastru, D Savastru, MI Rusu, M Tautan, V Savu, II Lancranjan
    Journal: Optics, Photonics and Lasers
    Year: 2023

Ellipsometric characterization of tungsten oxide thin films, before and after He plasma exposure
  • Authors: MI Rusu, Y Addab, C Martin, C Pardanaud, V Savu, II Lancranjan, …
    Journal: Optoelectronics and Advanced Materials-Rapid Communications
    Year: 2023

 

Hector Perez de-Tejada | Particle physics and cosmology | Best Faculty Award

Prof. Hector Perez de-Tejada | Particle physics and cosmology | Best Faculty Award

National University of Mexico | Mexico

Dr. Héctor Pérez-de-Tejada is an esteemed researcher and professor at the Institute of Geophysics, UNAM, Mexico. He holds a Doctorate in Space Sciences from the University of Colorado, Boulder and has been a faculty member at UNAM since 1970. As the first Ph.D. in Space Physics at UNAM, he has played a pioneering role in the development of space science research in Mexico.

👨‍🎓Profile

Scopus

Early Academic Pursuits 🎓

Dr. Pérez-de-Tejada’s academic journey began at the National University of Mexico (UNAM), where he completed his undergraduate studies at the School of Sciences. He furthered his education at the University of Colorado, where he obtained his Doctorate in Space Sciences. His early academic experiences set the foundation for his lifelong passion for planetary science and space physics, leading him to specialize in the interaction of the solar wind with planetary ionospheres.

Professional Endeavors 🌍

Since 1970, Dr. Pérez-de-Tejada has dedicated his career to research and education. He became a faculty member in Space Sciences at UNAM and also contributed to the University of Baja California in Ensenada. Throughout his career, he has been involved in cutting-edge space missions, including working as a guest investigator on NASA’s Pioneer Venus Orbiter and contributing to data analysis from the Venus Express spacecraft of the European Space Agency (ESA). His pioneering work in solar wind momentum transport and plasma dynamics has greatly advanced our understanding of planetary atmospheres.

Contributions and Research Focus 🔬

Dr. Pérez-de-Tejada has made over 100 significant publications, focusing on the interaction of solar wind with planetary ionospheres such as those of Venus, Mars, and comets. His work on the viscous transport of solar wind momentum in the Venus ionosheath and the discovery of plasma vortices in the Venus wake, over 40 years ago, have made a lasting impact in the field. He also proposed the theory of plasma channels over the magnetic poles of Venus, driven by the fluid dynamic Magnus force.

Impact and Influence 🌟

Dr. Pérez-de-Tejada’s work has had a transformative impact on the field of space science, particularly in the study of planetary ionospheres and solar wind interactions. His discoveries, such as the existence of plasma vortices and ionospheric holes on Venus, have influenced both contemporary studies and space mission design. His involvement in NASA and ESA missions reflects the international recognition of his work. He has also been a strong advocate for the development of space science infrastructure in Mexico, enhancing its visibility and global standing.

Academic Cites 📚

Dr. Pérez-de-Tejada’s publications have been widely cited in the field of space physics, with references in over 100 academic articles that build upon his theories of plasma dynamics and solar wind interaction. His work remains foundational for ongoing research on planetary atmospheres, especially with regard to Venus and Mars.

Research Skills 🧑‍🔬

Dr. Pérez-de-Tejada’s research is marked by advanced data analysis and theoretical modeling in space sciences. His extensive experience in using data from spacecraft missions such as the Pioneer Venus Orbiter and Venus Express has refined his ability to interpret complex plasma data. His research into the fluid dynamics and Magnus forces on planetary ionospheres demonstrates a deep understanding of both theoretical physics and practical spacecraft data collection.

Teaching Experience 🏫

A dedicated educator, Dr. Pérez-de-Tejada has mentored 15 students in undergraduate, Master’s, and PhD programs at UNAM and the University of Baja California. His students have gone on to make their own contributions in space science, a testament to his ability to inspire and guide the next generation of scientists and researchers. He has also taught and published two academic books, providing invaluable resources for those studying space sciences.

Awards and Honors 🏅

Dr. Pérez-de-Tejada has received numerous accolades in recognition of his work, including a celebration of his 50th anniversary of academic activities at UNAM and being distinguished at the National Workshop in Astrophysics in Mexico, which was named in his honor. His longstanding commitment to space science has been acknowledged both nationally and internationally, further solidifying his status as a leader in the field.

Legacy and Future Contributions 🌱

Dr. Pérez-de-Tejada’s legacy extends beyond his academic publications and mentorship. He was instrumental in the creation of the first ionospheric sounder in Mexico and the acquisition of a planetarium at UNAM. These contributions have helped raise the profile of space sciences in Mexico and contributed to public engagement with astronomy. His future work will likely continue to inspire young scientists while enhancing our understanding of planetary atmospheres and the broader universe.

Publications Top Notes

Wave-Particle Interactions in Astrophysical Plasmas

  • Authors: H. Pérez-De-Tejada, Héctor
    Journal: Galaxies
    Year: 2024

Measurement of plasma channels in the Venus wake

  • Authors: H. Pérez-De-Tejada, Héctor; R.N. Lundin, Rickard N.; Y. Futaana, Yoshifumi; T. Zhang, Tielong
    Journal: Icarus
    Year: 2019

Pluto’s plasma wake oriented away from the ecliptic plane

  • Authors: H. Pérez-De-Tejada, Héctor; H.J. Durand-Manterola, Héctor Javier; M. Reyes-Ruiz, Mauricio; R.N. Lundin, Rickard N.
    Journal: Icarus
    Year: 2015

A large-scale flow vortex in the Venus plasma tail and its fluid dynamic interpretation

  • Authors: R.N. Lundin, Rickard N.; S.V. Barabash, Stanislav V.; Y. Futaana, Yoshifumi; H. Pérez-De-Tejada, Héctor; J.A. Sauvaud, Jean André
    Journal: Geophysical Research Letters
    Year: 2013

Solar wind-driven plasma fluxes from the Venus ionosphere

  • Authors: H. Pérez-De-Tejada, Héctor; R.N. Lundin, Rickard N.; H.J. Durand-Manterola, Héctor Javier; J.A. Sauvaud, Jean André; M. Reyes-Ruiz, Mauricio
    Journal: Journal of Geophysical Research: Space Physics
    Year: 2013

 

 

 

Xiong Zhang | Computational Particle Physics | Best Researcher Award

Mr. Xiong Zhang | Computational Particle Physics | Best Researcher Award

Yan’an University | China

Xiong Zhang is a Lab Technician at the College of Physics and Electronic Information, Yan’an University. Born in Suide, Shaanxi, in September 1990, he has emerged as an innovative researcher in the field of electronic communications . Zhang is currently a PhD Candidate with a strong academic background and a focus on photocatalysis, MEMS systems, and smart technologies. His work spans research, teaching, and practical innovations, making him a significant contributor to both academia and industry.

👨‍🎓Profile

Scopus

Early Academic Pursuits 🎓

Xiong Zhang began his academic journey with a deep interest in electronic communications. After completing his undergraduate studies, he pursued advanced degrees and became a PhD candidate, dedicating his time to research in electronic systems and nanotechnology. His passion for innovative solutions in environmental applications began early, setting the foundation for his current work in photocatalysis and energy solutions.

Professional Endeavors 🔬

Throughout his career, Zhang has led and contributed to several cutting-edge research projects. These include the development of Beidou navigation systems, MEMS inertial navigation, and smart technologies like smart mountaineering clothes and dynamic wireless charging systems for electric vehicles 🚗🔋. As the principal investigator in several projects, he has showcased his leadership and commitment to technological advancement in both theoretical and practical applications.

Contributions and Research Focus 🧪

Zhang’s research is focused primarily on photocatalysis and environmental sustainability. His publications in SCI-3 and SCI-4 journals highlight his expertise in photocatalytic degradation and the design of advanced materials like g-C₃N₄BiVO₄ heterojunctions and Cr₂O₃ embedded g-C₃N₄ composites. His work seeks to improve the efficiency of photocatalytic systems for applications in environmental remediation and renewable energy production 🌱. In addition, Zhang’s research also delves into theoretical investigations of water splitting and metal-doped nanostructures for sustainable energy.

Impact and Influence 🌍

Xiong Zhang’s research has a direct impact on sustainable technologies, with a focus on green energy and environmental protection. By developing innovative photocatalytic systems, he contributes significantly to solving real-world challenges in pollution control and energy efficiency. His work has also influenced the development of smart wearable technologies, contributing to advanced health monitoring systems. Through these contributions, Zhang plays a vital role in environmental sustainability and energy innovation.

Academic Cites 📚

Zhang’s publications have gained considerable recognition in the academic community. His work in photocatalysis has led to citations from peers in related fields, indicating the relevance and application of his research. Being a first author on several influential papers, he has paved the way for further studies in energy materials, smart technologies, and sustainable development. His research is referenced by scientists and engineers working on similar projects, making him an influential figure in his field.

Research Skills 🔍

Xiong Zhang demonstrates exceptional research skills in both experimental and theoretical investigations. He is highly skilled in material synthesis, characterization techniques, and theoretical modeling. His expertise in designing and optimizing photocatalytic systems and MEMS-based technologies has positioned him as an expert in advanced materials and nanotechnology. Additionally, his experience in leading research projects and managing interdisciplinary teams showcases his leadership and collaborative abilities.

Teaching Experience 🧑‍🏫

Since 2018, Zhang has been actively involved in experimental teaching and laboratory management at Yan’an University. He teaches a range of courses in electronic communications, including “Analog Electronic Technology”, “Digital Electronic Technology Experiments”, and Electrical Engineering Experiments. He also provides valuable hands-on training to students, preparing them for real-world applications of electronic technologies. Starting in 2024, he will take on a more prominent teaching role in “Microcontroller Principles and Applications”, further contributing to the academic development of his students 💡.

Awards and Honors 🏆

Xiong Zhang’s dedication to academic excellence and student mentorship has been recognized with numerous awards:

  • University Student Electronic Design Competitions: Multiple awards, including First, Second, and Third Prizes, in the Shaanxi Division 🏅.
  • Yan’an University Teaching Achievement Award (2021): Second Prize, highlighting his teaching excellence 🏆.
  • Shaanxi Higher Education Scientific Research Achievement Award (2024): Third Prize, recognizing his contributions to scientific research 🎖️.

These awards reflect his commitment to academic excellence and his positive influence on both students and the broader research community.

Legacy and Future Contributions 🔮

Xiong Zhang’s work continues to evolve as he explores new areas in sustainable technologies and energy solutions. With his ongoing research projects, particularly in the field of synergistic photocatalytic mechanisms and metal-doped nanostructures, Zhang is poised to make even greater contributions to renewable energy and environmental sustainability. His legacy will likely be built on transformative advancements in clean technologies, smart systems, and energy innovation, helping shape the future of green energy and sustainable development 🌍.

Publications Top Notes

  • Enhanced the Efficiency of Photocatalytic Degradation of Methylene Blue by Construction of Z-Scheme g-C₃N₄BiVO₄ Heterojunction
    Authors: Xiong Zhang (First Author)
    Year: 2021

  • Facile Synthesis of Cr₂O₃ Embedded g-C₃N₄ Composites with Excellent Visible-Light Photocatalytic
    Authors: Xiong Zhang (First Author)
    Year: 2022

  • Theoretical Insight into Water Splitting Mechanism of B Doped Tri-s-Triazine-Based g-C₃N₄m-BiVO₄(001) Heterojunction Photocatalyst
    Authors: Xiong Zhang (First Author)
    Year: 2023

  • Theoretical Investigation of the sm-BiVO₄ of Different Surfaces for Photocatalytic Properties
    Authors: Xiong Zhang (First Author + Corresponding Author)
    Year: 2024

  • Basic Experiment Tutorial for Circuits and Electronic Technology
    Authors: Xiong Zhang (Associate Editor)
    Year: 2021

Particles and antiparticles

 

Introduction to Particles and Antiparticles:

Particles and antiparticles are fundamental constituents of the subatomic world, representing the matter and antimatter counterparts that populate the universe. Particles, such as electrons, protons, and neutrinos, have corresponding antiparticles with opposite electric charges and other quantum properties. The study of particles and antiparticles is essential in understanding the building blocks of matter, their interactions, and the symmetries that govern the universe.

Antimatter and Particle Physics:

Explore the concept of antimatter and its relevance in particle physics, including the existence of antiparticles for each known particle and their annihilation processes.

CP Violation and Matter-Antimatter Asymmetry:

Investigate the phenomenon of CP violation, which plays a crucial role in explaining the observed matter-antimatter asymmetry in the universe, a fundamental puzzle in cosmology.

Positron Emission Tomography (PET):

Delve into the practical applications of antimatter in medical imaging, such as PET scans, where positrons (antiparticles of electrons) are used to detect and visualize cancer and other diseases.

Baryogenesis and the Early Universe:

Focus on theories of baryogenesis, the process by which the matter-antimatter asymmetry in the universe may have arisen during the early moments of the cosmos, contributing to our understanding of cosmology.

Exotic Particles and Antiparticles:

Examine the existence and properties of exotic particles and antiparticles, including mesons, pions, and strange quarks, and their significance in high-energy physics and the study of strong interactions.

 

 

  Introduction to Particles and Antiparticles: Particles and antiparticles are fundamental constituents of the subatomic world, representing the matter and antimatter counterparts that populate the universe. Particles, such as electrons,
  Introduction to Quark Interactions: Quark interactions represent a fundamental aspect of the Standard Model of particle physics. Quarks are elementary particles that make up protons, neutrons, and other hadrons.
  Introduction to Spontaneous Symmetry Breaking: Spontaneous symmetry breaking is a fundamental concept in physics that plays a crucial role in explaining various phenomena across different branches of science. It
  Introduction to The Matter Particles: Matter particles are the fundamental building blocks of the material world as we know it. These particles form the basis of everything in the
  Introduction to Weak Interactions: Weak interactions, also known as the weak force or weak nuclear force, are one of the four fundamental forces of nature, alongside gravity, electromagnetism, and
  Introduction to Particle Experiments: Particle experiments are at the forefront of scientific discovery, offering unique insights into the fundamental properties of matter, the universe's structure, and the behavior of
  Introduction to Quantum Field Theory: Quantum Field Theory (QFT) is a foundational framework in theoretical physics that combines the principles of quantum mechanics and special relativity to describe the
  Introduction to Computational Methods: Computational methods represent a cornerstone of modern science and engineering, providing powerful tools for solving complex problems, simulating physical phenomena, and analyzing vast datasets. These
Introduction to Dark Matter Studies: Dark matter is one of the most enigmatic and pervasive mysteries in the universe. Although it does not emit, absorb, or interact with light or
  Introduction to Collider Phenomenology: Collider phenomenology is a field of theoretical physics that bridges the gap between theoretical predictions and experimental observations in the realm of high-energy particle physics.