Mohaddeseh Shahabi Nejad | Nanomaterial | Member

Dr. Mohaddeseh Shahabi Nejad | Nanomaterial | Member

PHD at Shahid Bahonar University of Kerman, Iran

Mohaddeseh Shahabi Nejad, an accomplished researcher and educator, holds a Ph.D. in Organic Chemistry from Shahid Bahonar University of Kerman. With expertise in material preparation and characterization, she has led impactful projects on nanocomposites for environmental remediation. As Head of the Laboratory of Classic Processing Processes at IBKO Company, she conducts chemical analysis and oversees research initiatives. Additionally, Mohaddeseh serves as a dedicated teacher at Shahid Bahonar University and Applied Sciences University of Kerman, imparting knowledge in chemistry and laboratory procedures. Her contributions have earned her numerous accolades, including recognition as a top researcher and Ph.D. student in her field.

Professional Profiles:

Education

Ph.D. in Organic Chemistry Shahid Bahonar University of Kerman [2013 – 2018] Final grade: 18.25/20 Thesis: Synthesis of nanoparticles and ionic liquids immobilized on magnetic supports and their application in organic reactions M.Sc. in Organic Chemistry Isfahan University of Technology [2008 – 2012] Thesis: Synthesis and characterization of modified bentonite & silica supported Au nanoparticles and use them in the solvent-free oxidation of cyclohexene with molecular oxygen B.Sc. in Chemistry Shahid Bahonar University of Kerman [2003 – 2008] HONOURS AND AWARDS Top Researcher with a Skill-Building approach in Kerman Province [2022] The Selected Research for the cover image of Applied Organometallic Chemistry (ISI, IF: 4.105, Q1) [2019] Top Ph.D. Student of Chemistry Department (Organic Chemistry Group) [2018]

Work Experiences

Head of the Laboratory of Classic Processing Processes Research and Processing Center of IBKO Company [2021 – Current] City: Kerman Country: Iran Conduct chemical analysis of minerals and geochemistry samples

HONOURS AND AWARDS

Top Researcher with a Skill-Building approach in Kerman Province [2022] The Selected Research for the cover image of Applied Organometallic Chemistry (ISI, IF: 4.105, Q1) [2019] Top Ph.D. Student of Chemistry Department (Organic Chemistry Group) [2018]

PROFESSIONAL SKILLS

Graphene & Graphene Oxide Carbon Quantum Dots Polymers and Composites Covalent Organic Framework Graphitic Carbon Nitride Biochar Metal & Metal Oxide Nanoparticles Nanocatalyst & Photocatalyst

Research Interests

Mining Analysis, Water Treatment, Carbon-Based Materials, Polymers & Composites, Metal & Metal Oxide Nanoparticles, Catalysis and Photocatalysis.

Research Focus:

Mohaddeseh Shahabi Nejad’s research primarily focuses on the synthesis and application of advanced nanomaterials for environmental remediation and catalysis. Her work encompasses various areas, including the fabrication of nanocomposites for adsorption of antibiotics and heavy metal ions from aqueous solutions, as well as the green synthesis of nanoparticles for organic dye reduction. Additionally, she explores the design and characterization of magnetic nanocatalysts for C-N and C-C cross-coupling reactions, highlighting her expertise in materials science and catalytic chemistry. Through her innovative research, Mohaddeseh contributes significantly to the development of sustainable solutions for environmental challenges and catalytic processes.

Publications

  1. Effect of modified nanocellulose on improving mechanical properties of flowable dental composite resin, Publication: 2024.
  2. Biochar/g-C3N4 nano hetero-structure decorated with pt nanoparticles for diazinon photodegradation and E. coli photodeactivation under visible light, Publication: 2023.
  3. Cellulose-wrapped graphene oxide as efficient adsorbents for pharmaceutical contaminants, Publication: 2023.
  4. Fabrication of covalently linked ruthenium complex onto carbon nitride nanotubes for the photocatalytic degradation of tetracycline antibioticPublication: 2022.
  5. Architecture of chitosan chains with sulfur‐doped carbon dots along with decorating CeO2 nanoparticles for the photocatalytic application, Publication: 2022.
  6. Enhanced visible-light photocatalytic activity of ZnS/S-graphene quantum dots reinforced with Ag2S nanoparticles, Publication: 2022.
  7. Oriented growth of copper & nickel-impregnated δ-MnO2 nanofilaments anchored onto sulfur-doped biochar template as hybrid adsorbents for removing phenolic compounds by, Publication: 2022.
  8. Assembly of CuO nanorods onto poly (glycidylmethacrylate)@ polyaniline core–shell microspheres: Photocatalytic degradation of paracetamol, Publication: 2021.
  9. Green synthesis of Ag nanoparticles on the modified graphene oxide using Capparis spinosa fruit extract for catalytic reduction of organic dyes, Publication: 2021.
  10. Adsorption of tetracycline antibiotic from aqueous solutions onto vitamin B6-upgraded biochar derived from date palm leaves, Publication: 2020.
.

Muhammad Khuram Shahzad | Nano Materials | Member

Assist Prof Dr. Muhammad Khuram Shahzad | Nano Materials | Member

Assistant Professor at Khwaja Fareed University of Engineering and Information Technology, Pakistan

Dr. Muhammad Khuram Shahzad is an Assistant Professor at Khwaja Fareed University of Engineering and Information Technology (KFUEIT), Pakistan. With a Ph.D. in Physics from Harbin Institute of Technology, China, he specializes in up-conversion nano-materials for biological applications, hyperthermia, and cancer treatments. He has 28 international publications with an impressive impact factor of 250.31. Dr. Shahzad has completed projects funded by Pakistan Science Foundation and Chinese Scholarship Council, focusing on efficient synthesis and preparation of up-conversion nanoparticles. Recognized for his research excellence, he has received awards from the Higher Education Commission of Pakistan and the Prime Minister’s office, showcasing his dedication to advancing scientific knowledge.

Professional Profiles:

Education

Ph.D. Physics, 2019 – Harbin Institute of Technology, China Master of Philosophy (M.Phil), 2015 – Department of Physics, University of Agriculture, Faisalabad, Pakistan Master of Science (M.Sc.) Physics, 2011 – Government College University Faisalabad, Pakistan Bachelor of Science (B.Sc.) Physics, 2006 – University of the Punjab, Lahore, Pakistan

Work Experience

Lecturer in Physics: Masomeen College for Advanced Studies, Chiniot (2010-2015) Post Doc Position: Henan University, Kaifeng China (4, December 2019 – 30, September 2020) Assistant Professor: KFUEIT (30, September 2020 – Present)

Research Experience

Six (6) years research experience in the field of up-conversion (UC) nano-materials for biological applications, hyperthermia and cancer treatments, sensors, thin films, nanotechnology, DFT, and Optogenetics Total publications: 28 International Publications: 28 International Impact factor: 250.31 Submitted articles: 3 International journal’s reviewer: Physical and Engineering Sciences in Medicine, Biomedical optics express, Journal of biological chemistry, Pakistan journal of biological science

Awards / Achievements

Awarded best researcher by Higher Education Commission of Pakistan on 04, November-2022 Won laptop and certificate by Prime Minister of Pakistan for best young researcher in Pakistan in 2015. CSC scholarship for doctoral degree admission in China from 2016 to 2019. Sparkle fellowship on 20 December 2020 (Ireland).

Research Focus:

Muhammad Khuram Shahzad’s research primarily focuses on nanomaterials and their applications in biomedical engineering, particularly in the fields of hyperthermia therapy and optical sensing. His work includes the synthesis and characterization of nanoparticles for photo-hyperthermia therapy, as well as the development of optical temperature sensing probes using nanostructured materials. Additionally, Shahzad investigates the use of nanocomposites for contaminant removal and solar-to-fuel conversion. His contributions span various disciplines, including nanotechnology, photonics, and materials science, aiming to advance knowledge and technology for biomedical and environmental applications.

Publications

  1. Fermented Corn Stalk for Biosorption of Copper(II) from Aqueous Solution, cited by: 2, Publication: 2018.
  2. A DFT study of structural, electronic, optical, thermal and mechanical properties of cubic perovskite KGeX3 (X = Cl, Br) compound for solar cell applications, cited by: 1, Publication: 2024.
  3. Structural, electronic, optical, and mechanical properties of cubic perovskite LaMnX3 (X = Cl, Br, I) compound for optoelectronic applications: a DFT study, Publication: 2024.
  4. Structural, Electronic, Mechanical, and Optical properties of the lead-free halide perovskites XGeCl3(X = Cs, K, and Rb) for the photovoltaic and optoelectronic applications, Publication: 2023.
  5. Analysis of gold nanospheres, nano ellipsoids, nanorods, and effect of core–shell structures for hyperthermia treatment, Publication: 2022.
  6. Influence of VO2 based structures and smart coatings on weather resistance for boosting the thermochromic properties of smart window applicationsPublication: 2022.
  7. Zirconium-based cubic-perovskite materials for photocatalytic solar cell applications: a DFT study, Publication: 2022.
  8. Investigation on optical temperature sensing behaviour via Ag island-enhanced luminescence doped β-NaGdF4:Yb3+/Tm3+ films/microfibers†Publication: 2021.
  9. Facile preparation of upconversion microfibers for efficient luminescence and distributed temperature measurement†, Publication: 2019.
  10. Dispersing upconversion nanocrystals in PMMA microfiber: a novel methodology for temperature sensing, Publication: 2018.
.

Tayebeh Naseri | Nanophotonics | Member

Dr. Tayebeh Naseri | Nanophotonics | Member

PHD at Sharif University of Technology, Iran

Tayebeh Naseri is a seasoned physicist with a Ph.D. from Sharif University of Technology, Iran. Her expertise lies in the intricate realm of quantum physics, particularly in the study of light-atom interface and Quantum Interference. She has made significant contributions to the field through her research and teaching experiences at institutions such as Razi University and the University of Calgary. Naseri’s work spans experimental investigations on laser cooling of atoms to theoretical explorations of nonlinear optical phenomena. With a strong publication record and notable honors, she continues to push the boundaries of quantum science, captivating audiences worldwide with her insights and discoveries.

Professional Profiles:

Education

Ph.D. Physics, Sharif University of Technology, Iran, 2016 Specialization: Study of light-atom interface and Quantum Interference and Coherence in multi-level atomic systems Advisor: Prof. Rasoul Sadighi-bonabi Research Assistant, University of Calgary, Canada, 2013 Focus: Experimental work on laser cooling of Rb atoms and interaction with evanescent field of tapered nano-fiber Advisor: Professor Alexandre Lvovsky MSc. Physics, Sharif University of Technology, Iran, 2009 Thesis: Bistability analysis of semiconductor micro-ring lasers Advisor: Prof. Alireza Bahrampour BSc. Physics, University of Tehran, Iran, 2008

Research Experience

Razi University, Iran, 2020-Ongoing Development of efficient and enhanced optical switches based on saturation absorption via composite of 2D materials Investigation Of Entangled Quantum States Via Trapped Ions Razi University, Iran, 2016-2020 Assistant Professor of Physics Research focus: Nonlinear optical phenomena in nano structures and monolayer of graphene Center for Quantum Technology (CQT), Singapore, Summer 2016 Visiting Researcher Focus: Interfacing of atoms and photons via cavity QED Supervisor: Dr. Murray Barrett Sharif University of Technology, Iran, 2015-2016 Research Fellow Projects: Electromagnetic Induced Grating, P-T symmetry in coherent atomic media. Post Graduate Level: Quantum Optics, Quantum Computing, Photonics I, II, Laser Physics, Nonlinear Optics Under Graduate Level: General Physics I, II, Analytical Mechanics I, II, Quantum mechanics I, II, Electromagnetic I, II, Laser Laboratory, Optics Laboratory

Honors and Awards

2nd Rank, PhD entrance exam in Physics of Sharif University of Technology PhD. scholarship, Iran Ministry of Science and Researches Full scholarship, University of Calgary, Canada

Skills

Programming: Matlab, Python English Level: Advanced (IELTS: 8)

Research Focus:

Tayebeh Naseri’s research focuses on exploring the optical properties and phenomena of various atomic and nanostructured systems. Her work delves into understanding the behavior of four-level media under coherent and incoherent pumping fields, elucidating phenomena like electromagnetically induced phase grating and population trapping conditions. Naseri has contributed significantly to the field through her investigations into optical bistability in plasmonic nanoparticles and the realization of electromagnetically induced phase grating in graphene ensembles. Her research also extends to hybrid semiconductor quantum dot-metallic nanorod systems, exploring their optical properties and electromagnetically induced grating. Naseri’s expertise lies at the intersection of quantum physics and nanotechnology, driving advancements in optical science and technology.

Publications 

  1. Bimetallic Core-Shell With Graphene Coating Nanoparticles: Enhanced Optical Properties And Slow Light Propagation, cited by: 13, Publication date: 2020.
  2. Optical Properties and Electromagnetically Induced Grating in a Hybrid Semiconductor Quantum Dot-Metallic Nanorod System, cited by: 12, Publication date: 2019.
  3. Two-dimensional induced grating in Rydberg atoms via microwave fieldcited by: 7, Publication date: 2019.
  4. Electromagnetically Induced Grating in Semiconductor Quantum Dot and Metal Nanoparticle Hybrid System by Considering Nonlocality Effects, cited by: 6, Publication date: 2020.
  5. Convenient Dual Optical Bistability In Cavity-Free Structure Based On Nonlinear Graphene-Plasmonic Nanoparticles Composite Thin Layers, cited by: 5, Publication date: 2019.
  6. Tunable Coherent Perfect Absorption Via An Asymmetric Graphene-Based Structure, cited by: 2, Publication date: 2020.
  7. Introducing a Novel Approach to Investigate Linear and Nonlinear Electrical Conductivity of 𝑀𝑜𝑆2, cited by: 1, Publication date: 2021.
  8. Electromagnetically Induced Grating with Second Field Quantization in Spherical Semiconductor Quantum Dots, cited by: 1, Publication date: 2020.
  9. Enhancement of Second Harmonic Field and Nonlinear Dispersion via a Composite of Elliptical Cylinder Nanoparticles, Publication date: 2023.

 

.

Muhammad Junaid | Nanotechnology | Member

Prof. Muhammad Junaid | Nanotechnology | Member

PHD at The Islamia University Bahawalpur, Pakistan

Muhammad Junaid is a dedicated physicist and academician with a passion for research in nanotechnology and renewable energy. He holds a Ph.D. in Physics (ongoing) from The Islamia University Bahawalpur, Pakistan, and an M.Phil. in Nano-Technology from UMT, Lahore. With expertise in synthesizing photo catalysts and nanomaterials, Junaid has contributed significantly to the field. Currently serving as a Lecturer at The Superior College/University Multan Campus, he focuses on enhancing photocatalytic activity for hydrogen generation and green energy production. His research interests and commitment to academia mark him as a promising figure in the scientific community.

Professional Profiles:

Education

Ph.D. in Physics (Continuing) Institute of Physics, The Islamia University Bahawalpur, Pakistan 2020-2023 M. Phil in Nano-Technology Department of Physics, UMT, Lahore, Pakistan 2017-2019 M. Sc. in Physics Department of Physics, Baha Ud din Zakariya University, Multan, Pakistan 2014-2017 B.Sc. in Physics, Math A, Math B, English Govt. College Civil line, Multan 2011-2013 F. Sc. HSSC (Pre-Engineering) B. I. S. E. Rawal Pindi 2008-2010 Matriculation SSC (Science) B. I. S. E. Mardan KPK 2006-2008

Professional Experiences

Current Position: Lecturer of Physics and Physical Chemistry, Department of Physics, The Superior College/University Multan Campus, Pakistan. Employment Record: PhD Candidate (Continuing) Institute of Physics, The Islamia University Of Bahawalpur Pakistan April 2021 – 2023 M.Phil. Research School of Science, Department of Physics, UMT Lahore Pakistan Feb 2019 – April 2020 Lecturer The ILM Group of Colleges, Multan May 2013 – Aug 2015 Lecturer Pak Turk Int School and Colleges, Multan Feb 2017 – April 2017 Lecturer The Superior Group of Colleges Multan Campus Aug 2018 – Till date

Research Interests

Development of Photo Catalysts for the Photo Reduction of CO2, H2, Water Splitting, and Photo Degradation of Organic Pollutants. Synthesis of Photo Catalysts, Magnetic/Electric Nanomaterials, and Metal Oxides based Nano Particles for Sensors. Synthesis of Nanomaterials/Doped Materials by Various Techniques. Synthesis of Graphene Single/Multiple Layers/Quantum Dots by Hummer Method.

Research Focus:

Muhammad Junaid’s research primarily focuses on the structural, spectral, dielectric, and magnetic properties of various ferrite materials. His investigations span across a wide range of doped and substituted ferrites, including lithium, cobalt, nickel, manganese, and copper-based systems. Through techniques such as micro-emulsion synthesis and sol-gel methods, Junaid explores the impact of doping elements like terbium, indium, gadolinium, dysprosium, and neodymium on the physical characteristics of ferrite materials. This extensive body of work contributes significantly to understanding the intricate relationships between structural modifications and the resulting electromagnetic properties of ferrites, advancing the field of magnetic materials science.

Publications 

  1. Structural, spectral, dielectric and magnetic properties of indium substituted copper spinel ferrites synthesized via sol gel technique, cited by: 34, Publication date: 2020.
  2. Structural, spectral, magnetic and dielectric properties of Bi substituted Li-Co spinel ferrites, cited by: 32, Publication date: 2020.
  3. Impact of Bi–Cr substitution on the structural, spectral, dielectric and magnetic properties of Y-type hexaferrites, cited by: 16, Publication date: 2020.
  4. The influence of Zr and Ni co-substitution on structural, dielectric and magnetic traits of lithium spinel ferrites, cited by: 13, Publication date: 2022.
  5. Investigation into the structural and magnetic features of nickel doped U-type hexaferrites prepared through sol–gel method, cited by: 13, Publication date: 2022.
  6. Structural spectral, dielectric, and magnetic properties of Mg substituted Ba3CoFe24O41 Z-type hexaferrites, cited by: 12, Publication date: 2022.
  7. Structural, spectral, dielectric, and magnetic properties of indium substituted Cu0.5Zn0.5Fe2−xO4 magnetic oxides, cited by: 10, Publication date: 2022.
  8. Effect of Nd3+ ions on structural, spectral, magnetic, and dielectric properties of Co–Zn soft ferrites synthesized via sol-gel technique, cited by: 8, Publication date: 2022.
  9. Evaluations of structural, thermal, spectral, and magnetic properties of Li0. 5Fe2. 5O4 multi magnetic oxide fabricated via sol-gel auto-ignition technique, cited by: 8, Publication date: 2022.
  10. Insight of terbium substitution on the structural, spectroscopic, and dielectric characteristics of the Ba–Mg–Fe–O system, cited by: 5, Publication date: 2023.

 

.

Particles and antiparticles

 

Introduction to Particles and Antiparticles:

Particles and antiparticles are fundamental constituents of the subatomic world, representing the matter and antimatter counterparts that populate the universe. Particles, such as electrons, protons, and neutrinos, have corresponding antiparticles with opposite electric charges and other quantum properties. The study of particles and antiparticles is essential in understanding the building blocks of matter, their interactions, and the symmetries that govern the universe.

Antimatter and Particle Physics:

Explore the concept of antimatter and its relevance in particle physics, including the existence of antiparticles for each known particle and their annihilation processes.

CP Violation and Matter-Antimatter Asymmetry:

Investigate the phenomenon of CP violation, which plays a crucial role in explaining the observed matter-antimatter asymmetry in the universe, a fundamental puzzle in cosmology.

Positron Emission Tomography (PET):

Delve into the practical applications of antimatter in medical imaging, such as PET scans, where positrons (antiparticles of electrons) are used to detect and visualize cancer and other diseases.

Baryogenesis and the Early Universe:

Focus on theories of baryogenesis, the process by which the matter-antimatter asymmetry in the universe may have arisen during the early moments of the cosmos, contributing to our understanding of cosmology.

Exotic Particles and Antiparticles:

Examine the existence and properties of exotic particles and antiparticles, including mesons, pions, and strange quarks, and their significance in high-energy physics and the study of strong interactions.

 

 

Introduction of Chiral spinors and helicity amplitudes Chiral spinors and helicity amplitudes are fundamental concepts in the realm of quantum field theory and particle physics    They play a pivotal
  Introduction to Chiral Symmetry Breaking: Chiral symmetry breaking is a pivotal phenomenon in the realm of theoretical physics, particularly within the framework of quantum chromodynamics (QCD) and the study
Introduction to Effective Field Theory and Renormalization: Effective field theory (EFT) and renormalization are foundational concepts in theoretical physics, particularly in the realm of quantum field theory. They provide a
  Introduction to Experimental Methods: Experimental methods are the backbone of scientific investigation, enabling researchers to empirically explore and validate hypotheses, theories, and concepts. These techniques encompass a wide array
  Introduction to Free Particle Wave Equations: Free particle wave equations are fundamental concepts in quantum mechanics, describing the behavior of particles that are not subject to external forces. These
  Introduction to High Energy Physics: High-energy physics, also known as particle physics, is a branch of science dedicated to the study of the most fundamental building blocks of the
  Introduction to Interactions and Fields: Interactions and fields form the foundation of modern physics, providing the framework for understanding how particles and objects interact with one another and the
  Introduction to Invariance Principles and Conservation Laws: Invariance principles and conservation laws are fundamental concepts in physics that play a pivotal role in understanding the behavior of the physical
  Introduction to Lepton and Quark Scattering and Conservation Laws: Lepton and quark scattering processes are fundamental phenomena in particle physics, allowing us to probe the structure and interactions of
  Introduction to Particle Physics and Cosmology: Particle physics and cosmology are two closely intertwined fields of scientific inquiry that seek to unravel the mysteries of the universe at both