Andy Anderson Bery | Machine Learning in Physics | Best Researcher Award

Assoc. Prof. Dr. Andy Anderson Bery | Machine Learning in Physics | Best Researcher Award

University Lecturer, Universiti Sains Malaysia, Malaysia

Associate Professor Dr. Andy Anderson Anak Bery is an accomplished geophysicist and academic at Universiti Sains Malaysia (USM). With deep expertise in Geostatistics, Solid Earth Geophysics, and Machine Learning-based Predictive Analytics, Dr. Bery has authored over 70 indexed publications and contributed to multiple national and international research initiatives. Since joining academia in 2016, he has consistently merged scientific rigor with applied solutions, especially in environmental and subsurface characterization. His work not only pushes the boundaries of applied geophysics but also inspires a new generation of scholars in data-driven geoscience research.

👨‍🎓Profile

Google scholar

Scopus

ORCID

📚 Early Academic Pursuits

Dr. Bery’s academic foundation was laid at Universiti Sains Malaysia (USM), where he earned his Bachelor’s, Master’s, and PhD degrees in Geophysics. His early focus was on exploration geophysics, particularly using seismic and resistivity techniques for subsurface imaging. These formative years cemented his interest in integrating mathematical models with geophysical datasets to address complex environmental and engineering challenges. His academic journey reflects a consistent trajectory of excellence, commitment, and specialization in earth sciences making him a strong contributor to Malaysia’s geoscience research capacity.

👨‍💼 Professional Endeavors

Since becoming a lecturer at the School of Physics, USM in 2016, Dr. Bery has been entrusted with teaching and mentoring at both undergraduate and postgraduate levels. His professional pursuits involve leading research teams, serving as a journal reviewer, and collaborating with industry partners on national and international site investigations. He has successfully secured 18 research grants (including 3 international), underscoring his leadership in applied research. His work frequently bridges academic theory with real-world utility, making him a sought-after expert in subsurface characterization and environmental geophysics.

🔬 Contributions and Research Focus

Dr. Bery’s primary contributions lie in geophysical modeling, machine learning for subsurface analysis, and site investigations. He explores both practical field applications and mathematical frameworks to improve environmental monitoring and hydrocarbon exploration. He is particularly noted for his work in seismic attribute transformation, multi-modal data integration, and probabilistic neural networks. Dr. Bery’s research not only contributes to geophysics but also intersects with data science, setting new standards for how geophysical data is interpreted using modern analytical tools.

🌍 Impact and Influence

With an h-index of 11 and 346 citations on Scopus, Dr. Bery’s research has made significant academic and practical impact in applied geosciences. His methodologies have been adopted in several national-scale environmental assessments and mineral exploration initiatives. He collaborates with researchers across Asia, Africa, and Oceania, enhancing international knowledge exchange. As a reviewer for top-tier journals, he influences scholarly directions in his field. His ability to bridge research, education, and industry continues to elevate his reputation within and beyond Malaysia.

📖 Academic Citations

Dr. Bery’s work is widely cited in areas such as geotechnical investigations, subsurface mapping, and environmental risk assessment. His most cited work, “Correlation of seismic P-wave velocities with engineering parameters”, has received 126 citations, demonstrating its foundational role in linking seismic data with engineering applications. His citations stem from the relevance of his work in engineering geology, mineral exploration, and machine learning in geophysics. His publications serve as reference points for researchers working on resistivity imaging, seismic inversion, and hydrogeological surveys globally.

🧪 Research Skills

Dr. Bery possesses a diverse set of research competencies, including geostatistical modeling, seismic tomography, electrical resistivity tomography (ERT), and data-driven predictive analytics. He is proficient in applying regression modeling, machine learning algorithms, and probabilistic analysis to interpret complex geophysical data. His skill in multi-attribute integration allows for high-resolution analysis in both engineering and environmental geophysics. Dr. Bery’s ability to blend field-based methodologies with advanced computational models distinguishes him as a versatile and innovative geoscientist.

👨‍🏫 Teaching Experience

Dr. Bery has played a vital role in teaching Mathematics and Geophysics at USM since 2016. He is deeply involved in developing course materials, guiding postgraduate thesis supervision, and mentoring early-career researchers. His teaching emphasizes practical applications, often integrating fieldwork data and industry-standard software tools. Known for his structured approach and student-centered methods, Dr. Bery fosters critical thinking and research-driven learning. His role extends beyond classrooms, where he actively encourages students to participate in international conferences and publishing.

🚀 Legacy and Future Contributions

Dr. Bery’s legacy lies in his ability to unify traditional geophysics with modern computational tools to address pressing environmental and engineering challenges. He has laid a strong foundation in machine learning-driven geophysical modeling, and his work will likely inspire future frameworks in AI-assisted earth sciences. He continues to build capacity through cross-border collaborations and academic mentorship, ensuring a lasting impact. As environmental challenges grow more complex, Dr. Bery’s contributions will be critical in shaping sustainable geophysical solutions for the future.

Publications Top Notes

📄Magnetic-Assisted Radiometric, Speciation, and Environmental Studies of an Orogenic Gold Terrain: Okpella, Igarra Schist Belt, SW Nigeria
  • Authors: Adedibu Sunny Akingboye, Andy Anderson Bery, Abimbola Chris Ogunyele, Mbuotidem David Dick, Temitayo Olamide Ale, Emmanuel Adebayo Titus

  • Journal: Earth Systems and Environment

  • Year: 2025

📄Subsurface Lithological Characterization Via Machine Learning-assisted Electrical Resistivity and SPT-N Modeling: A Case Study from Sabah, Malaysia
  • Authors: Mbuotidem David Dick, Andy Anderson Bery, Adedibu Sunny Akingboye, Kufre Richard Ekanem, Erukaa Moses, Sanju Purohit

  • Journal: Earth Systems and Environment

  • Year: 2024

📄 Integrated Geophysical Investigation using Aero-radiometric and Electrical Methods for Potential Gold mineralization within Yauri/Zuru Schist Belts, Kebbi State NW Nigeria
  • Authors: Abdulrahaman Idris Augie, Kazeem Adeyinka Salako, Andy Anderson Bery, Adewuyi Abdulwaheed Rafiu, Mufutau Owolabi Jimoh

  • Journal: Earth Sciences Research Journal

  • Year: 2024

📄 Surface–Subsurface Characterization via Interfaced Geophysical–Geotechnical and Optimized Regression Modeling
  • Authors: Adedibu Sunny Akingboye, Andy Anderson Bery, Muslim Babatunde Aminu, Mbuotidem David Dick, Gabriel Abraham Bala, Temitayo Olamide Ale

  • Journal: Modeling Earth Systems and Environment

  • Year: 2024

📄A Novel Machine Learning Approach for Interpolating Seismic Velocity and Electrical Resistivity Models for Early-Stage Soil-Rock Assessment
  • Authors: Mbuotidem David Dick, Andy Anderson Bery, Nsidibe Ndarake Okonna, Kufre Richard Ekanem, Yasir Bashir, Adedibu Sunny Akingboye

  • Journal: Earth Science Informatics

  • Year: 2024

 

 

Boxun Li | Quantum Computing | Best Researcher Award

Assist. Prof. Dr. Boxun Li | Quantum Computing | Best Researcher Award

Teacher at  Xiangtan University, China

Dr. Boxun Li is an Associate Professor at Xiangtan University, China, specializing in micro-nano optical device design and deep learning-based inverse design techniques. With a Ph.D. in optics-related fields, he has emerged as a leading researcher, contributing to cutting-edge advances in photonic devices, metamaterials, and terahertz absorbers. Dr. Li has published over 22 SCI-indexed papers as the first or corresponding author, illustrating both consistency and innovation in his field. His interdisciplinary approach merges computational intelligence with photonics, creating a unique research niche that aligns with the future of smart optical engineering and quantum device design.

👨‍🎓Profile

Scopus

🎓 Early Academic Pursuits

Dr. Boxun Li began his academic journey with a deep passion for optics and photonics, which guided his undergraduate and graduate studies. His doctoral work laid a strong theoretical and practical foundation in optical physics, nanostructures, and simulation-based design methods. Early in his career, Dr. Li demonstrated a keen interest in innovative sensor design, contributing to foundational studies in photonic crystal fibers and optical simulations. These formative years not only built his research skills but also ignited his interest in applying artificial intelligence to solve inverse problems in complex optical systems.

🧑‍🏫 Professional Endeavors

Since joining Xiangtan University as an Associate Professor, Dr. Li has engaged in multidisciplinary research integrating optical engineering, materials science, and deep learning. His professional pursuits are centered on the inverse design of optical devices using neural networks and algorithmic frameworks. He has taken leadership in publishing in respected journals such as Physica B, Physica E, and Current Applied Physics. In addition to research, Dr. Li contributes to academic service through mentoring students, organizing seminars, and collaborating across departments, aiming to create a synergistic academic ecosystem within the university and beyond.

🔬 Contributions and Research Focus

Dr. Li’s research significantly advances micro-nano photonic technologies. He focuses on deep learning-assisted inverse design, where AI is used to generate highly optimized and compact photonic structures. His work includes graphene terahertz metamaterials, SPR-based fiber sensors, VO₂ multilayer nanostructures for camouflage, and perovskite-based solar cells. These studies demonstrate his methodological innovation and real-world application potential. Dr. Li’s interdisciplinary expertise enables him to explore thermal, optical, and electronic interactions at the nano-scale, with an emphasis on energy harvesting, sensing, and functional smart surfaces, making his research highly relevant to both academia and industry.

🌍 Impact and Influence

Dr. Li’s work has been cited by numerous researchers worldwide, especially in the domains of metamaterials, energy-efficient devices, and optical sensors. With citations growing steadily, key papers have influenced subfields such as terahertz absorption, photonic crystal fibers, and dual-band camouflage systems. His integration of machine learning into physical design frameworks positions him as a pioneer in data-driven optical device engineering. Furthermore, his contributions are beginning to shape how inverse problem-solving is approached in quantum optics and nanophotonics, proving his work to be both timely and transformative in high-tech fields.

📚 Academic Cites

Dr. Li’s body of work currently garners over 35 citations across five major publications from 2025 alone, including:

  • 13 citations for his work in graphene-based THz absorbers

  • 12 citations on perovskite solar cell simulations

  • 9 citations on polarization-sensitive metamaterials
    Each paper reflects practical relevance, academic originality, and technical sophistication. These citations reflect growing engagement from global researchers in condensed matter, optical engineering, and applied physics. As more articles are indexed, Dr. Li’s citation count and research reputation are expected to expand, particularly in AI-enhanced optical simulations and quantum-inspired device architectures.

🧪 Research Skills

Dr. Li’s technical proficiency spans nanophotonics, electromagnetic simulation, terahertz technologies, SPR sensors, and AI-driven design models. He is highly skilled in tools like COMSOL, Lumerical, and Python-based deep learning platforms for modeling and optimization. His capacity to combine physical intuition with computational algorithms allows him to solve complex inverse problems, design novel device geometries, and predict device performance with high precision. His research approach is data-centric, experimentally relevant, and solution-oriented, making him an asset to collaborative, high-impact projects across photonics, materials, and electronics.

👨‍🏫 Teaching Experience

As a committed educator, Dr. Li teaches advanced undergraduate and graduate-level courses in optical device engineering, computational physics, and nanostructure design. His teaching style emphasizes active learning, project-based education, and industry-aligned skills. Dr. Li has supervised undergraduate theses, graduate research projects, and offers mentorship in research writing and publication strategy. He incorporates his real-time research insights into the classroom, encouraging students to engage with current scientific challenges and solutions. His dual role as researcher and mentor helps students build a solid foundation in both theoretical optics and applied nanotechnology.

🔮 Legacy and Future Contributions

Dr. Boxun Li is poised to leave a lasting impact on the field of AI-integrated photonic design. By bridging deep learning and device engineering, he is redefining how future optical systems can be developed faster, smarter, and more cost-effective. He aims to build a research hub that nurtures innovation in inverse design, quantum photonic platforms, and functional optical materials. His future contributions are expected to span green energy, wearable optics, and adaptive camouflage technologies. With sustained focus and global collaboration, Dr. Li will solidify a legacy of innovation, shaping the future of smart photonics.

Publications Top Notes

Structural design and analysis of D-type elliptical open-loop photonic crystal fiber temperature sensor based on SPR

  • Authors: Boxun Li, et al.
    Journal: Physica B: Condensed Matter
    Year: 2025

Graphene terahertz metamaterials absorber with multiple absorption peaks and adjustable incident polarization angle

  • Authors: Boxun Li, et al.
    Journal: Physica B: Condensed Matter
    Year: 2025

Phase-transition-enabled dual-band camouflage in VO₂/Ag multilayered nanostructures

  • Authors: Boxun Li, et al.
    Journal: Physica E: Low Dimensional Systems and Nanostructures
    Year: 2025

Photoelectric simulation of perovskite solar cells based on two inverted pyramid structures

  • Authors: Boxun Li, et al.
    Journal: Physics Letters A: General Atomic and Solid State Physics
    Year: 2025

Design and application of multi-absorption and highly sensitive monolayer graphene microstructure absorption devices located at terahertz frequencies

  • Authors: Boxun Li, et al.
    Journal: Current Applied Physics
    Year: 2025

 

 

Dario Bercioux | Quantum Technologies | Best Researcher Award

Assoc. Prof. Dr. Dario Bercioux | Quantum Technologies | Best Researcher Award

Donostia International Physics Center, Spain

Dr. Dario Bercioux is an Ikerbasque Associate Professor and group leader at the Donostia International Physics Center (DIPC) in Spain. With a specialization in mesoscopic systems, quantum materials, and light-matter interaction, his work spans theoretical and applied condensed matter physics. He has published extensively, contributed to major international collaborations, and held numerous postdoctoral positions across Europe. A fluent speaker of four languages, Dr. Bercioux is also a recognized science communicator, conference organizer, and mentor to young researchers, influencing the next generation of quantum scientists.

Profile

Google scholar

Scopus

ORCID

Early Academic Pursuits

Dr. Bercioux’s academic journey began in Naples, Italy, where he earned his Laurea in Physics (summa cum laude) and Ph.D. from the Federico II University of Naples. His doctoral research, focused on spin-dependent transport in nanostructures, laid the groundwork for his later interest in quantum transport phenomena. Under the guidance of Professors V. Cataudella and V. M. Ramaglia, he developed strong foundations in low-dimensional physics and quantum electronics. His early education reflects exceptional academic performance, including a perfect score in his high school technical diploma.

Professional Endeavors

Over two decades, Dr. Bercioux has held progressively prestigious roles, beginning as a postdoctoral researcher in Germany (Regensburg, Freiburg, Berlin) and culminating in a tenured professorship at DIPC. He joined Ikerbasque in 2014, was promoted to Associate Professor in 2019, and now leads the Mesoscopic Electrons and Photons Systems (MEPS) group. His international collaborations include affiliations with the Université d’Aix-Marseille, Stanford University, and the University of Bordeaux. He’s also an editorial board member of Communication Physics and serves as advisor to the Phenikaa Institute in Vietnam.

Contributions and Research Focus

Dr. Bercioux’s research centers on graphene, spintronics, topological matter, non-Hermitian physics, and quantum simulation. He has contributed to the understanding of chiral edge states, photonic lattices, and pseudo-spin systems, and co-authored high-impact reviews in Review of Modern Physics and Reports on Progress in Physics. His group explores quantum effects in low-dimensional systems, bridging theory and experiment. With over 70 publications, including 18 letters in top-tier journals such as PRL, Nat. Mater., and Commun. Phys., he remains at the forefront of quantum condensed matter research.

Impact and Influence

With over 2,190 citations and an h-index of 23, Dr. Bercioux has significantly influenced the field of condensed matter physics. His work is regularly cited in top-tier journals, and he has delivered 70 invited talks across global institutions. He has organized more than 20 international schools and workshops, such as the renowned Capri Spring School series. He actively shapes scientific discourse as an editor, reviewer, and conference chair, with roles in high-profile review panels and editorial boards. His multidisciplinary collaborations enhance the global understanding of quantum transport and materials.

Academic Cites and Metrics

According to Web of Science (July 2025), Dr. Bercioux’s publication metrics include 70 peer-reviewed papers, over 2,190 citations, and an average of 31 citations per article. He has published in PRL, Nature Nanotech, Nat. Mater., and Advanced Quantum Technology, highlighting the quality and relevance of his work. He’s authored three reviews, three News & Views, and a lecture book for Springer, solidifying his standing as both a scholar and educator. His Research-ID and ORCID maintain up-to-date records of his contributions, evidencing his scientific integrity and productivity.

Research Skills

Dr. Bercioux excels in quantum transport theory, non-Hermitian physics, light-matter coupling, and spin-orbit photonics. His analytical prowess spans tight-binding models, topological classification, and synthetic lattices. He possesses deep expertise in multi-terminal quantum devices, photonic simulations, and Dirac systems. His interdisciplinary skills enable work on quantum materials for computation, superconductivity, and spin textures, contributing to quantum technology development. Skilled in project coordination, he has secured over €900,000 in competitive funding and mentored doctoral candidates, showcasing his ability to translate theoretical insight into impactful research outputs.

Teaching Experience

Dr. Bercioux has mentored 7 Ph.D. students and 11 undergraduates, guiding theses in mesoscopic physics, quantum transport, and topological systems. His teaching philosophy emphasizes foundational understanding and research readiness, often combining coursework with hands-on research. He’s organized and lectured at 18+ international physics schools, including the Capri Spring School, and hosted workshops on quantum materials. As a Privatdozent at Freiburg and later ASN-certified associate professor in Italy, his academic credentials enable him to teach across European institutions, enriching the physics curriculum with cutting-edge topics.

Awards and Honors

Dr. Bercioux has received several prestigious awards, including the Ikerbasque Research Fellowship, the ASN Italian National Qualification, and the Aix-Marseille Excellence Fellowship. He has earned multiple PhD grants, DFG and MINECO project funds, and international workshop sponsorships, reflecting trust from academic funding bodies across Europe and Asia. Recognized for scientific leadership, he serves on expert review panels for NWO, ESF, Romanian Research Council, and others. His work has also attracted support from the Basque Government, positioning him as a key figure in European quantum research.

Legacy and Future Contributions

Dr. Bercioux’s enduring legacy lies in his ability to bridge fundamental theory and real-world applications in quantum technologies. As a mentor, organizer, and collaborator, he is shaping the future of quantum simulations, non-Hermitian systems, and low-dimensional materials. Through his continued involvement in strategic projects like IKUR—Quantum and photonic simulators, he fosters innovation at the intersection of light and matter. His ongoing efforts in science diplomacy, editorial duties, and workshop leadership ensure that his influence will extend across generations, advancing both knowledge and mentorship in quantum physics.

Publications Top Notes


Colloquium: Synthetic quantum matter in nonstandard geometries

  • Authors: T. Grass, D. Bercioux, U. Bhattacharya, M. Lewenstein, H.-S. Nguyen, …
    Journal: Reviews of Modern Physics 97 (1), 011001
    Year: 2025

Wannier center spectroscopy to identify boundary-obstructed topological insulators

  • Authors: R.A.M. Ligthart, M.A.J. Herrera, A.C.H. Visser, A. Vlasblom, D. Bercioux, I. Swart
    Journal: Physical Review Research 7 (1), 012076
    Year: 2025

Correction to Topological Properties of a Non-Hermitian Quasi-1D Chain with a Flat Band

  • Authors: C. Martínez-Strasser, M.A.J. Herrera, A. García-Etxarri, G. Palumbo, F.K. Kunst, D. Bercioux
    Journal: Advanced Quantum Technologies 8 (3)
    Year: 2025

Chiral spin channels in curved graphene pn junctions

  • Authors: D. Bercioux, D. Frustaglia, A. De Martino
    Journal: Physical Review B 108 (11), 115140
    Year: 2023

Implementation and characterization of the dice lattice in the electron quantum simulator

  • Authors: C. Tassi, D. Bercioux
    Journal: Advanced Physics Research 3 (9), 2400038
    Year: 2024

 

 

Marilyn Bishop | Theoretical Advances | Best Researcher Award

Dr. Marilyn Bishop | Theoretical Advances | Best Researcher Award

Associate Professor at Virginia Commonwealth University | United States

Marilyn F. Bishop is a tenured Associate Professor of Physics at Virginia Commonwealth University since 1986. She earned her Ph.D. in Physics from the University of California, Irvine in 1976. With a strong foundation in mathematics and physics, she has developed a multifaceted academic career blending theoretical physics with biophysical research. Bishop’s extensive work spans decades, contributing to both scientific understanding and educational advancements, making her a respected figure in physics education and research communities.

👨‍🎓Profile

Scopus

ORCID

🎓 Early Academic Pursuits

Bishop’s academic journey began with dual Bachelor’s degrees in Physics (1971) and Mathematics (1972) from UC Irvine, followed by a Master’s (1973) and Ph.D. in Physics (1976) from the same institution. She started as a Research Assistant at UC Irvine, honing her skills in theoretical physics. Early postdoctoral work at Purdue University and a visiting scientist role at Technische Universität München reflect her deep engagement with surface physics and condensed matter topics, establishing a strong foundation for her future research and teaching career.

💼 Professional Endeavors

Since 1986, Marilyn Bishop has been a key faculty member at VCU, earning tenure in 1990. Her earlier roles include Assistant Professor at Drexel University and consulting for Purdue University’s Physics Department. She has also been a Fellow at the Center for the Study of Biological Complexity, integrating physics with biological applications. Her professional work balances academic research, collaborative projects, and consulting, emphasizing both theoretical and computational physics, alongside mentoring students and contributing to interdisciplinary scientific communities.

🔬 Contributions and Research Focus

Bishop’s research emphasizes surface polaritons, spatially dispersive materials, and light scattering phenomena, particularly relating to biophysical systems like sickle hemoglobin polymerization. She has published extensively on surface exciton polaritons, Raman scattering, and spin susceptibility in electron gases. Her interdisciplinary work bridges physics and biology, supported by NIH grants focused on computational modeling of cardiopulmonary physiology. Her innovative use of photonic band structure methods to study biological tissues, such as the eye’s cornea, marks a notable contribution to biophysics.

🌟 Impact and Influence

Marilyn Bishop’s impact is seen through her numerous publications, presentations, and invited talks at major physics conferences like the APS March Meetings. She has helped shape understanding in condensed matter physics and biophysics, fostering collaboration between physics and biological sciences. Her research has influenced studies on electron interactions, spin susceptibility, and optical properties of materials, inspiring new computational approaches. She is a mentor to students and colleagues, advancing physics education and encouraging interdisciplinary exploration.

📖 Academic Cites

Her scholarly work has been cited widely in condensed matter physics and biophysics, particularly her studies on surface polaritons and electron gas spin susceptibility. Papers published in prestigious journals like Physical Review B and Physical Review Letters demonstrate her research rigor and relevance. Participation in workshops such as the NSF’s Materials Theory and her role in presenting at over 50 conferences have further solidified her standing in the scientific community, influencing ongoing research in theoretical and applied physics.

🧠 Research Skills

Marilyn Bishop possesses advanced skills in theoretical modeling, computational physics, and light scattering techniques. She developed Mathematica programs for physics visualization and data analysis, pioneering online homework systems in physics education. Her expertise extends to Monte Carlo simulations, photonic band structure calculations, and modeling complex biological systems. Her research methodology combines rigorous mathematical frameworks with computational tools to explore physical phenomena at both micro and macro scales, enhancing interdisciplinary research capabilities.

👩‍🏫 Teaching Experience

Bishop has a rich teaching portfolio, delivering courses from introductory physics labs to advanced graduate seminars in quantum mechanics, electromagnetism, and theoretical mechanics. She created new courses like Physics of Sound and Music and integrated Mathematica visualization tools into the curriculum. Known for developing online homework and detailed instructional materials, Bishop has mentored numerous students and collaborated with colleagues to enhance physics pedagogy at VCU, combining research insights with effective teaching strategies.

🏆 Awards and Honors

Her accolades include the Drexel University Research Scholar Award, membership in Sigma Xi, and the VCU SEED Award (2022-2023) for innovative research proposals. She also earned recognition early in her career with the First Place in the Writer’s Division of the Advertiser-Press Awards (1969). Bishop has secured multiple NIH grants supporting research and education, as well as industry funding, underscoring her research’s impact and her commitment to scientific excellence and mentorship.

🔮 Legacy and Future Contributions

Marilyn F. Bishop’s legacy lies in her interdisciplinary research bridging physics and biology, innovative teaching methods, and mentorship. Her ongoing work on sickle-cell hemoglobin structure and computational biophysics continues to push boundaries. As a tenured professor and research fellow, she is poised to influence future generations through continued scholarship, course development, and collaborative projects. Her integration of computational tools and physical theory sets a strong foundation for future scientific and educational advancements.

Publications Top Notes

Entropies of the Classical Dimer Model

  • Authors: John C. Baker, Marilyn F. Bishop, Tom McMullen
    Journal: Entropy
    Year: 2025

An α-chain modification rivals the effect of fetal hemoglobin in retarding the rate of sickle cell fiber formation

  • Authors: E.H. Worth, M.K. Fugate, K.C. Grasty, P.J. Loll, Marilyn F. Bishop, F.A. Ferrone
    Journal: Scientific Reports
    Year: 2023

Entropy of Charge Inversion in DNA including One-Loop Fluctuations

  • Authors: M.D. Sievert, Marilyn F. Bishop, Tom McMullen
    Journal: Entropy
    Year: 2023

Superlinear increase of photoluminescence with excitation intensity in Zn-doped GaN

  • Authors: M.A. Reshchikov, A.J. Olsen, Marilyn F. Bishop, Tom McMullen
    Journal: Physical Review B – Condensed Matter and Materials Physics
    Year: 2013

The Sickle-Cell Fiber Revisited

  • Authors: Marilyn F. Bishop, Frank A. Ferrone
    Journal: Biomolecules
    Year: 2023

 

 

Chengyan Liu | Advanced Computing | Best Researcher Award

Prof. Chengyan Liu | Advanced Computing | Best Researcher Award

Henan University | China

Professor Chengyan Liu is a distinguished scholar in Condensed Matter Physics and Computational Physics, currently serving as a Full Research Professor at the Institute of Future Technologies, Henan University. He is a Doctoral Supervisor and a recognized Yellow River Scholar. With academic roots from Fudan University and an international postdoctoral stint at UC Irvine, Prof. Liu has become a leading authority on defect physics, semiconductor interfaces, and photoelectronic materials. His prolific output includes over 20 high-impact publications, multiple national research grants, and a reputation for pushing the boundaries of theoretical materials science.

👨‍🎓Profile

Google scholar

Scopus

ORCID

🎓 Early Academic Pursuits

Prof. Liu’s academic journey began with a B.Sc. in Physics from Zhengzhou University in 2011, followed by an M.Sc. in Theoretical Physics at the same institution in 2014. He then pursued a Ph.D. at Fudan University, completing it in 2017 under a rigorous theoretical physics program. During this formative period, he laid a solid foundation in quantum theory, computational modeling, and condensed matter systems, which would become central to his future research. His early interest in semiconductor materials and grain boundary phenomena steered him toward the path of advanced computational materials physics.

🏛️ Professional Endeavors 

After earning his Ph.D., Prof. Liu expanded his expertise as a postdoctoral researcher at the University of California, Irvine, where he worked in the Department of Astrophysics. He returned to China to join Henan University, rapidly progressing from Lecturer (2020) to Distinguished Professor, and most recently, a Fast-Tracked Full Professor (2024) under Henan’s elite talent program. At Henan, he spearheads critical research in the Quantum Materials and Quantum Energy Lab, leads provincial and national-level projects, and serves as a doctoral mentor. His role bridges academic leadership, institutional innovation, and scientific advancement.

🔬 Contributions and Research Focus

Prof. Liu specializes in theoretical studies of defect physics, excited-state dynamics, and optoelectronic behavior in multicomponent semiconductors. His pioneering work on Cu₂ZnSn(SSe)₄ solar cells, defect passivation, and p-type transparent conductors has led to material innovations critical for next-generation solar energy devices. He is known for integrating first-principles calculations, nonadiabatic molecular dynamics, and interface engineering to resolve longstanding efficiency bottlenecks in photovoltaics. His research also touches on phonon imaging, bandgap tuning, and nanostructure thermodynamics, cementing his role as a cross-disciplinary leader in materials computation and energy physics.

🌏 Impact and Influence

Prof. Liu’s research has significantly impacted the fields of photovoltaics, defect engineering, and quantum materials. His work in kesterite solar cells has advanced understanding of Voc-deficits and interface stability, directly influencing experimental design across China and abroad. He has published in Nature, Advanced Energy Materials, and npj Computational Materials, garnering citations and collaborations globally. As a corresponding or first author on most of his publications, he shapes scholarly discourse and sets research directions. His mentorship and visibility in national projects further amplify his influence on China’s renewable energy research landscape.

📚 Academic Citations

Prof. Liu has authored or co-authored over 20 peer-reviewed publications in journals with impact factors exceeding 50 (Nature, AFM, Nano Letters, etc.). His works are widely cited in the fields of materials chemistry, physics, and energy science. His contributions to defect theory, interface passivation, and electronic structure analysis are frequently referenced by experimentalists and theorists alike. Notably, his 2021 Nature paper on single-defect phonons and his 2017 work in Advanced Energy Materials are seminal in their respective domains. His consistent authorship and citation metrics mark him as a globally recognized scholar in computational materials science.

🧠 Research Skills

Prof. Liu possesses deep expertise in first-principles modeling, density functional theory (DFT), nonadiabatic dynamics, and defect analysis. His ability to combine quantum simulations with applied material design allows him to bridge theory and experiment. He has demonstrated prowess in bandgap engineering, passivation chemistry, and interface defect control. His skillset includes advanced tools like VASP, Quantum ESPRESSO, and phonon analysis frameworks. He leads multi-disciplinary teams, mentors graduate researchers, and designs custom simulation frameworks to address complex materials problems placing him at the frontier of computational materials innovation.

🎓 Teaching Experience

Since 2020, Prof. Liu has taught Advanced Quantum Mechanics for graduate students, delivering 54 hours annually. He is renowned for blending rigorous theoretical depth with computational applications, making abstract quantum concepts tangible. His textbook contribution, Study Guide to Griffiths’ Quantum Mechanics, demonstrates his pedagogical commitment and ability to clarify complex physics. Students under his mentorship have contributed to publications, signaling his effectiveness in academic training and talent development. Prof. Liu emphasizes problem-solving, analytical thinking, and research integration, providing a strong foundation for emerging physicists and materials scientists under his guidance.

🏆 Awards and Honors

Prof. Liu was awarded the prestigious Yellow River Scholar title a top provincial honor recognizing distinguished academic performance. His selection as a Fast-Tracked Full Professor under Henan’s High-Level and Urgently Needed Talent Program attests to his scientific merit and leadership potential. He has received multiple NSFC research grants and is the recipient of the Henan Excellent Young Scientists Fund. His inclusion on the Board of the Henan Physical Society further highlights his stature in the academic community. These honors reflect not only his past accomplishments but also his promise for future breakthroughs.

🚀 Legacy and Future Contributions

Prof. Liu is poised to leave a lasting legacy in quantum materials research and solar energy innovation. His pioneering work on transparent conductors, defect-tolerant semiconductors, and carrier lifetime enhancement will continue to shape the next wave of clean energy technology. As a mentor, author, and national project leader, he is building a robust academic ecosystem in Henan Province and beyond. Looking ahead, he aims to expand international collaborations, transition more research toward real-world applications, and foster interdisciplinary integration. His legacy will likely include both scientific excellence and the nurturing of future scientific leaders.

Publications Top Notes

  • Title: Defect inducing large spin orbital coupling enhances magnetic recovery dynamics in CrI3 monolayer
    Authors: Yu Zhou, Ke Zhao, Zhenfa Zheng, Huiwen Xiang, Jin Zhao,* Chengyan Liu,*
    Journal: npj Computational Materials
    Year: 2025

  • Title: Interfacial passivation of kesterite solar cells for enhanced carrier lifetime: Ab initio nonadiabatic molecular dynamics study
    Authors: Huiwen Xiang, Zhenfa Zheng, Ke Zhao, Chengyan Liu,* Jin Zhao,*
    Journal: Advanced Functional Materials
    Year: 2024

  • Title: Synergistic densification in hybrid organic-inorganic MXenes for optimized photothermal conversion
    Authors: Tong Xu, Shujuan Tan,* Shaoxiong Li, Tianyu Chen, Yue Wu, Yilin Hao, Chengyan Liu,* Guangbin Ji,*
    Journal: Advanced Functional Materials
    Year: 2024

  • Title: Defect-complex engineering to improve the optoelectronic properties of CuInS2 by phosphorus incorporation
    Authors: Huiwen Xiang, Jinping Zhang, Feifei Ren, Rui Zhu, Yu Jia, Chengyan Liu,*
    Journal: Physical Review Applied
    Year: 2023

  • Title: Analytical energy formalism and kinetic effects of grain boundaries: A case study of graphene
    Authors: Chengyan Liu, Zhiming Li, Xingao Gong,*
    Journal: Applied Physics Letters
    Year: 2024

 

Umer Nauman | Quantum Computing | Best Researcher Award

Dr. Umer Nauman | Quantum Computing | Best Researcher Award

Post Doctoral Research Associate at Henan University of Technology | China

Dr. Umer Nauman is a dynamic Postdoctoral Research Associate at Henan University of Technology, China, specializing in Quantum Cryptography, Cloud Security, and DNA Cryptography. With a PhD in Computing (Presidential Scholarship) and an MS in Software Engineering (Chinese Government Scholarship), he has established a strong academic and research presence. Dr. Nauman has authored 22+ publications, contributed to government-funded projects, and actively mentors international students. He is fluent in six languages, delivers online lectures at Istanbul Technical University, and serves as a peer reviewer for top Springer journals. His work bridges futuristic security technologies and practical digital innovations.

👨‍🎓Profile

Scopus

ORCID

📘 Early Academic Pursuits 

Dr. Umer Nauman began his academic journey with a passion for computing and security. He pursued his MS in Software Engineering on a prestigious Chinese Government Scholarship, where he laid the foundation in cloud-based systems, algorithmic modeling, and data security. His dedication to excellence and innovation earned him a Presidential Scholarship for his PhD in Computing at Henan University of Technology. During his early academic years, he was already exploring complex domains like Artificial Intelligence and Cryptography, and he published his first international conference papers by 2018, highlighting his early engagement with cutting-edge computational research.

💼 Professional Endeavors

As a Postdoctoral Research Associate at Henan University of Technology, Dr. Nauman is involved in high-impact research in Quantum Mechanics, Blockchain Security, and EHR privacy. He also lectures on advanced computing courses, supervises diverse student cohorts, and contributes to government-funded projects focused on quantum-resilient systems and misuse detection. Since 2022, he has served as an IELTS instructor, helping students across China enhance their language proficiency. Additionally, he is an online lecturer at Istanbul Technical University, delivering virtual classes in Quantum Cryptography. His professional roles combine research innovation, international collaboration, and digital education excellence.

🧠 Contributions and Research Focus

Dr. Nauman’s research is centered on emerging cybersecurity challenges, with a specialized focus on Quantum Cryptography, DNA Cryptography, and Cloud Security Optimization. He has contributed significantly to fields such as Blockchain for Electronic Health Records, Quantum-Safe Cryptographic Systems, and AI-enhanced signature schemes. His research also addresses practical applications in cloud workload management, misuse detection models, and healthcare data privacy. As the lead researcher in a national project on linear model checking, and a co-investigator in developing quantum-resistant systems, he blends theoretical innovation with real-world problem-solving, aimed at future-proofing digital infrastructures.

🌍 Impact and Influence

Dr. Nauman’s influence extends across academia, technology, and international education. His publications in high-impact journals such as Quantum Information Processing, Cluster Computing, and Remote Sensing demonstrate the global relevance of his research. He actively participates in international conferences, including Inscrypt 2023 and the World Youth Development Forum supported by UNESCO. His work on quantum-secure EHRs and AI-enhanced cryptographic models addresses global cybersecurity concerns. Moreover, his mentorship of international graduate students reflects his commitment to cultivating the next generation of researchers. He is a bridge between innovation and instruction, influencing both theory and practice.

📚 Academic Cites 

Dr. Nauman has produced an impressive body of work with 22+ research papers in peer-reviewed journals between 2018 and 2025. His publications have been accepted or published in Q1 and Q2 journals like Scientific Reports, IEEE Access, Interdisciplinary Sciences, and Remote Sensing. His most notable works include papers on quantum-enhanced cloud security, AI-optimized signature schemes, and privacy-preserving healthcare systems. His citation count is on a steady rise, with contributions frequently referenced in studies addressing quantum security and health data systems. His academic output reflects depth, continuity, and global citation relevance.

🧪 Research Skills

Dr. Nauman exhibits mastery in a wide range of research and computational tools, including Python, MATLAB, CloudSim, SPSS, and R. In the quantum domain, he is proficient in Qiskit, Quantum++, and the Microsoft Quantum Development Kit. He employs these tools to conduct simulations, design secure algorithms, and optimize cloud infrastructures. His skills extend to deep learning models, homomorphic encryption, and blockchain integration. He is highly experienced in qualitative and quantitative research methodologies, data visualization, and performance benchmarking. His work combines analytical depth with technical precision, making him an asset in research-intensive environments.

🎓 Teaching Experience 

With extensive teaching experience across online and on-campus platforms, Dr. Nauman has delivered lectures in C++, Data Structures, OOP, Research Methodologies, and Quantum Cryptography. At Henan University of Technology, he has taught both undergraduate and graduate courses, focusing on interactive learning, algorithmic thinking, and data-driven approaches. As an online lecturer at Istanbul Technical University, he translates complex quantum theories into student-friendly modules. His teaching portfolio also includes Excel for Data Analysis, Digital Electronics, and IELTS preparation, showcasing his versatility. He is known for tailoring his instruction to diverse learning styles, blending technology with pedagogy.

🏆 Awards and Honors 

Dr. Nauman is the recipient of multiple prestigious honors, including the Presidential Scholarship for PhD Studies and the Chinese Government Scholarship for his Master’s. His recognition extends to government-funded research projects where he serves as lead researcher and co-investigator. His work has been shortlisted and accepted by high-impact journals, which is an indicator of excellence in scholarly output. His presence at international conferences, and his editorial contributions to Springer Nature journals, further underscore his academic standing. These accolades affirm his status as a promising thought leader in the fields of quantum security and computing research.

🌟 Legacy and Future Contributions 

Dr. Umer Nauman is poised to become a pioneer in quantum-resilient technologies and healthcare data security. His legacy is being shaped by his interdisciplinary research, global educational engagement, and student mentorship. In the coming years, he aims to expand collaborative networks, file patents for applied cryptographic models, and launch open-source frameworks for secure cloud ecosystems. His commitment to digital ethics, privacy rights, and secure systems positions him as a transformative figure in academia and industry. Dr. Nauman’s future work will likely bridge quantum theory and real-world security systems, influencing policy, education, and innovation globally.

Top Noted Publications

Spatiotemporal Dynamics of Evapotranspiration in the Yellow River Basin: Implications of Climate Variability and Land Use Change

  • Authors: Sheheryar Khan, Huiliang Wang, Muhammad Waseem Boota, Umer Nauman, Ali Muhammad, Zening Wu
    Journal: Geomatics, Natural Hazards and Risk
    Year: 2025

Q-ECS: Quantum-Enhanced Cloud Security with Attribute-Based Cryptography and Quantum Key Distribution

  • Authors: Umer Nauman, Miaolei Deng, Yuhong Zhang, Sheheryar Khan, Uzair Salman
    Journal: Quantum Information Processing
    Year: 2025

The Influence of Weather Conditions on Time, Cost, and Quality in Successful Construction Project Delivery

  • Authors: RunRun Dong, Ali Muhammad, Umer Nauman
    Journal: Buildings
    Year: 2025

Evaluating Land Use Impact on Evapotranspiration in Yellow River Basin China Through a Novel GSEBAL Model: A Remote Sensing Perspective

  • Authors: Sheheryar Khan, Huiliang Wang, Umer Nauman, Muhammad Waseem Boota, Zening Wu
    Journal: Applied Water Science
    Year: 2025

NS-OWACC: Nature-Inspired Strategies for Optimizing Workload Allocation in Cloud Computing

  • Authors: Miaolei Deng, Umer Nauman, Yuhong Zhang
    Journal: Computing
    Year: 2025

 

 

Ivan Uzunov | Quantum Technologies | Best Researcher Award

Prof. Dr. Ivan Uzunov | Quantum Technologies | Best Researcher Award

Researcher at Institute of Mechanics, Bulgarian Academy of Sciences | Bulgaria

Prof. D. Sc. Ivan M. Uzunov is an internationally respected physicist and expert in nonlinear fiber optics, photonics, and optical solitons. With over four decades of academic and research experience, he has become a pivotal figure in advancing the theory and application of nonlinear wave propagation in optical systems. His work bridges theoretical physics and applied photonics, making substantial contributions to both fundamental science and practical technologies in fiber optics and communications.

👨‍🎓Profile

Google scholar

Scopus

ORCID

🎓 Early Academic Pursuits

Prof. Uzunov’s academic journey began with a Master’s degree in Physics from the University of Sofia (1981), followed by a Ph.D. in Physics from the Institute of General Physics in Moscow (1986). His Ph.D. thesis on “Instability of laser radiation in media with thermal nonlinearity” set the tone for his lifelong focus on nonlinear optical phenomena. He later achieved a Doctor Rerum Naturalium Habilitatus from Friedrich-Schiller University, Jena, Germany (1998), and earned a prestigious Doctor of Science (D.Sc.) in Radiophysics and Quantum Electronics in Bulgaria (1999).

🏛️ Professional Endeavors

Prof. Ivan M. Uzunov has held prominent academic and research positions across Bulgaria, Germany, Russia, and Canada, showcasing his broad international engagement. He served as Professor (2008–2025) and Director (2007–2015) of the Department of Applied Physics at the Technical University of Sofia, where he provided both academic leadership and research guidance. He was also Head of the Laboratory of Fibre and Nonlinear Optics at the Institute of Electronics, Bulgarian Academy of Sciences, and worked as Research Manager at Optiwave Corporation in Ottawa, Canada. His career reflects a strong dedication to scientific innovation, administration, and interdisciplinary collaboration.

🔬 Contributions and Research Focus

Prof. Ivan M. Uzunov has made significant contributions to photonics, nonlinear fiber optics, and soliton theory, with a strong focus on Ginzburg–Landau-type equations. He is especially recognized for his pioneering work on N-soliton interactions, self-frequency shifts of dark solitons, and pulse switching in nonlinear couplers. His research incorporates advanced theoretical modeling, including bifurcation theory and numerical simulations. In recent years, he has explored Raman-scattering-perturbed Ginzburg–Landau systems, enhancing scientific understanding of ultrafast pulse dynamics, coherent structures, and kink/anti-kink solutions in nonlinear optical media, reinforcing his role as a leader in nonlinear wave physics.

🌍 Impact and Influence

Prof. Uzunov has authored 164 scientific publications, including 65 papers in high-impact international journals and 47 peer-reviewed conference proceedings. His work has attracted 931 citations (excluding self-citations), with an h-index of 14 on Scopus. His collaborations with global experts like Prof. Falk Lederer and institutions such as Friedrich-Schiller University highlight his international recognition. His research has had significant influence on the development of nonlinear wave theory, shaping the evolution of fiber optic technologies over the past three decades.

📊 Academic Citations & Research Skills

Prof. Ivan M. Uzunov’s impressive citation record underscores the scientific impact of his research, with top-cited papers published in prestigious journals such as Optics Letters, Physical Review Letters, and Optical and Quantum Electronics. These works are frequently referenced in the fields of nonlinear optics and fiber communications. He possesses advanced research skills in numerical simulations, nonlinear differential equations, bifurcation analysis, and modeling of ultrafast optical pulses. His methodology effectively integrates rigorous mathematical frameworks with practical photonic applications, enabling deep insights into nonlinear wave phenomena and reinforcing his expertise in complex optical systems.

🧑‍🏫 Teaching Experience

Prof. Uzunov has taught extensively at Technical University of Sofia, mentoring numerous graduate students, supervising doctoral dissertations, and guiding postdoctoral researchers. His experience spans both theoretical physics and applied engineering, making him a valuable educator who bridges the gap between academic knowledge and industry practice. He has also been involved in curriculum development, introducing courses in nonlinear optics, fiber communication systems, and optical signal processing.

🏅 Awards and Honors

While specific award titles are not listed, Prof. Uzunov’s selection as Director, invitations to international collaborative projects, and invited publications (e.g., Optik’s Golden Jubilee of Solitons) reflect his peer recognition and professional standing. His profile positions him as a leading candidate for prestigious accolades like the Best Researcher Award, especially in photonics and applied physics.

🌟 Legacy and Future Contributions

Prof. Uzunov’s legacy lies in his ability to integrate theoretical excellence with practical relevance, influencing optical communication systems and nonlinear wave studies. As he continues publishing in top journals through 2025, his ongoing work on solitons, Ginzburg–Landau models, and Raman effects promises to open new research pathways. He is a mentor, a scientist, and a thought leader whose influence will likely continue to shape the future of optical physics and nonlinear dynamics.

Top Noted Publications

Transitions of stationary to pulsating solutions in the complex cubic-quintic Ginzburg-Landau equation under the influence of nonlinear gain and higher-order effects

  • Authors: Uzunov I.M., Georgiev Zh.D., Arabadzhiev T.N.

  • Journal: Physical Review E

  • Year: 2018

Kink solutions of the complex cubic–quintic Ginzburg-Landau equation in the presence of intrapulse Raman scattering

  • Authors: Uzunov I.M., Vassilev V.M., Arabadzhiev T.N., Nikolov S.G.

  • Journal: Optik – International Journal for Light and Electron Optics

  • Year: 2023

Coherent structures and sequences of exact kink and anti kink solutions to the complex cubic–quintic Ginzburg–Landau equation perturbed by intrapulse Raman scattering

  • Authors: Uzunov I.M., Arabadzhiev T.N., Vassilev V.M., Nikolov S.G.

  • Journal: Optical and Quantum Electronics

  • Year: 2023

Long-living periodic solutions of complex cubic-quintic Ginzburg–Landau equation in the presence of intrapulse Raman scattering: a bifurcation and numerical study

  • Authors: Uzunov I.M., Nikolov S.G., Arabadzhiev T.N., Georgiev Zh.D.

  • Journal: Physical Review E

  • Year: 2024

One approach to find the pulsating pulse solutions of the complex cubic Ginzburg–Landau equation considering intrapulse Raman scattering

  • Authors: Uzunov I.M., Nikolov S.G., Arabadzhiev T.N.

  • Journal: Optical and Quantum Electronics

  • Year: 2025

 

 

Aftab Alam | Quantum Technologies | Excellence in Research Award

Prof. Aftab Alam | Quantum Technologies | Excellence in Research Award

Professor at Indian Institute of Technology Bombay  | India

Professor Aftab Alam is a distinguished physicist specializing in computational materials science, currently serving at the Department of Physics, IIT Bombay. With an expansive career rooted in quantum materials, electronic structure, and vibrational dynamics, Prof. Alam has significantly contributed to both theoretical advancements and applied computational frameworks. His academic journey and professional trajectory reflect a commitment to scientific excellence, interdisciplinary collaboration, and mentorship.

👨‍🎓Profile

Google scholar

Scopus

ORCID

🎓 Early Academic Pursuits

Professor Alam’s academic foundation was built at the University of Calcutta, where he earned his B.Sc. in Physics (Honors) with Mathematics and Chemistry, followed by an M.Sc. in Physics, specializing in Nuclear Physics. He later completed a rigorous Post-M.Sc. course at the S. N. Bose Centre for Basic Sciences, which included intensive examinations and seminar presentations. He pursued his doctoral studies (Ph.D.) at the same institute under the guidance of Prof. Abhijit Mookerjee, focusing on vibrational properties of disordered systems.

🧑‍🏫 Professional Endeavors

Prof. Alam has held progressive academic roles at IIT Bombay since 2013—from Assistant Professor to Associate Professor, and now Professor since April 2022. Before returning to India, he served as a Research Associate at the University of Illinois at Urbana-Champaign and later as Research Staff at the Ames Laboratory (USA). His international exposure greatly enriched his perspective on materials design, thermodynamic modeling, and quantum phase transitions.

🔬 Contributions and Research Focus

Professor Aftab Alam’s research focuses on electronic structure theory, thermoelectric materials, disordered alloys, and vibrational dynamics. He has developed advanced algorithms and efficient computational codes, integrating them with tools like Quantum-Espresso to explore phonon behavior in complex systems. His work covers structural, magnetic, and quantum phase transitions in intermetallics, exotic phases in topological insulators and superconductors, ab-initio transport theory beyond the Boltzmann formalism, and optoelectronic properties of emerging energy materials.

🌍 Impact and Influence

With over 136 peer-reviewed publications, 10 papers under review, and multiple book chapters, Prof. Alam is a globally cited expert in his domain. His pioneering techniques in phonon dispersion and disorder modeling have been cited across research on thermal transport, neutron scattering, and novel quantum materials. His work supports energy innovation, material design, and next-gen computing applications.

📚 Academic Citations and Publications

Professor Aftab Alam’s research portfolio reflects his prolific academic contributions. He has authored books and book chapters, including Lattice Dynamics of Disordered Systems (2016) and key Springer publications on halide perovskites and spin gapless semiconductors. His work includes 4 conference papers, 10 articles under review, and an impressive 136 international journal publications. His complete list of publications is accessible via Google Scholar, highlighting his high-impact research in condensed matter physics and computational material science.

🛠️ Research Skills and Technical Expertise

Prof. Aftab Alam possesses exceptional expertise in first-principles calculations and density functional theory (DFT), with deep specialization in phonon calculations, vibrational entropy, and inelastic neutron scattering. He is proficient in tools like TB-LMTO, KKR-CPA, VASP, Recursion Method, and Tight-Binding, alongside strong FORTRAN programming skills. Notably, he has developed generalized lattice dynamical models for disordered alloys, interfacing efficiently with Quantum-Espresso, which marks a significant advancement in material simulations and computational modeling.

👨‍🏫 Teaching Experience and Mentorship

Over his academic journey, Prof. Aftab Alam has mentored 10 Ph.D. scholars (completed) and is currently guiding 6 ongoing Ph.D. students. He has also supervised 7 postdoctoral fellows, with 2 more ongoing, showcasing his strong role in academic leadership. He actively fosters scholarly engagement, having played a pivotal role in student-led symposia like SYMPHY at IIT Bombay. Additionally, he extended his influence internationally as General Secretary of the ISU Postdoctoral Association, USA, promoting academic collaboration and outreach.

🏅 Awards and Honors

Professor Alam has been consistently recognized for his academic leadership:

  • 🏆 IAAM Scientist Medal, 2016

  • 🎖 DST Young Scientist Award, 2014

  • 🏅 Early Research Achiever Award, IIT Bombay, 2017

  • 🏵 Young Faculty Award, 2013

  • ✍️ Editorial roles in journals such as Chinese Journal of Physics, Frontiers in Physics, and Advanced Materials Letters

  • 📜 Featured in Marquis Who’s Who in the World, 2008

  • 🧪 Multiple national-level exam qualifications: NET-CSIR, JEST

🌟 Legacy and Future Contributions

Prof. Alam is currently involved in organizing international events, including a conference on Photophysics and Photochemistry (2024), and continues to lead multi-crore research projects funded by DST-SERB, MNRE, and IIT Bombay. His focus remains on advancing fundamental understanding while promoting scientific computing tools for widespread academic use. His legacy lies in nurturing next-generation physicists, building research infrastructure, and pushing the boundaries of quantum materials science.

Top Noted Publications

Giant Topological Hall Effect in Magnetic Weyl Metal Mn₂Pd₀.₅Ir₀.₅Sn

  • Authors: Arnab Bhattacharya, P. C. Sreeparvathy, Afsar Ahmed, Aftab Alam, Indranil Das
    Journal: Advanced Functional Materials
    Year: 2025

Photoemission spectroscopy and ab-initio simulation of CrFeVGa and CoFeVSb: a comparative study

  • Authors: Jadupati Nag, Kritika Vijay, Barnabha Bandyopadhyay, Aftab Alam, Krishna Gopinatha Suresh
    Journal: Journal of Physics: Condensed Matter
    Year: 2025

Facilitating White Light Emission through Heterovalent Sr²⁺-Doped Nanocrystals for Visible Light Transparent Electronics

  • Authors: Monika Salesh, Sumit Kumar Sharma, Sanika S. Padelkar, Aftab Alam, Aswani Yella
    Journal: ACS Materials Letters
    Year: 2025

Enhanced piezoresponse in van der Waals 2D CuCrInP₂S₆ through nanoscale phase segregation

  • Authors: Sharidya Rahman, Sanika S. Padelkar, Lan Nguyen, Aftab Alam, Jacek Jaroslaw Jasieniak
    Journal: Nanoscale Horizons
    Year: 2025

Robust Nernst magnetothermoelectricity in the topological spin semimetal FeCrRhX (X=Si, Ge)

  • Authors: Amit Chanda, Jadupati Nag, Noah Schulz, Manhhuong Phan, Hariharan V. Srikanth
    Journal: Physical Review B
    Year: 2025

Yang Lei | High energy physics | Best Researcher Award

Prof. Yang Lei | High energy physics | Best Researcher Award

Associate Professor at Soochow University | China

Prof. Yang Lei is a distinguished theoretical physicist at the Institute of Advanced Study, Soochow University, specializing in black hole physics, holography, and quantum field theory. With extensive training and research experience from world-renowned institutions such as Peking University, Durham University, and Niels Bohr Institute, Prof. Lei is recognized for his cutting-edge work on AdS/CFT correspondence and non-relativistic holography, making him a rising voice in the global high-energy physics community.

👨‍🎓Profile

Scopus

ORCID

🎓 Early Academic Pursuits

Prof. Lei began his academic journey at the prestigious Yuanpei College, Peking University, earning his Bachelor’s degree in 2011, with a second major in Mathematics a testament to his foundational strength in formal theoretical reasoning. He pursued his MSc in Particles, Strings, and Cosmology at Durham University, supervised by Simon Ross, followed by a PhD in Mathematics, with a focus on Singularities in holographic non-relativistic spacetimes an area of deep relevance in modern quantum gravity.

👨‍🔬 Professional Endeavors

Following his PhD, Prof. Yang Lei embarked on an impressive journey through several prestigious postdoctoral positions at top-tier institutions including the Institute of Theoretical Physics, CAS, University of the Witwatersrand, Niels Bohr Institute, and Kavli Institute of Theoretical Science (KITS), UCAS. In 2022, he was appointed as an Associate Professor at Soochow University, where he continues to lead cutting-edge research and mentor young physicists, contributing meaningfully to the field of theoretical high-energy physics.

🔬 Contributions and Research Focus

Prof. Lei’s research is centered on black holes, holography, AdS/CFT duality, non-relativistic limits of field theories, and quantum gravity. His studies on spin matrix theory, EVH (Extremal Vanishing Horizon) black holes, and modular factorization in superconformal indices showcase his theoretical versatility and original insights into foundational questions of physics.

🌍 Impact and Influence

Prof. Lei has delivered more than 20 invited talks at prestigious international conferences, including String 2016, Tsinghua University, and Joburg Workshop on String Theory. His presence at academic forums and black hole workshops affirms his growing influence in the global theoretical physics community. He also demonstrates leadership in academic outreach through organizing workshops like the SUIAS HEP Workshop and KITS Summer School, promoting collaborative learning in high-energy physics.

📈 Academic Citations

While specific citation metrics were not detailed in the current profile, Prof. Lei’s consistent conference participation, grants awarded, and long-term collaborations with major institutions indicate a highly regarded academic presence, especially within holography and black hole research circles.

🛠️ Research Skills

Prof. Yang Lei possesses a sophisticated toolkit of theoretical and mathematical techniques, including AdS/CFT duality calculations, non-relativistic quantum field theory, spin matrix theory analysis, black hole thermodynamics, modular invariance, and superconformal indices, as well as advanced perturbation theory and resurgence. These research capabilities enable him to tackle some of the most complex and unsolved problems in quantum gravity and holographic dualities, reinforcing his role as a leading thinker in high-energy theoretical physics.

👨‍🏫 Teaching Experience

Prof. Yang Lei is a highly engaged educator, teaching core physics courses in English at Soochow University, such as Quantum Mechanics (Autumn 2023) and Solid State Physics (Spring 2023). He also contributed to the KITS Summer School, guiding students on black hole microstates and the information paradox. During his PhD, he served as a Teaching Assistant at Durham University, showcasing his well-rounded dedication to both academic instruction and research mentorship in theoretical physics.

🏅 Awards and Honors

Prof. Yang Lei‘s exceptional contributions have earned him prestigious awards and competitive grants, such as the National Natural Science Foundation of China Young Researcher Grant (2024–2026), the China Postdoc Surface Grant (2021–2022), and the Overseas Postdoc Introduction and Communication Grant (2016–2018). He also received the Peter Rowe Memorial Postgraduate Prize (2012) and the Durham Teaching and Learning Award (UK HEA Associate Fellowship, 2016). These accolades highlight his scholarly excellence, peer recognition, and international collaboration.

🌟 Legacy and Future Contributions

With a solid academic foundation, global collaborations, and an ever-expanding research portfolio, Prof. Yang Lei is on a trajectory to become a leading voice in quantum gravity and holography. His future contributions are expected to shape our understanding of black hole dynamics, non-AdS holography, and quantum field theories under extreme conditions. He is well-positioned to continue his impactful journey as a scholar, educator, and thought leader in modern theoretical physics.

Publications Top Notes

Conformal mapping of non-Lorentzian geometries in SU(1, 2) Conformal Field Theory

  • Authors: Stefano Baiguera, Troels Harmark, Yang Lei, Ziqi Yan
    Journal: Journal of High Energy Physics
    Year: 2025

Modularity in d > 2 free conformal field theory

  • Authors: Yang Lei, Sam van Leuven
    Journal: Journal of High Energy Physics
    Year: 2024

Quasinormal modes of C-metric from SCFTs

  • Authors: Yang Lei, Hongfei Shu, Kilar Zhang, Ruidong Zhu
    Journal: Journal of High Energy Physics
    Year: 2024

Modular factorization of superconformal indices

  • Authors: Vishnu Jejjala, Yang Lei, Sam van Leuven, Wei Li
    Journal: Journal of High Energy Physics
    Year: 2023

The Panorama of Spin Matrix theory

  • Authors: Stefano Baiguera, Troels Harmark, Yang Lei
    Journal: Journal of High Energy Physics
    Year: 2023

 

 

Aftab Khan | Quantum Technologies | Excellence in Research Award

Dr. Aftab Khan | Quantum Technologies | Excellence in Research Award

Visiting Lecturer at University of Peshawar | Pakistan

Aftab Khan is a passionate physicist and researcher with a strong academic and research foundation in quantum optics, plasmonics, and nanocomposite materials. With an enduring curiosity about the interplay between light and matter, he has contributed significantly to the understanding of optical and plasmonic behaviors in metal-dielectric systems. He is currently associated with the Quantum Optics & Quantum Information (QOQI) research group at the University of Malakand, where he continues to explore cutting-edge concepts in quantum information and ultra-cold atomic systems.

👨‍🎓Profile

Google scholar

📚 Early Academic Pursuits

Aftab’s journey in physics began with a BSc at Govt. AKL P.G College Matta Swat, progressing to an M.Sc in Physics (2010–12) from University of Malakand, where he developed a solid foundation in quantum mechanics, electromagnetic theory, and solid-state physics. His academic path naturally evolved into a focused interest in quantum optics, leading to an M.Phil and eventually a Ph.D. program at University of Peshawar, specializing in nanocomposite media embedded in rubidium.

🧑‍🏫 Professional Endeavors

Aftab Khan began his teaching career as a Lecturer in Physics at Bright Education Academy and QIMS College Khwaza Khela, serving from 2013 to 2018. Since March 2018, he has held a position as a Visiting Lecturer at the University of Swat, where he continues to inspire students through both theoretical instruction and practical insights from his research work.

🔬 Contributions and Research Focus

Aftab’s research focuses on quantum-atom optics, Kerr nonlinearity, optical cloaking, and cavity quantum electrodynamics. He has notably worked on the optical and plasmonic properties of nanocomposite systems involving gold and silver nanoparticles in rubidium atomic media, combining theoretical modeling with experimental data interpretation. His Ph.D. work, and earlier M.Phil research on rotary photon dragging and Kerr nonlinearity, stand as significant contributions to the field.

🌍 Impact and Influence

With multiple publications in high-impact journals such as Optical and Quantum Electronics, Physics Letters A, and Optik, Aftab Khan’s work has contributed to the understanding of light-matter interactions, plasmonic hole burning, and temporal cloaking mechanisms. These studies offer potential applications in quantum computing, nonlinear optics, and invisibility cloaking technologies, showing his commitment to impactful, forward-looking research.

🛠️ Research Skills

Aftab Khan possesses a diverse and technically rich research skillset, including quantum simulations, mathematical modeling of light-matter interactions, and plasmonic material design. His expertise extends to theoretical optics involving Kerr nonlinearity and the proficient use of computational tools in physics. With a deep understanding of coherent atomic media, nonlinear optical effects, and plasmon dynamics, he plays a vital role in advancing both collaborative and independent scientific research, contributing meaningfully to the field of quantum optics and plasmonics.

👨‍🏫 Teaching Experience

Aftab has taught undergraduate and graduate-level physics for over a decade, emphasizing quantum theory, classical mechanics, computational physics, and electromagnetic theory. His role as a Visiting Lecturer at the University of Swat has helped him bridge theoretical knowledge with practical research applications, enriching the academic experience for his students.

🔮 Legacy and Future Contributions

With a clear trajectory rooted in quantum optics, Aftab Khan is poised to make lasting contributions in the fields of quantum information processing, nanophotonics, and optical material design. His future goals likely include interdisciplinary research, collaborations on global platforms, and mentoring young scientists in cutting-edge physics. His evolving work promises to expand the possibilities of optical cloaking and coherent quantum control systems.

Publications Top Notes

Surface plasmon hole burning at the interface of Cesium and Gold by Kerr nonlinearity

  • Authors: U. Wahid, A. Khan, B. Amin, A. Ullah
    Journal: Optik, Volume 202, Article 163651
    Year: 2020

Theoretical investigation of the optical and plasmonic properties of the nanocomposite media composed of silver nanoparticles embedded in rubidium

  • Authors: A. Khan, A. Ullah, R.U. Din, A. Khan
    Journal: Physics Letters A, Volume 527, Article 129993
    Year: 2024

Optical and plasmonic properties of coherently prepared nanocomposite composed of gold nanoparticles embedded in rubidium atomic media

  • Authors: A. Khan, A. Ullah, A. Khan
    Journal: Optical and Quantum Electronics, Volume 57, Issue 5, Article 266
    Year: 2025

Investigating the effect of rotary photon dragging on temporal cloaking under the influence of Kerr nonlinearity

  • Authors: A. Khan, A. Khan, R.U. Din
    Journal: Optical and Quantum Electronics, Volume 57, Issue 3, Pages 1–13
    Year: 2025