Lijun Wang | High energy physics | Best Researcher Award

Dr. Lijun Wang | High energy physics | Best Researcher Award

Changzhou University | China

Dr. Lijun Wang is a dynamic researcher and educator specializing in thermoelectric materials, currently a Research Fellow at the Queensland University of Technology and previously a Lecturer at Changzhou University. With a Ph.D. in Materials Science and Engineering from China University of Petroleum (Beijing) and a visiting Ph.D. experience at The University of Queensland, Dr. Wang brings a global perspective to advanced materials research. His expertise bridges energy materials, nanostructures, and thermal transport, underlined by over 28 peer-reviewed publications, 5 patents, and an impressive academic citation record.

👨‍🎓Profile

Scopus

Google scholar

🎓 Early Academic Pursuits

Dr. Wang began his academic journey with a Bachelor’s degree in Polymer Materials from Liaocheng University, followed by a Master’s in Textile and Material Engineering from Dalian Polytechnic University. His drive for deeper scientific exploration led to a Ph.D. in Materials Science and Engineering at China University of Petroleum-Beijing, supported by the China Scholarship Council. As a Visiting Ph.D. Researcher at The University of Queensland, he honed his skills in nanomaterials and thermoelectrics, laying the foundation for his future contributions in thermal conductivity engineering and energy conversion systems.

🧑‍🔬 Professional Endeavors

Dr. Wang’s professional career features a dual academic appointment—a Lecturer at Changzhou University since 2020 and a Research Fellow at Queensland University of Technology starting in 2024. At Changzhou University, he has taught and developed several key materials science and chemistry courses. His academic leadership also includes supervising Master’s and undergraduate research projects. His international experience and involvement in multi-institutional collaborations highlight his role in advancing research on SnTe-based and flexible thermoelectric systems, contributing to global energy solutions and academic excellence.

🔬 Contributions and Research Focus

Dr. Wang’s research is focused on thermoelectric materials, especially SnTe-based systems, thermal conductivity minimization, and nanostructure engineering. He has significantly contributed to the design of high-performance materials using doping strategies, phonon scattering mechanisms, and solution-based synthesis methods. His work addresses critical needs in flexible electronics, energy harvesting, and battery thermal management. Dr. Wang’s impactful studies have been published in prestigious journals like ACS Applied Materials & Interfaces, Chemical Society Reviews, and Nano Energy, where he frequently serves as first author or co-corresponding author.

🌏 Impact and Influence

Dr. Wang’s research has attracted over 700 Google Scholar citations, demonstrating significant scientific influence. His innovations in SnTe thermoelectric materials have received international recognition, contributing to advancements in green energy technologies and sustainable materials. He has co-authored in high-impact journals such as Advanced Science, ACS Nano, and Acta Materialia, influencing the academic and industrial communities alike. His patented technologies represent tangible outputs of academic research into real-world applications, particularly in energy-efficient electronic systems.

📚 Academic Citations

With 28 publications, including 10 first-author papers, 5 patents, and an H-index of 12, Dr. Wang’s work has achieved 704 citations to date. His most cited work on Se/Cd Co-doped SnTe has been referenced 56 times, highlighting its impact on thermoelectric research. Several of his publications in ACS Applied Materials, Nano Energy, and Chemical Engineering Journal are foundational to lattice thermal conductivity and nanostructuring techniques. His research continues to influence new generations of material scientists, both through citations and collaborative projects.

🛠️ Research Skills

Dr. Wang possesses a strong arsenal of experimental techniques, including microwave solvothermal synthesis, nanostructure design, and high-resolution microscopy. His work involves thermal property measurements, electronic transport analysis, and computational modeling of energy materials. He is skilled in collaborative research, project management, and multidisciplinary problem-solving, especially in the fields of thermoelectrics, photovoltaics, and membrane materials. His ability to translate fundamental science into technological innovation is reflected in both his patented methods and high-impact publications.

🧑‍🏫 Teaching Experience

At Changzhou University, Dr. Wang has taught and developed curriculum for four core undergraduate courses: Material Economy and Management, Organic Membrane Materials, Foundations of Crystallography, and Experimental Chemistry from 2020 to 2023. His innovative teaching approach integrates theoretical grounding with practical applications, inspiring students toward research excellence. As a certified higher education lecturer and Master’s thesis supervisor, he has mentored over 10 undergraduate and graduate students, many of whom have pursued advanced studies and research roles under his guidance.

🏆 Awards and Honors

Dr. Wang has received numerous prestigious awards including the Chinese Government Award for Outstanding Joint PhD Students Abroad (2017) and the National PhD Scholarship. He also won the Outstanding Poster Award at the Chinese Materials Conference 2017. His teaching and academic merits earned him the Higher Education Teaching Qualification Certificate and Master’s Supervisor Certification in China. His early academic excellence was recognized with multiple university scholarships and an Outstanding Graduate Award a testament to his consistent academic dedication and leadership.

🚀 Legacy and Future Contributions

Dr. Wang aims to pioneer the next generation of energy materials through advanced thermoelectric systems, flexible devices, and scalable synthesis methods. With his evolving role at Queensland University of Technology, he is poised to lead international collaborations, contribute to climate-conscious technologies, and mentor a new wave of materials scientists. His growing body of patented inventions and scholarly works will shape the future of energy conversion technologies. Dr. Wang’s legacy lies in his dedication to bridging fundamental research with real-world impact, paving a sustainable path forward.

Top Noted Publications

Zn/In dual doping enhances the thermoelectric performance of SnTe
  • Authors: Lijun Wang, Xiao-Lei Shi, Lvzhou Li, Cuicui Dong, Pengcheng Miao, Ziyi Shen, Ningyi Yuan, Jianning Ding, Shuqi Zheng, Zhi-Gang Chen
    Journal: Journal of Physics: Materials
    Year: 2024

Advances in solid-state and flexible thermoelectric coolers for battery thermal management systems
  • Authors: Lijun Wang, Xiao-Lei Shi, Yicheng Yue, Lvzhou Li, Cuicui Dong, Jianjun Guan, Jianning Ding, Ningyi Yuan, Zhi-Gang Chen
    Journal: Soft Science
    Year: 2024

Advancing flexible thermoelectrics for integrated electronics
  • Authors: Xiao-Lei Shi, Lijun Wang, Wanyu Lyu, Tianyi Cao, Wenyi Chen, Boxuan Hu, Zhi-Gang Chen*
    Journal: Chemical Society Reviews
    Year: 2024

Zinc Doping Induces Enhanced Thermoelectric Performance of Solvothermal SnTe
  • Authors: Lijun Wang, Xiao-Lei Shi*, Lvzhou Li, Min Hong, Bencai Lin, Pengcheng Miao, Jianning Ding, Ningyi Yuan, Shuqi Zheng*, Zhi-Gang Chen*
    Journal: Chemistry – An Asian Journal
    Year: 2024

Hierarchical Structuring to Break the Amorphous Limit of Lattice Thermal Conductivity in High-Performance SnTe-Based Thermoelectrics
  • Authors: Lijun Wang, Min Hong, Qiang Sun, Yuan Wang, Luo Yue, Shuqi Zheng*, Jin Zou*, Zhi-Gang Chen*
    Journal: ACS Applied Materials & Interfaces
    Year: 2020

 

 

 

 

Xuechao Zhai | Chiral symmetry breaking | Best Researcher Award

Prof. Xuechao Zhai | Chiral symmetry breaking | Best Researcher Award

Nanjing University of Science and Technology | China

Xuechao Zhai is a Professor and doctoral advisor at the Department of Applied Physics at Nanjing University of Science and Technology, China. His primary research focuses on condensed matter theory, semiconductor physics, and quantum device design. He is well known for his work on topological phase transitions, quantum transport in low-dimensional structures, and spin and valley control. Over the years, he has contributed significantly to quantum information encoding mechanisms, enhancing low-power quantum devices.

👨‍🎓Profile

Scopus 

ORCID

Early Academic Pursuits 🎓

Xuechao Zhai’s academic journey began at Xiangtan University, where he obtained his B.S. in Physics in 2009. He continued his studies at Nanjing University, earning his Ph.D. in Physics in 2014. His early academic years were marked by a keen interest in quantum mechanics and material science, which laid the foundation for his pioneering research in condensed matter physics.

Professional Endeavors đź’Ľ

Following his doctoral studies, Zhai took on several roles at Nanjing University of Posts & Telecommunications, where he served as Lecturer (2014–2017) and Associate Professor (2017–2021). His expertise led him to a Visiting Scholar position at the Kavli Institute at Delft University of Technology (2019–2020), where he collaborated on international research projects in the fields of semiconductor physics and quantum transport. In 2021, Zhai was appointed Professor at Nanjing University of Science & Technology, where he continues to mentor graduate students and advance his research in quantum devices.

Contributions and Research Focus 🔬

Zhai’s research focuses primarily on topological phase transitions and quantum transport in low-dimensional structures. His work in spin and valley control and the design of quantum devices has significantly influenced the understanding of spintronics and valleytronics. He is particularly known for his studies on the electrical control of spin polarization and valley-mediated effects, which have important applications in quantum computing and advanced material design.

Impact and Influence 🌍

Xuechao Zhai’s research has garnered recognition in both the academic and scientific communities. His work has been published in top journals, such as Nature Communications, Advanced Functional Materials, and Physical Review series. His contributions to the understanding of quantum transport and the development of low-power quantum devices have positioned him as a leading figure in the field of semiconductor physics. Zhai has also been awarded several prestigious National Natural Science Foundation projects and has earned accolades such as the “Youth Top Talent” program at Nanjing University of Science and Technology.

Research Skills 📚

His research is widely referenced in the scientific community, contributing significantly to advancements in quantum device design. Zhai’s proficiency in condensed matter theory, material characterization, and theoretical modeling allows him to approach complex problems from a multidisciplinary perspective. His work on spin-orbit coupling and valleytronics continues to shape current research trends.

Teaching Experience đź“–

As a doctoral advisor and professor, Zhai has mentored numerous graduate students and postdoctoral researchers. He emphasizes the importance of critical thinking, research innovation, and scientific rigor. His teaching approach integrates advanced theoretical concepts with hands-on experience in quantum device fabrication, preparing students to contribute to the next generation of quantum scientists and material engineers. Zhai’s leadership in the classroom is complemented by his role in guiding the future of applied physics research.

Awards and Honors 🏆

Xuechao Zhai has been recognized for his excellence in both research and teaching. His achievements include:

  • Four National Natural Science Foundation projects, including three general projects and one youth fund.
  • A Jiangsu Provincial Natural Science Foundation project.
  • Selection for the “Youth Top Talent” program at Nanjing University of Science and Technology in 2021.
  • Recognition as an outstanding young backbone teacher in the “Qinglan Project” of Jiangsu Province in 2019.

These accolades reflect his outstanding contributions to the scientific community and his commitment to nurturing young researchers.

Legacy and Future Contributions đź”®

Xuechao Zhai’s research is shaping the future of quantum devices, spintronics, and low-dimensional materials. His work on topological materials and quantum transport is paving the way for the development of next-generation quantum computing technologies. As he continues to make strides in quantum information encoding and device design, Zhai’s legacy will likely influence future advancements in material science and quantum physics. His ongoing dedication to pushing the boundaries of theoretical physics ensures that he will remain a key figure in the global scientific community.

Publications Top Notes

Realization of robust Ohmic contact for semiconducting black arsenic by coupling with graphene

  • Authors: Xinjuan Cheng, Xuechao Zhai
    Journal: Chinese Physics B, 2025

Large Anomalous Hall Effect in a Noncoplanar Magnetic Heterostructure

  • Authors: Anke Song, Jine Zhang, Yequan Chen, Rong Zhang, Xuefeng Wang
    Journal: Advanced Functional Materials, 2025

Defect-induced helicity dependent terahertz emission in Dirac semimetal PtTe2 thin films

  • Authors: Zhongqiang Chen, Hongsong Qiu, Xinjuan Cheng, Rong Zhang, Xuefeng Wang
    Journal: Nature Communications, 2024

Rashba spin splitting based on trilayer graphene systems

  • Authors: Xinjuan Cheng, Liangyao Xiao, Xuechao Zhai
    Journal: Physical Review B, 2024

Proximity-induced diversified magnetic states and electrically controllable spin polarization in bilayer graphene: Towards layered spintronics

  • Authors: Xuechao Zhai, Yaroslav M. Blanter
    Journal: Physical Review B, 2022

 

Seyyed Abdollahi | High energy physics | Member

Mr. Seyyed Abdollahi | High energy physics | Member

Scholarship at Tabriz University, Iran

I was B.Sc. Student in Mechanical Engineering at Tabriz University and I was among the top 5%, I also received a full scholarship from Tabriz University for the master’s degree, and now I am a master’s student in energy conversion trend at Tabriz University. I was also a Teacher assistant in the Strength of Materials and Design of Machine Elements courses, and I have been working with Dr. Seyyed Faramarz Ranjbar and Dr. Farid Vakili Tahami for 1 year. I am also interested in researching the topics of Power Plants, Thermodynamics, Fluid mechanics, Air conditioning, Energy and Solar energy. Which led to the writing three books I am also interested in working and researching on these topics in the future: 1-Renewable Energy 2-Exergy Analysis 3-Piezoelectric Micropumps 4-Photovoltaics(PV) 5-Nanofluids 6-Energy Analysis 7-Fuel Cells 8-Analysis of Wind Turbin

Professional Profiles:

Education

Master of Mechanical Engineering Branch: Energy Conversion Institute/University: Tabriz University Tabriz , East Azerbaijan, Iran 2022 – Present Bachelor of Mechanical Engineering Institute/University: Tabriz University Tabriz , East Azerbaijan, Iran 2018 – 2022 GPA : 17.90(out of 20)

Work Experience

Internship Tabeiz Thermal Power Station Tabriz , East Azerbaijan, Iran July 2021 – August 2021 Tasks and Achievements Teacher Assistant in the Design of Machine Elements course Tabriz University Tabriz , East Azerbaijan, Iran September 2021 – Present Tasks and Achievements Teacher Assistant in the Power Plants course Tabriz University Tabriz , East Azerbaijan, Iran September 2022 – January 2023 Email: s.a_abdollahi@yahoo.com Mobile: (+98)9380596289 Website: www.linkedin.com/in/seyyed-amirrezaabdollahi-powerplants-renewableenergy Address: Tabriz , East Azerbaijan, Iran DoB: 1998-09-24 Marital Status: Single Military Service: Educational Exemption Seyyed Amirreza Abdollahi Mechanical Engineering Profile Summary Education Work Experience I went to the Tabriz Thermal Power Plant for a training course. There i observed the things that i studied theoretically in the Thermodynamics course. I visited the important parts ofthe power plant such as ControlRoom, Steam Turbines, Boilers, Cooling Towers and the Chemical Department . Results of my research led me to write a book called “Tabriz Thermal Power Plant” As a teacher’s assistant, I solved additional exercises forthe students and supervised their

Research Focus:

The research focus of SA Abdollahi spans across various fields, primarily centered around computational fluid dynamics (CFD), heat transfer, nanofluids, porous media techniques, and numerical analysis. Their work encompasses simulations of heat transfer and fluid flow in microchannel heat sinks, investigation of blood hemodynamics in aneurysms, optimization of chemical processes, and modeling the separation capabilities of membranes. Additionally, they explore topics such as magnetohydrodynamics, biomaterial phase equilibria, and the application of machine learning techniques in estimating biomass properties. Abdollahi’s research demonstrates a broad interest in advancing understanding and optimization across diverse engineering and scientific domains.

Publications

  1. Computer simulation of Cu: AlOOH/water in a microchannel heat sink using a porous media technique and solved by numerical analysis AGM and FEM, cited by: 37, Publication: 2023.
  2. Investigating heat transfer and fluid flow betwixt parallel surfaces under the influence of hybrid nanofluid suction and injection with numerical analytical technique, cited by: 29, Publication: 2023.
  3. Computational study of blood hemodynamic in ICA aneurysm with coiling embolism, cited by: 18, Publication: 2023.
  4. Numerical study of heat transfer of wavy channel supercritical CO2 PCHE with various channel geometries, cited by: 11, Publication: 2023.
  5. Influence of extruded injector nozzle on fuel mixing and mass diffusion of multi fuel jets in the supersonic cross flow: computational study, cited by: 9, Publication: 2023.
  6. Removal of ciprofloxacin and cephalexin antibiotics in water environment by magnetic graphene oxide nanocomposites; optimization using response surface methodology, cited by: 7, Publication: 2023.
  7. Optimizing the amount of concentration and temperature of substances undergoing chemical reaction using response surface methodology, cited by: 7, Publication: 2023
  8. Phase Equilibria Simulation of Biomaterial-Hydrogen Binary Systems Using a Simple Empirical Correlation, cited by: 6, Publication: 2023
  9. Modeling the CO2 separation capability of poly(4-methyl-1-pentane) membrane modified with different nanoparticles by artificial neural networks,  cited by: 5, Publication: 2023
  10. Applying feature selection and machine learning techniques to estimate the biomass higher heating value, cited by: 3, Publication: 2023
.