Marilyn Bishop | Theoretical Advances | Best Researcher Award

Dr. Marilyn Bishop | Theoretical Advances | Best Researcher Award

Associate Professor at Virginia Commonwealth University | United States

Marilyn F. Bishop is a tenured Associate Professor of Physics at Virginia Commonwealth University since 1986. She earned her Ph.D. in Physics from the University of California, Irvine in 1976. With a strong foundation in mathematics and physics, she has developed a multifaceted academic career blending theoretical physics with biophysical research. Bishop’s extensive work spans decades, contributing to both scientific understanding and educational advancements, making her a respected figure in physics education and research communities.

👨‍🎓Profile

Scopus

ORCID

🎓 Early Academic Pursuits

Bishop’s academic journey began with dual Bachelor’s degrees in Physics (1971) and Mathematics (1972) from UC Irvine, followed by a Master’s (1973) and Ph.D. in Physics (1976) from the same institution. She started as a Research Assistant at UC Irvine, honing her skills in theoretical physics. Early postdoctoral work at Purdue University and a visiting scientist role at Technische Universität München reflect her deep engagement with surface physics and condensed matter topics, establishing a strong foundation for her future research and teaching career.

💼 Professional Endeavors

Since 1986, Marilyn Bishop has been a key faculty member at VCU, earning tenure in 1990. Her earlier roles include Assistant Professor at Drexel University and consulting for Purdue University’s Physics Department. She has also been a Fellow at the Center for the Study of Biological Complexity, integrating physics with biological applications. Her professional work balances academic research, collaborative projects, and consulting, emphasizing both theoretical and computational physics, alongside mentoring students and contributing to interdisciplinary scientific communities.

🔬 Contributions and Research Focus

Bishop’s research emphasizes surface polaritons, spatially dispersive materials, and light scattering phenomena, particularly relating to biophysical systems like sickle hemoglobin polymerization. She has published extensively on surface exciton polaritons, Raman scattering, and spin susceptibility in electron gases. Her interdisciplinary work bridges physics and biology, supported by NIH grants focused on computational modeling of cardiopulmonary physiology. Her innovative use of photonic band structure methods to study biological tissues, such as the eye’s cornea, marks a notable contribution to biophysics.

🌟 Impact and Influence

Marilyn Bishop’s impact is seen through her numerous publications, presentations, and invited talks at major physics conferences like the APS March Meetings. She has helped shape understanding in condensed matter physics and biophysics, fostering collaboration between physics and biological sciences. Her research has influenced studies on electron interactions, spin susceptibility, and optical properties of materials, inspiring new computational approaches. She is a mentor to students and colleagues, advancing physics education and encouraging interdisciplinary exploration.

📖 Academic Cites

Her scholarly work has been cited widely in condensed matter physics and biophysics, particularly her studies on surface polaritons and electron gas spin susceptibility. Papers published in prestigious journals like Physical Review B and Physical Review Letters demonstrate her research rigor and relevance. Participation in workshops such as the NSF’s Materials Theory and her role in presenting at over 50 conferences have further solidified her standing in the scientific community, influencing ongoing research in theoretical and applied physics.

🧠 Research Skills

Marilyn Bishop possesses advanced skills in theoretical modeling, computational physics, and light scattering techniques. She developed Mathematica programs for physics visualization and data analysis, pioneering online homework systems in physics education. Her expertise extends to Monte Carlo simulations, photonic band structure calculations, and modeling complex biological systems. Her research methodology combines rigorous mathematical frameworks with computational tools to explore physical phenomena at both micro and macro scales, enhancing interdisciplinary research capabilities.

👩‍🏫 Teaching Experience

Bishop has a rich teaching portfolio, delivering courses from introductory physics labs to advanced graduate seminars in quantum mechanics, electromagnetism, and theoretical mechanics. She created new courses like Physics of Sound and Music and integrated Mathematica visualization tools into the curriculum. Known for developing online homework and detailed instructional materials, Bishop has mentored numerous students and collaborated with colleagues to enhance physics pedagogy at VCU, combining research insights with effective teaching strategies.

🏆 Awards and Honors

Her accolades include the Drexel University Research Scholar Award, membership in Sigma Xi, and the VCU SEED Award (2022-2023) for innovative research proposals. She also earned recognition early in her career with the First Place in the Writer’s Division of the Advertiser-Press Awards (1969). Bishop has secured multiple NIH grants supporting research and education, as well as industry funding, underscoring her research’s impact and her commitment to scientific excellence and mentorship.

🔮 Legacy and Future Contributions

Marilyn F. Bishop’s legacy lies in her interdisciplinary research bridging physics and biology, innovative teaching methods, and mentorship. Her ongoing work on sickle-cell hemoglobin structure and computational biophysics continues to push boundaries. As a tenured professor and research fellow, she is poised to influence future generations through continued scholarship, course development, and collaborative projects. Her integration of computational tools and physical theory sets a strong foundation for future scientific and educational advancements.

Publications Top Notes

Entropies of the Classical Dimer Model

  • Authors: John C. Baker, Marilyn F. Bishop, Tom McMullen
    Journal: Entropy
    Year: 2025

An α-chain modification rivals the effect of fetal hemoglobin in retarding the rate of sickle cell fiber formation

  • Authors: E.H. Worth, M.K. Fugate, K.C. Grasty, P.J. Loll, Marilyn F. Bishop, F.A. Ferrone
    Journal: Scientific Reports
    Year: 2023

Entropy of Charge Inversion in DNA including One-Loop Fluctuations

  • Authors: M.D. Sievert, Marilyn F. Bishop, Tom McMullen
    Journal: Entropy
    Year: 2023

Superlinear increase of photoluminescence with excitation intensity in Zn-doped GaN

  • Authors: M.A. Reshchikov, A.J. Olsen, Marilyn F. Bishop, Tom McMullen
    Journal: Physical Review B – Condensed Matter and Materials Physics
    Year: 2013

The Sickle-Cell Fiber Revisited

  • Authors: Marilyn F. Bishop, Frank A. Ferrone
    Journal: Biomolecules
    Year: 2023

 

 

Jerzy Dryzek | The matter particles | Excellence in Research Award

Prof. Dr. Jerzy Dryzek | The matter particles | Excellence in Research Award

Professor at Institute of Nuclear Physics PAS | Poland

Prof. Jerzy Dryzek is a renowned physicist specializing in solid state physics and positron annihilation spectroscopy, with over four decades of academic and research experience. A pioneer in experimental physics in Poland, he has played a central role in developing advanced laboratory techniques in the field, particularly at the Institute of Nuclear Physics PAN in Kraków. His extensive international collaborations and leadership in scientific projects underscore his lasting influence in materials science and nuclear physics.

👨‍🎓Profile

Scopus

ORCID

📚 Early Academic Pursuits

Dr. Dryzek embarked on his academic journey with a Master’s degree from the Academy of Mining and Metallurgy in Kraków (1975–1980), where he focused on the “Technology of thin films.” He simultaneously pursued another Master’s in Nuclear Physics from the Jagiellonian University in Kraków (1977–1981), conducting a thesis on the “Measurement of the positron lifetime in silver films.” His deep interest in positron-related phenomena led to his Ph.D. (1981–1986) in Solid State Physics, with a dissertation titled “Electrical conductivity and electrical properties of thin metallic films (Au, Ag, Cu).”

🧪 Professional Endeavors

Since 1987, Dr. Dryzek has held a permanent position at the Institute of Nuclear Physics in Kraków, where he has been instrumental in establishing and expanding the positron annihilation laboratory. His international exposure includes scientific visits to Münster University, Germany, Helsinki University of Technology, Finland, Texas Christian University, USA, and collaborative research at Chalmers University of Technology, Sweden, and KEK in Tsukuba, Japan. He also served as Professor at the University of Zielona Góra (2005–2009) and Opole University (2009–2014).

🔬 Contributions and Research Focus

Dr. Dryzek’s research focus lies in positron annihilation spectroscopy, with special emphasis on pulsed positron beams, two-dimensional Doppler broadening, and positron annihilation in flight. He has led multiple national and international research projects, exploring grain boundaries, resonance trapping, and nonhomogeneous systems. His innovative work includes the construction of Doppler broadening spectrometers and advancing methods of studying subsurface zones in metallic alloys.

🌍 Impact and Influence

Dr. Dryzek’s impact extends beyond laboratory research. Through his leadership in the Centre of Excellence ADREM, he contributes to applying physics to human health and environmental safety. His collaborative initiatives have fostered German-Polish scientific cooperation, and his lectures and research work have enriched institutions in Europe, the USA, and Japan. His influence is particularly notable in shaping positron annihilation research infrastructure in Poland.

📖 Academic Cites

Dr. Dryzek’s work has been widely cited in peer-reviewed journals and international conferences, especially in the context of tribology, surface studies, and positron annihilation in condensed matter. His habilitation thesis in 2001, titled “Positron annihilation characteristics in condensed matter,” laid the foundation for his recognition as an Assistant Professor and later Full Professor in 2012.

🛠️ Research Skills

Dr. Dryzek demonstrates expertise in experimental physics, with deep proficiency in positron annihilation techniques, Doppler spectroscopy, and positron beam construction. He is also skilled in research project management, having led numerous scientific grants, coordinated interdisciplinary networks such as POSMAT, and conducted technology-based studies on materials like polymers, metals, and minerals.

👨‍🏫 Teaching Experience

Alongside research, Dr. Dryzek has actively contributed to academic teaching, notably as a lecturer in physics at the Pedagogical University in Kraków (1990–1992) and as a visiting professor at international institutions. He played a significant role in educating students from Münster University, fostering cross-border scientific knowledge exchange under the German-Polish Collaboration framework.

🏆 Awards and Honors

Among his recognitions are several competitive research grants awarded by the Committee of Scientific Research in Poland, European Commission (COST Programs), and German-Polish Foundations. His leadership in teaching grants, instrument development, and joint international projects reflects the high regard of his contributions to science and education.

🔮 Legacy and Future Contributions

With a legacy rooted in scientific innovation, academic mentorship, and international collaboration, Dr. Dryzek has established himself as a pioneer in positron physics. His work continues to inspire future generations, and his efforts in network coordination, grant acquisition, and technical development ensure ongoing contributions to the fields of solid-state physics and material science. His vision for advancing positron annihilation studies remains a guiding light for both theoretical and applied physics communities.

Publications Top Notes

Superior barrier performance, mechanical properties and compostability in relation to supramolecular structure of renewable based poly(trimethylene furanoate) modified with suberic acid

  • Authors: A. Zubkiewicz, A. Szymczyk, J. Dryzek, V.M. Siracusa, N. Lotti
    Journal: European Polymer Journal
    Year: 2025

Positronium Formation on the Rhenium Surface Studied by Slow Positron Measurements

  • Authors: J. Dryzek, M.O. Liedke, M. Butterling, E. Dryzek
    Journal: Physica Status Solidi (B) Basic Research
    Year: 2025

Influence of flexible segment length on the phase structure and properties of poly(hexamethylene 2,5-furandicarboxylate)-block-biopolytetrahydrofuran copolymers

  • Authors: S. Paszkiewicz, K. Walkowiak, I. Irska, Z.J. Rozwadowski, J. Dryzek
    Journal: Journal of Applied Polymer Science
    Year: 2024

Positron Annihilation and EBSD Studies of Subsurface Zone Created During Friction in Vanadium

  • Authors: J. Dryzek, M.X. Wróbel
    Journal: Journal of Tribology
    Year: 2023

Influence of the positron implantation profile on the study of the defect depth distribution by the positron annihilation technique

  • Authors: J. Dryzek
    Journal: Journal of Applied Physics
    Year: 2023

 

 

Abhisek Dutta | Interactions and fields | Young Scientist Award

Mr. Abhisek Dutta | Interactions and fields | Young Scientist Award 

Research Student at Jadavpur University, India

Abhisek Dutta is a Post-Graduate in Physics from Jadavpur University, India, specializing in Theoretical Astrophysics, Gravitation, and Computational Astrophysics. With research interests in Dark Matter Theory, Early Universe, and high-energy astrophysics, Abhisek has made significant contributions to astrophysical theories such as quark stars and traversable wormholes. His work is published in leading journals like the European Physical Journal C and Physics of the Dark Universe. Abhisek also excels in computational tools like Mathematica, LaTeX, and C++, and shares his expertise through his role as an Advanced Physics Expert at CHEGG. A dedicated high school physics teacher, he brings real-world research into the classroom and inspires future scientists.

👨‍🎓Profile

Google scholar

Scopus

ORCID

Early Academic Pursuits 🎓

Abhisek’s academic journey began with a B.Sc. in Physics from the University of Calcutta, where he ranked 2nd in his class. He then pursued an M.Sc. in Physics from Jadavpur University, one of India’s top-ranked institutions, where he scored 80.3%. His specialization in High Energy Astrophysics, X-ray Crystallography, and Mathematics laid a solid foundation for his future research. His academic excellence earned him top ranks in School Examinations with outstanding performances in WBBSE and WBCHSE. Abhisek also strengthened his understanding of dark matter, cosmology, and the early universe through verified online courses from global institutions such as the University of Tokyo and the California Institute of Technology.

Professional Endeavors 💼

Abhisek Dutta has a multifaceted professional career that extends beyond academia. He works as a High School Physics Teacher at Sarada Educare School in Kolkata, where he designs and delivers lessons on K-12 Physics, conducts laboratory experiments, and assesses student performance. Abhisek also serves as an Advanced Physics Expert for CHEGG, providing online academic assistance to students worldwide. His academic pursuits are complemented by his passion for astrophotography, which aligns with his professional interests in astrophysics and the visual representation of cosmic phenomena. This diverse experience allows him to bridge the gap between theory and practice, inspiring young minds while contributing to cutting-edge research.

Contributions and Research Focus 🔬

Abhisek’s research contributions are focused on Theoretical Astrophysics, particularly in Gravitation, Dark Matter Theory, and the Early Universe. He has conducted groundbreaking work on quark stars in 4-dimensional Einstein-Gauss-Bonnet gravity and studied traversable wormholes with weak gravitational lensing in f(R,T) gravity. Additionally, his research on the equation of state of compact stellar bodies is currently under review. Abhisek is dedicated to advancing our understanding of complex astrophysical phenomena, such as black hole spin-orbit resonance and quasi-periodic oscillations in X-ray binaries. His work integrates both theoretical models and observational data, which is crucial for the continued progress of the field.

Impact and Influence 🌌

Abhisek Dutta’s research has significantly influenced astrophysics by advancing our understanding of high-energy phenomena like dark matter, gravitational theories, and cosmological evolution. His work on quark stars and traversable wormholes has provided fresh perspectives on the fundamental structure of the universe and gravitational anomalies. Abhisek’s publications in European Physical Journal C and Physics of the Dark Universe are widely cited, contributing to the ongoing discourse in astrophysical communities. His efforts to bridge theoretical models with observational data have solidified his role as a key contributor to the global astrophysics community.

Academic Cites 📚

Abhisek’s scholarly work has garnered recognition from the academic community, with multiple publications in prestigious journals, including the European Physical Journal C, Physics of the Dark Universe, and Universe (MDPI). His groundbreaking research on weak deflection angles in Einstein-Cartan Traversable Wormholes and weak gravitational lensing in f(R,T) gravity is already making waves. These studies are widely cited by fellow astrophysicists, confirming Abhisek’s status as an emerging thought leader in the field. His research is instrumental in shaping future studies on black holes, gravitational waves, and quantum cosmology.

Research Skills 💻

Abhisek Dutta is highly skilled in a wide range of computational tools and programming languages such as Mathematica, LaTeX, Matlab, FORTRAN, C++, and C, which are integral to his research methodology. His proficiency in these tools allows him to model complex astrophysical systems, simulate gravitational interactions, and analyze large data sets. Additionally, Abhisek possesses strong mathematical modeling and statistical analysis abilities, which enable him to formulate and solve astrophysical equations with precision. His computational expertise is essential for advancing theoretical astrophysics and contributing to the global understanding of gravitational phenomena and dark matter.

Teaching Experience 🍎

Abhisek has been a dedicated high school physics teacher at Sarada Educare School since 2017, where he has demonstrated a strong commitment to educating the next generation of scientists. His expertise in teaching complex physical concepts allows him to engage students with hands-on laboratory work, practical applications, and theoretical models. Abhisek’s approach emphasizes conceptual understanding and problem-solving skills, providing students with a solid foundation in physics. His teaching experience extends to his role as an Advanced Physics Expert at CHEGG, where he guides university students through challenging problems in physics and helps them achieve academic success.

Awards and Honors 🏆

Abhisek’s academic excellence is reflected in his numerous awards and honors. He secured the 2nd Rank during his Undergraduate (B.Sc.) studies in Physics at the University of Calcutta. He also achieved the 2nd highest marks during his Post-graduation (M.Sc.) from Jadavpur University, a top-ranked institution in India. Abhisek ranked among the top 1% in WBBSE (School Final) and top 2% in WBCHSE (High School). His outstanding achievements in both academic exams and research underscore his dedication to excellence in the field of physics. These accolades highlight his strong academic foundation and commitment to the advancement of scientific knowledge.

Legacy and Future Contributions 🌱

Abhisek Dutta’s legacy is being shaped by his groundbreaking research and dedication to teaching. His work on quark stars, gravitational theories, and dark matter continues to make significant strides in theoretical astrophysics. As a passionate educator, Abhisek’s future contributions will likely inspire generations of physicists who will carry forward his research and ideas. His vision of advancing cosmic exploration and unraveling the mysteries of dark energy and the early universe is set to leave a lasting impact on the field. Abhisek’s future endeavors will not only shape academic discourse but also contribute to the global scientific community’s understanding of the universe’s fundamental workings.

Publications Top Notes

Traversable wormholes with weak gravitational lensing effect in f(R, T) gravity

  • Authors: N. Sarkar, S. Sarkar, A. Bouzenada, A. Dutta, M. Sarkar, F. Rahaman
    Journal: Physics of the Dark Universe
    Year: 2024

Quark stars in 4-dimensional Einstein–Gauss–Bonnet gravity

  • Authors: K. N. Singh, S. K. Maurya, A. Dutta, F. Rahaman, S. Aktar
    Journal: The European Physical Journal C
    Year: 2021

Weak deflection angle by the Einstein–Cartan traversable wormhole using Gauss–Bonnet theorem with time delay

  • Authors: S. Sarkar, N. Sarkar, A. Dutta, F. Rahaman
    Journal: Universe
    Year: 2024

Quark stars in 4-dimensional Einstein-Gauss-Bonnet gravity

  • Authors: K. N. Singh, S. K. Maurya, A. Dutta, F. Rahaman, S. Aktar
    Journal: arXiv e-prints
    Year: 2021

 

 

Al-Hattab Mohamed | Physics | Member

Dr. Al-Hattab Mohamed | Physics | Member

PHD at Sultan Moulay Slimane University, Morocco

Mohamed Al-Hattab is a dedicated researcher specializing in Physics of Materials and Energy. He completed his Ph.D. at Sultan Moulay Slimane University, focusing on the properties of the semiconductor GaSe. With expertise in scanning electron microscopy, X-ray crystallography, and spectroscopy, Mohamed has contributed to various publications in prestigious journals like Solar Energy and Nanoparticle Research. He actively engages in educational activities, supervising students and presenting at international conferences. As a reviewer for prominent journals, Mohamed continues to advance research in his field, affiliated with the Research Laboratory in Physics and Sciences for Engineers at Sultan Moulay Slimane University.

Professional Profiles:

Education

Ph.D. in Physics of Materials and Energies Sultan Moulay Slimane University, Beni Mellal, Morocco (2018 – 2022) Advisor: Khalid Rahmani Dissertation: Study of the structural, electronic, optical, and elastic properties of the lamellar semiconductor (GaSe) Master in Advanced Materials Sultan Moulay Slimane University, Beni Mellal, Morocco (2015 – 2018) Bachelor’s degree in Physical Sciences, Electronics option Cadi Ayyad University, Marrakech, Morocco (2011 – 2015) Advisor: Amal Rajirae Dissertation: Study of the properties of the lamellar material GaSe used as an absorber in photovoltaic cells

Skills

Scanning Electron Microscope X-ray Crystallography UV-Visible Spectroscopy and Raman Spectroscopy Simulation (Biovia Material Studio 2017, SCAPS-1D, MATLAB, Silvako

Research Focus:

Mohamed Al-Hattab is a versatile researcher with a primary focus on materials science and renewable energy technologies. His contributions span various aspects of solar cell design and optimization, including numerical modeling, density functional theory (DFT) investigations, and experimental studies. With expertise in tandem solar cells, perovskite materials, and semiconductor physics, Mohamed’s research aligns with advancing eco-friendly and efficient photovoltaic devices. He collaborates extensively with multidisciplinary teams, emphasizing the integration of theoretical insights with practical applications. Through his work, Mohamed strives to enhance the performance and sustainability of solar energy technologies for a greener future. Physics

Publications 

  1. Experimental and numerical study of the CIGS/CdS heterojunction solar cell,  Publication date: 2023.
  2. Novel Simulation and Efficiency Enhancement of Eco-friendly Cu2FeSnS4/c-Silicon Tandem Solar Device, cited by: 4, Publication date: 2023.
  3. Ab Initio Investigation for Solar Technology on the Optical and Electronic Properties of Double Perovskites Cs2AgBiX6(X=Cl, Br, I), Publication date: 2023.
  4. Thermodynamic, optical, and morphological studies of the Cs2AgBiX6 double perovskites (X = Cl, Br, and I): Insights from DFT study, cited by: 16, Publication date: 2023.
  5. Ag2BeSnX4(S, Se,Te)-based kesterite solar cell modeling: A DFT investigation and Scaps-1 danalysis,Publication date: 2023.
  6. Numerical Simulation of CdS/GaSe Solar Cell Using SCAPs Simulation Software, Publication date: 2022.
  7. Density Functional Theory Study on the Electronic and Optical Properties of Graphene, Single-Walled Carbon Nanotube and C60, Publication date: 2022.
  8. Quantum confinement in GaN/AlInN asymmetric quantum wells for terahertz emission and field of optical fiber telecommunications, Publication date: 2024.
  9. Cu2BaSnS4/Cu2FeSnS4 combination for a good light absorption in thin-film solar cells—a numerical model, Publication date: 2024.
  10. Performance assessment of an eco-friendly tandem solar cell based on double perovskite Cs2AgBiBr6Publication date: 2024.

 

.