Paolo Renati | Interactions and fields | Best Researcher Award

Dr. Paolo Renati | Interactions and fields | Best Researcher Award

Researcher and Teacher at World Water Community | Netherlands

Paolo Renati is a multidisciplinary scientist with a profound focus on quantum electrodynamics (QED), coherence phenomena, and water physics. With a career spanning over a decade, he has established himself as a researcher, lecturer, author, and consultant across Europe and Asia. His work synthesizes complex systems theory, biophysics, information medicine, and philosophy of science. Dr. Renati’s academic and scientific journey includes advanced degrees in materials science and complex systems, collaborations with renowned research institutions like Kobe University and the Laszlo Institute, and groundbreaking publications bridging physics, biology, and epistemology.

👨‍🎓Profile

ORCID

🎓 Early Academic Pursuits

Paolo Renati’s academic journey began with a Bachelor’s and Master’s degree in Materials Science and Engineering at the University of Genoa, both completed cum laude, indicating academic excellence. He further pursued a II Level Master in Nano and Micro Technologies at ESAS, affiliated with the Superior University Studies of Pavia. This strong foundation in materials and physical sciences laid the groundwork for his Ph.D. in Complex Systems at the University of Catania (2018–2021), where he explored QED coherence in living and condensed matter, fusing quantum physics with life sciences and socio-economic systems in a highly interdisciplinary framework.

💼 Professional Endeavors 

Dr. Renati’s career includes roles as R&D Director, scientific consultant, and research fellow in international institutions such as Kobe University, The Laszlo Institute, and World Water Community. He has collaborated with Atena s.r.l., focused on quantum technologies in water treatment, and served as an independent researcher in quantum field theory, biophysics, and coherent systems. His work integrates high-level scientific research with practical applications in medicine, agriculture, and sustainability. As part of global interdisciplinary projects, Renati demonstrates a rare blend of theoretical acumen and applied innovation in emerging scientific paradigms.

🔬 Contributions and Research Focus

Paolo Renati’s research centers on QED coherence, water structure, and biofield phenomena. His influential publications explore hydrogen bonding from a quantum field theory perspective, coherence in highly diluted solutions, and quantum biology foundations. Renati merges physics, biology, and epistemology, challenging classical scientific methods by advocating for information paradigms and holographic thinking. He has significantly contributed to Aquaphotomics, developing tools to understand biological water’s spectral dynamics. Through interdisciplinary collaborations, Renati provides new models for biological coherence, perception, and emergent complexity in living systems, pushing the boundaries of traditional scientific frameworks.

🌍 Impact and Influence

Renati’s work is influencing new paradigms in science, especially in information-based medicine, quantum water research, and epistemology. His concepts of bio-coherence and field-based interactions are reshaping perspectives in holistic medicine, quantum biology, and biophysics. He is frequently invited to speak at international conferences, and his workshops are sought-after by interdisciplinary scholars. His contributions to platforms such as the World Water Community, the Laszlo Institute, and GIRI highlight his role as a thought leader bridging scientific, philosophical, and spiritual domains. His impact resonates through both academic discourse and applied research, engaging a global scientific audience.

📚 Academic Cites

Dr. Renati’s academic legacy includes numerous peer-reviewed publications across high-impact journals such as IJMS, Journal of Molecular Liquids, and Physical Science & Biophysics Journal. His work is increasingly cited in fields such as coherence theory, quantum biology, and electromagnetic medicine. Landmark publications include “What is the Hydrogen Bond?” and his comprehensive Ph.D. thesis on QED coherence, published as a monograph. Renati has co-authored with internationally respected scientists like Pierre Madl, and his research is referenced in both experimental studies and philosophical critiques. His academic citations reflect a growing recognition of his transdisciplinary approach and conceptual innovation.

🧪 Research Skills

Renati possesses expert-level skills in quantum field theory, spectroscopy (NIR), thermodynamics, biophysics, and complex systems modeling. He excels in experimental data analysis, coherence theory, and advanced signal processing in biological and aqueous systems. His laboratory experience spans from thermal coatings and materials science to quantum electrodynamics in living systems. With a keen grasp of interdisciplinary methodology, he bridges theoretical research with empirical evidence. His work integrates systems biology, cybernetics, and quantum measurement theory, enabling him to develop innovative models for studying living matter, perception, and information transfer across various scientific contexts.

👨‍🏫 Teaching Experience

Paolo Renati is an experienced educator and workshop facilitator, having taught Modern Physics at Dulcamara Homeopathic School, led sessions on Analogical Physics at Edelweiss Centre, and conducted international seminars on Aquaphotomics and QED. He’s a regular contributor to academic conferences as an invited speaker and trainer, sharing his insights on coherent systems, consciousness, and quantum biology. His teaching is characterized by clarity, interdisciplinary fluency, and philosophical depth, making him a sought-after mentor for students and professionals alike. Renati fosters holistic understanding by combining rigorous science with epistemological and experiential learning, inspiring the next generation of researchers.

🏆 Awards and Honors 

Renati has earned numerous accolades, including the 1st Prize Poster at The Water Conference 2019 for his groundbreaking research on coherent states in water. He is regularly invited to keynote international scientific forums, such as Aquaphotomics Kobe 2025 and GIRI 2024, reflecting his status as a leading voice in quantum biophysics. His Ph.D. thesis was widely praised and later published as a full-length academic book. He has also received recognition from organizations like the Laszlo Institute and ÌNIN Holographic Evolving Centre for his contributions to consciousness research and new paradigms in science.

🧭 Legacy and Future Contributions 

Paolo Renati is actively shaping the emergent scientific frontier, fusing quantum theory, biology, and epistemology to craft a holistic model of reality. His work promises to influence the development of coherence-based diagnostics, information-driven medicine, and integrated life sciences education. As a mentor, speaker, and innovator, he is nurturing a global network of researchers open to rethinking foundational scientific assumptions. His legacy lies in bridging hard science with intuitive knowledge, enabling a future where science, consciousness, and sustainability co-evolve. Renati’s ongoing commitment to transdisciplinary exploration makes him a key architect of the science of tomorrow.

Top Noted Publications

  • The Possible Role of Coherence in Highly Diluted and Succussed Aqueous Solutions
    Authors: Paolo Renati
    Journal: International Journal of High Dilution Research
    Year: 2024

  • What Is the “Hydrogen Bond”? A QFT-QED Perspective
    Authors: Paolo Renati, Pierre Madl
    Journal: International Journal of Molecular Sciences
    Year: 2024

  • Quantum Electrodynamics Coherence and Hormesis: Foundations of Quantum Biology
    Authors: Pierre Madl, Paolo Renati
    Journal: International Journal of Molecular Sciences
    Year: 2023

  • Coherence, Compartmentation and Bioenergetics in Living Matter
    Authors: Paolo Renati
    Journal: Physical Science & Biophysics Journal
    Year: 2023

  • Relationships and Causation in Living Matter: Reframing Some Methods in Life Sciences?
    Authors: Paolo Renati
    Journal: Physical Science & Biophysics Journal
    Year: 2022

 

 

ROHIT YADAV | Computational Particle Physics | Best Researcher Award

Mr. ROHIT YADAV | Computational Particle Physics | Best Researcher Award

Scientific Officer at BHABHA ATOMIC RESEARCH CENTRE | India

Rohit Yadav is a Scientific Officer at the Radiological Physics and Advisory Division of the Bhabha Atomic Research Centre (BARC), India. With a strong foundation in Physics and advanced specialization in radiation dosimetry, he contributes to national radiation safety and simulation-based research using Monte Carlo methods. His work bridges academic rigor with practical impact in radiation protection and cosmic ray shielding.

👨‍🎓Profile

Scopus

ORCID

🎓 Early Academic Pursuits

Rohit began his academic journey with a B.Sc. (Honors) in Physics from the prestigious Hansraj College, University of Delhi, and went on to earn his M.Sc. in Physics from the Indian Institute of Technology (IIT) Roorkee. This elite academic training laid the groundwork for his scientific career in applied radiation physics and simulation technologies.

🧑‍💼 Professional Endeavors

As a Scientific Officer at BARC, Mumbai, Rohit plays a pivotal role in radiological safety, with responsibilities encompassing radiation measurement, dosimetry, and protection standards. His expertise is central to public safety, particularly in scenarios involving space radiation, nuclear facilities, and retrospective environmental dose assessments.

🔬 Contributions and Research Focus

Rohit’s research centers on Monte Carlo simulations (FLUKA, GEANT4), thermoluminescent dosimeters (TLDs), cosmic ray shielding, and dose monitoring. His peer-reviewed work includes TLD response analysis, aluminum shielding effectiveness, beta dose estimation via CWOSL, and personal dose equivalent measurements. These contributions have significantly enhanced applied dosimetric methods and advanced radiation protection techniques, making his work impactful for both theoretical modeling and practical implementation in high-radiation environments.

🌍 Impact and Influence

His work has direct implications for national safety in nuclear and space sectors. By improving simulation techniques and phantom modeling, he enhances dosimetric accuracy, which benefits occupational health, environmental radiation monitoring, and cosmic radiation protectionan essential area for aerospace and defense.

🧪 Research Skills

Rohit demonstrates expertise in Monte Carlo Simulations (FLUKA, GEANT4), dosimetry instrumentation, and radiation transport analysis. He excels in phantom modeling, shielding design, and working with advanced phosphor materials like LiCaAlF₆:Eu,Y. His technical proficiency supports high-precision radiation studies essential for developing effective radiation protection protocols in both terrestrial and space environments. These research skills make him a valuable contributor to the field of computational dosimetry and applied radiation science.

📈 Legacy and Future Contributions

Rohit Yadav is on track to become a leading figure in radiation simulation and protection research in India. His ongoing contributions will likely shape national radiation safety standards, influence dosimetry policies, and expand applications of Monte Carlo methods in medical physics, space missions, and environmental monitoring.

Publications Top Notes

Response of CaSO₄:Dy Teflon embedded thermoluminescent dosimeter badge on different ISO phantoms for photons and beta sources using FLUKA and GEANT4

  • Authors: Rohit Yadav, Madhumita Bhattacharya, A.K. Bakshi, B.K. Sapra
    Journal: Radiation Physics and Chemistry
    Year: 2025

Beta dose rate estimation of soil samples with CW-OSL technique using LiCaAlF₆:Eu,Y phosphor for retrospective dosimetry

  • Authors: S. Kadam, S.N. Menon, P. Rama, R. Yadav, S. Dawn, B. Dhabekar
    Journal: Radiation Physics and Chemistry
    Year: 2024

Simulation-based estimation of dosimetric quantities for different phantom compositions and the effectiveness of aluminum shielding against galactic cosmic rays

  • Authors: Rohit Yadav, Sandipan Dawn, A.K. Bakshi, B.K. Sapra
    Journal: Radiation Protection and Environment
    Year: 2024

Estimation of personal dose equivalent HP(0.07) using CaSO₄:Dy Teflon disc-based extremity dosemeter

  • Authors: M. Bhattacharya, K. Samuel, S. Patil, R. Yadav, A.K. Bakshi, S.K. Singh, B.K. Sapra
    Journal: Radiation Protection Dosimetry
    Year: 2022

 

 

Seyyed Abdollahi | High energy physics | Member

Mr. Seyyed Abdollahi | High energy physics | Member

Scholarship at Tabriz University, Iran

I was B.Sc. Student in Mechanical Engineering at Tabriz University and I was among the top 5%, I also received a full scholarship from Tabriz University for the master’s degree, and now I am a master’s student in energy conversion trend at Tabriz University. I was also a Teacher assistant in the Strength of Materials and Design of Machine Elements courses, and I have been working with Dr. Seyyed Faramarz Ranjbar and Dr. Farid Vakili Tahami for 1 year. I am also interested in researching the topics of Power Plants, Thermodynamics, Fluid mechanics, Air conditioning, Energy and Solar energy. Which led to the writing three books I am also interested in working and researching on these topics in the future: 1-Renewable Energy 2-Exergy Analysis 3-Piezoelectric Micropumps 4-Photovoltaics(PV) 5-Nanofluids 6-Energy Analysis 7-Fuel Cells 8-Analysis of Wind Turbin

Professional Profiles:

Education

Master of Mechanical Engineering Branch: Energy Conversion Institute/University: Tabriz University Tabriz , East Azerbaijan, Iran 2022 – Present Bachelor of Mechanical Engineering Institute/University: Tabriz University Tabriz , East Azerbaijan, Iran 2018 – 2022 GPA : 17.90(out of 20)

Work Experience

Internship Tabeiz Thermal Power Station Tabriz , East Azerbaijan, Iran July 2021 – August 2021 Tasks and Achievements Teacher Assistant in the Design of Machine Elements course Tabriz University Tabriz , East Azerbaijan, Iran September 2021 – Present Tasks and Achievements Teacher Assistant in the Power Plants course Tabriz University Tabriz , East Azerbaijan, Iran September 2022 – January 2023 Email: s.a_abdollahi@yahoo.com Mobile: (+98)9380596289 Website: www.linkedin.com/in/seyyed-amirrezaabdollahi-powerplants-renewableenergy Address: Tabriz , East Azerbaijan, Iran DoB: 1998-09-24 Marital Status: Single Military Service: Educational Exemption Seyyed Amirreza Abdollahi Mechanical Engineering Profile Summary Education Work Experience I went to the Tabriz Thermal Power Plant for a training course. There i observed the things that i studied theoretically in the Thermodynamics course. I visited the important parts ofthe power plant such as ControlRoom, Steam Turbines, Boilers, Cooling Towers and the Chemical Department . Results of my research led me to write a book called “Tabriz Thermal Power Plant” As a teacher’s assistant, I solved additional exercises forthe students and supervised their

Research Focus:

The research focus of SA Abdollahi spans across various fields, primarily centered around computational fluid dynamics (CFD), heat transfer, nanofluids, porous media techniques, and numerical analysis. Their work encompasses simulations of heat transfer and fluid flow in microchannel heat sinks, investigation of blood hemodynamics in aneurysms, optimization of chemical processes, and modeling the separation capabilities of membranes. Additionally, they explore topics such as magnetohydrodynamics, biomaterial phase equilibria, and the application of machine learning techniques in estimating biomass properties. Abdollahi’s research demonstrates a broad interest in advancing understanding and optimization across diverse engineering and scientific domains.

Publications

  1. Computer simulation of Cu: AlOOH/water in a microchannel heat sink using a porous media technique and solved by numerical analysis AGM and FEM, cited by: 37, Publication: 2023.
  2. Investigating heat transfer and fluid flow betwixt parallel surfaces under the influence of hybrid nanofluid suction and injection with numerical analytical technique, cited by: 29, Publication: 2023.
  3. Computational study of blood hemodynamic in ICA aneurysm with coiling embolism, cited by: 18, Publication: 2023.
  4. Numerical study of heat transfer of wavy channel supercritical CO2 PCHE with various channel geometries, cited by: 11, Publication: 2023.
  5. Influence of extruded injector nozzle on fuel mixing and mass diffusion of multi fuel jets in the supersonic cross flow: computational study, cited by: 9, Publication: 2023.
  6. Removal of ciprofloxacin and cephalexin antibiotics in water environment by magnetic graphene oxide nanocomposites; optimization using response surface methodology, cited by: 7, Publication: 2023.
  7. Optimizing the amount of concentration and temperature of substances undergoing chemical reaction using response surface methodology, cited by: 7, Publication: 2023
  8. Phase Equilibria Simulation of Biomaterial-Hydrogen Binary Systems Using a Simple Empirical Correlationcited by: 6, Publication: 2023
  9. Modeling the CO2 separation capability of poly(4-methyl-1-pentane) membrane modified with different nanoparticles by artificial neural networks,  cited by: 5, Publication: 2023
  10. Applying feature selection and machine learning techniques to estimate the biomass higher heating valuecited by: 3, Publication: 2023
.