Chi-Wen Liu | Theoretical Advances | Best Researcher Award

Assist. Prof. Dr. Chi-Wen Liu | Theoretical Advances | Best Researcher Award

Assistant Professor at University of Science and Technology | Taiwan

Chi-Wen Liu is an Assistant Professor in the Department of Electronic Engineering at Minghsin University of Science and Technology in Taiwan, where he is engaged in a NSTC Research Project (2024–2025). Prior to his academic appointment, he worked as a Senior ADTT Photo Engineer at Micron Technology from 2019 to 2024. With a Ph.D. in Manufacturing Technology from National Taipei University of Technology, he specializes in semiconductor devices, materials science, and nanotechnology. Liu’s research interests lie in advanced materials processing and diamond-like carbon films for electronics applications.

👨‍🎓Profile

Scopus

Early Academic Pursuits 🎓

Liu’s academic journey began at Tamkang University where he earned his Bachelor’s degree in Chemical and Materials Engineering (2013). His passion for material science led him to National Taipei University of Technology, where he earned a Master’s degree in Manufacturing Technology (2016). Liu’s Ph.D. (2019) focused on semiconductor device physics, materials science, and nanostructured materials processing, areas that set the foundation for his future contributions to advanced manufacturing and materials engineering.

Professional Endeavors 💼

Chi-Wen Liu’s professional career has spanned both industry and academia, giving him a unique perspective on bridging theoretical research with real-world applications. At Micron Technology, he made significant strides in photo engineering, contributing to the 0.2nm overlay de-stack achievement and implementing new concepts in photo rework. His efforts improved yield rates and cycle times, showcasing his ability to innovate in highly complex, high-precision environments. In his current role as an Assistant Professor, Liu is dedicated to cutting-edge research in materials science and semiconductor technologies, driving innovation through interdisciplinary collaboration and advanced engineering practices.

Contributions and Research Focus 🔬

Chi-Wen Liu has made substantial contributions to the fields of semiconductor manufacturing and nanomaterials. His research focus includes the synthesis and applications of diamond films, diamond-like carbon films, and nanostructured materials for electronic applications. Liu’s research has yielded notable advancements in flexible display devices, ultraviolet detection, and field emission technologies. He has worked extensively on the development of new deposition techniques, such as microwave plasma jet CVD, to improve material properties for various high-performance applications in electronics.

Impact and Influence 🌍

Chi-Wen Liu’s work has had a significant impact on both academic research and industrial practices. His innovations in diamond-like carbon films and nanostructured material applications have contributed to enhanced material properties, improving the performance of devices used in flexible electronics, LEDs, and semiconductors. Liu’s research has opened new avenues for energy-efficient technologies and advanced electronic systems. His ability to integrate practical, real-world solutions into his research makes him a key figure in the materials science community.

Academic Cites 📊

Chi-Wen Liu’s work has been published in a variety of high-impact journals, such as Vacuum, Applied Surface Science, and Chemical Physics, with notable impact factors ranging from 1.1 to 6.7. His most recent publication, “Synthesis mechanism and applications of edge-controlled diamond films”, was published in Vacuum (2025) with an impact factor of 3.8. Liu’s research is frequently cited by other academics and professionals, reflecting its broad relevance and importance to the fields of material science and semiconductor technology.

Research Skills ⚙️

Chi-Wen Liu possesses advanced technical skills in CVD/PVD processes, SEM/TEM operation, photolithography, and semiconductor fabrication techniques. His deep knowledge of advanced materials processing enables him to design and implement novel experimental methodologies, such as microwave plasma jet CVD, to enhance material properties for specific applications. Liu’s skill set is a key asset in his ability to contribute to cutting-edge research in nanotechnology and materials science.

Teaching Experience 🏫

As an Assistant Professor at Minghsin University of Science and Technology, Chi-Wen Liu teaches undergraduate and graduate-level courses in electronic engineering and manufacturing technology. His teaching is informed by his own experiences in industry, where he combines theoretical knowledge with practical insights. Liu encourages his students to engage in hands-on learning and innovative thinking, fostering the next generation of engineers and researchers in electronic materials and nanotechnology.

Awards and Honors 🏅

Chi-Wen Liu’s excellence in research and academia has been recognized through multiple awards, including the International Society for Engineers and Researchers (ISER) Excellent Paper Award. This recognition highlights his outstanding contributions to the field of materials science and semiconductor technology. His work continues to receive recognition from both industry leaders and academics, establishing him as a leader in his field.

Legacy and Future Contributions 🌱

Chi-Wen Liu is well on his way to becoming a leading figure in the global research community in the areas of advanced materials, nanotechnology, and semiconductor manufacturing. His contributions have already made a lasting impact on industry standards and academic knowledge, particularly in the fields of diamond films and nanostructured materials. Looking forward, Liu’s research promises to further push the boundaries of material science and electronic device fabrication, potentially contributing to next-generation technologies in quantum computing, energy-efficient electronics, and flexible display technologies. As he continues to expand his research horizons and collaborations, his legacy will undoubtedly leave a significant mark on the scientific community.

Publications Top Notes

Synthesis mechanism and applications of edge-controlled diamond films

  • Authors: Chi-Wen Liu
    Journal: Vacuum, vol. 233, no. 114029
    Year: 2025

Extraordinary Field Emission of Diamond Film Developed on a Graphite Substrate by Microwave Plasma Jet Chemical Vapor Deposition

  • Authors: Chi-Wen Liu
    Journal: Applied Sciences, vol. 13, no. 2531
    Year: 2023

Dramatically enhanced mechanical properties of diamond-like carbon films on polymer substrate for flexible display devices via argon plasma pretreatment

  • Authors: Chi-Wen Liu
    Journal: Chemical Physics, vol. 529, no. 110551
    Year: 2020

Moisture Resistance Coating for High Power White Leds Using Diamond Like Carbon

  • Authors: Chi-Wen Liu
    Journal: Archives of Physics Research, vol. 9, no. 1, pp. 41–46
    Year: 2018

Effects of metallic interlayers on the performance of nanocrystalline diamond metal-semiconductor-metal photodetectors

  • Authors: Chi-Wen Liu
    Journal: Applied Surface Science, vol. 455, pp. 581–590
    Year: 2018

 

Basaad Hamza | Theoretical Advances | Editorial Board Member

Assist. Prof. Dr. Basaad Hamza | Theoretical Advances | Editorial Board Member

Mustansiriyah university | Iraq

Dr. Basaad Hadi Hamza is an Assistant Professor in Electro-Optical Physics at Mustansiriyah University, College of Sciences. With a Ph.D. in Electro-Optical Physics (2004) from Mustansiriyah University, his academic expertise spans simulation programs for electro-optical tracking systems and optical systems. His commitment to advancing the field of electro-optical physics is evident through his teaching and research contributions.

👨‍🎓Profile

Google scholar

Scopus

ORCID

Early Academic Pursuits 🎓

Dr. Basaad’s academic journey began at Mustansiriyah University, where he earned his B.Sc. in Physics (1992), followed by a M.Sc. in Nuclear Physics (1998), and eventually his Ph.D. in Electro-Optical Physics (2004). His doctoral thesis focused on the development of a simulation program for electro-optical tracking systems, laying the foundation for his career in applied physics.

Professional Endeavors 💼

Dr. Basaad has an extensive teaching background, contributing to the development of future scientists and engineers. He taught various undergraduate courses in Physics 1, Electricity and Magnetism, Thermodynamics, and Analytical Mechanics. He has also guided graduate students, particularly in specialized topics for Ph.D. comprehensive examinations. His professional affiliations include serving as the Chairman of the Diversity Committee, overseeing curriculum preparation, and leading both undergraduate and graduate examination committees.

Contributions and Research Focus 🔬

Dr. Basaad’s research focus includes polarization effects on soliton propagation, radiance calculations, and the discrimination of targets from background in infrared (IR) imagery. He is particularly interested in the development of simulation programs for transforming IR images across various bands, a significant contribution to remote sensing and infrared imaging technologies. His work also includes improving detector performance in optical spectral ranges to enhance the accuracy of images.

Impact and Influence 🌍

Dr. Basaad’s research has had a broad impact, particularly in IR imaging, target discrimination, and optical physics. His innovative work on transforming IR images from band to band, coupled with his simulation techniques, has contributed to advancements in defense technologies, remote sensing, and optical systems. His publications, including in journals like the International Journal of Application or Innovation in Engineering & Management and Mustansiriyah Journal of Science, highlight his significant role in these fields.

Research Skills 🔍

Dr. Basaad possesses strong analytical skills, particularly in the areas of simulation programming, optical imaging, and IR technology. His proficiency in simulation software and knowledge of IR wavelength bands make him a leader in image transformation techniques. His work on target discrimination using multi-channel data and threshold methods highlights his ability to solve complex problems in infrared imagery.

Teaching Experience 📘

Dr. Basaad’s teaching experience spans over two decades, during which he has taught a range of undergraduate and graduate-level physics courses. He has taught Physics 1, Electricity and Magnetism, Thermodynamics, and Analytical Mechanics, and has supervised graduate theses. His guidance on special topics for Ph.D. students and his role in preparing students for comprehensive exams demonstrates his deep commitment to academic development.

Legacy and Future Contributions 🌱

Dr. Basaad’s legacy is marked by his contributions to electro-optical physics, especially in the development of simulation techniques for infrared imaging. Looking ahead, he plans to continue advancing research in target discrimination and optical systems, with potential applications in remote sensing, security, and environmental monitoring. His ongoing mentorship of graduate students will further ensure his influence in academic research and scientific innovation.

Publications Top Notes

Green Synthesis of Silver Nanoparticles and Their Effect on the Skin Determined Using IR Thermography

  • Authors: Alaabedin Alrabab Ali Zain, Majeed Aseel Musafa Abdul, Basaad Hadi Hamza
    Journal: Kuwait Journal of Science
    Year: 2024

Infrared Imaging of Skin Cancer Cell Treated with Copper Oxide and Silver Nanoparticles

  • Authors: M.M. Mowat, M.S. Khallaf, B.H. Hamza
    Journal: Bionatura
    Year: 2023

People Identification via Tongue Print Using Fine-Tuning Deep Learning

  • Authors: A.S. Obaid, M.Y. Kamil, B.H. Hamza
    Journal: International Journal of Reconfigurable and Embedded Systems
    Year: 2023

People Recognition via Tongue Print Using Deep and Machine Learning

  • Authors: A.S. Obaid, M.Y. Kamil, B.H. Hamza
    Journal: Journal of Artificial Intelligence and Technology
    Year: 2023

Improved Detector Performance Rendering in the Optical Spectral Ranges to Provide Accurate Image

  • Authors: Basaad Hadi Hamza
    Journal: Mustansiriyah Journal of Science
    Year: 2019

 

Shuxia Zhao | Theoretical Advances | Best Researcher Award

Assoc. Prof. Dr. Shuxia Zhao | Theoretical Advances | Best Researcher Award

Associate Professor at Dalian University of Technology, China

Dr. Shuxia Zhao is an Associate Professor at the Dalian University of Technology, with a specialization in electronegative and inductively coupled plasmas. She has an extensive academic background, with degrees in Physics, Materials Science, and Plasma Physics from Hebei Normal University and Dalian University of Technology, followed by Postdoctoral Research at the University of Antwerp. Dr. Zhao’s expertise lies in exploring the complex discharge structures of plasma and establishing interdisciplinary links across various fields of plasma physics.

👨‍🎓Profile

Early Academic Pursuits 🎓

Dr. Zhao began her academic journey at Hebei Normal University in 2000, where she completed her Bachelor’s degree in Physics. She continued her studies at the same institution, earning her Master’s degree in Physics and Chemistry of Material in 2007. Further refining her expertise, she pursued her Doctorate at Dalian University of Technology, specializing in Plasma Physics. Dr. Zhao also enriched her research experience as a Postdoctoral Researcher at the University of Antwerp, focusing on fluorocarbon inductively coupled plasmas.

Professional Endeavors 💼

Dr. Zhao has contributed to various significant research projects funded by the National Natural Science Foundation of China. In her current role as Associate Professor at DUT since 2013, she continues to advance knowledge in electronegative plasmas and inductively coupled plasmas. Dr. Zhao has led industry collaborations, notably with North microelectronics base, enhancing plasma source technologies.

Contributions and Research Focus 🔬

Dr. Zhao’s research explores the discharge mechanism and etching processes of fluorocarbon plasmas, as well as the complex discharge structures of electronegative plasmas. She is particularly interested in low-temperature plasmas and their potential connections with high-temperature fusion plasmas and astrophysical plasmas. Her work on mode transition and hysteresis in inductively coupled plasma sources has provided critical insights into plasma behavior and interactions.

Impact and Influence 🌍

Dr. Zhao’s groundbreaking work in plasma science has impacted both the academic community and the industry. Her research has provided important theories and models that enhance the understanding of plasma behaviors and their applications in various fields, including microelectronics and fusion energy. Her published books and articles have been well-cited, showcasing her role in advancing plasma physics.

Academic Citations 📊

Dr. Zhao’s research contributions are widely recognized, with a Web of Science ResearcherID of AFT-8684-2022. She has published 39 journals in renowned international databases like SCI and Scopus. Her work is highly cited and continues to shape plasma science research globally.

Research Skills 🧑‍🔬

Dr. Zhao is skilled in fluid modeling, plasma diagnostics, and theoretical plasma physics. She has developed innovative software for modeling argon inductively coupled plasmas and ionic species transport coefficients in low-pressure RF plasmas, securing patents for these developments. Her expertise extends to data analysis, numerical simulations, and plasma characterization.

Teaching Experience 🍎

Dr. Zhao has been an educator at Dalian University of Technology for over a decade. She is deeply invested in nurturing the next generation of plasma scientists and engineers. Dr. Zhao’s commitment to teaching and mentoring extends beyond the classroom, as she actively supervises graduate students and postdoctoral researchers in their own academic pursuits.

Legacy and Future Contributions 🌱

As Dr. Zhao continues to explore the complexities of inductively coupled plasmas, her future work will likely further advance the field of plasma physics, especially in the context of microelectronics and fusion energy. Her research legacy is one of interdisciplinary collaboration, innovative discoveries, and educational excellence, contributing to both scientific advancements and technological applications.

Publications Top Notes

Simulation of mode transitions in capacitively coupled Ar/O2 plasmas

  • Authors: X. Liu, S. Zhang, S. Zhao, H. Li, X. Ren
    Journal: Plasma Science and Technology
    Year: 2024

Self-Coagulation Theory and Related Comet- and Semi-Circle-Shaped Structures in Electronegative and Gaseous Discharging Plasmas in the Laboratory

  • Authors: Y. Tian, S. Zhao
    Journal: Applied Sciences (Switzerland)
    Year: 2024

Effect of gas flow on the nanoparticles transport in dusty acetylene plasmas

  • Authors: X. Liu, W. Liu, X. Zhang, X. Dong, S. Zhao
    Journal: Plasma Science and Technology
    Year: 2023

 

 

Waseem Razzaq | Mathematical Physics | Member

Dr. Waseem Razzaq | Mathematical Physics | Member

PHD at COMSETS Vehari Campus, Pakistan

Waseem Razzaq, a dedicated mathematician based in Vehari, Pakistan, holds a PhD in Mathematics and specializes in applied mathematics, fractional calculus, and exact solutions of differential equations. With a strong academic background, including an MPhil and MSc in Mathematics, Razzaq has authored numerous research articles published in reputable journals. He excels in teaching and has held various positions in educational institutions. Recognized as “The Best Teacher of the Year 2011,” Razzaq is passionate about supporting humanitarian actions, enjoys sports and book reading, and actively contributes to educational resources through his YouTube channel “Math Center.”

Professional Profiles:

Education

PhD: Institution: COMSETS Vehari Campus Subject: Mathematics Session: 2022 Fall – Continue Master of Philosophy: Institution: ISP, Multan, Pakistan Subject: Mathematics Session: 2018-2020 Master of Science: Institution: BZU, Vehari campus, Pakistan Subject: Mathematics Session: 2015-017 B.Ed: Institution: AIOU Islamabad Subjects: Math, Physics Session: 2016 B.Sc: Institution: BZU, Multan, Pakistan Subjects: Math-A&B/Comp Session: 2015

Work Experience

V.Principal, Vehari Leads College Pipli Adda Vehari (Feb 2021 – Present) Lecturer (Mathematics), Aspire Groups of Colleges Machiwal campus (July 2019 – Sep 2020) Visiting Lecturer (Mathematics), The Govt. Degree College Vehari (2018) Teacher (Math & Phy), The Smart School Vehari (2016) Teacher (Mathematics), The Educator College (girls campus) Vehari (2014-2015) Teacher (Math & Phy), Allied School Vehari (2013-2014) Teacher (Mathematics), The Public School Vehari (2009-2012)

Achievement

Awarded “The Best Teacher of the Year 2011” in The Public School Vehari.

Research Interests

Applied Mathematics Fractional Calculus Exact solutions of PDEs and ODEs Optimization Numerical solutions of PDEs and ODEs

Research Focus:

Waseem Razzaq’s research focuses on the theoretical and analytical aspects of nonlinear wave equations in optical and oceanographic sciences. He specializes in deriving exact soliton solutions and wave behaviors using various mathematical techniques, including the simplest equation method and fractional calculus. Razzaq’s contributions extend to diverse fields such as nonlinear optics, ocean engineering, and modern physics, as evidenced by his publications in reputable journals. His work significantly advances our understanding of nonlinear phenomena and contributes to the development of mathematical tools for modeling complex systems in optics and oceanography.

Publications

  1. Construction of Solitons and Other Wave Solutions for Generalized Kudryashov’s Equation with Truncated M-Fractional Derivative Using Two Analytical Approaches, cited by: 1, Publication: 2024.
  2. The complex hyperbolic Schrödinger dynamical equation with a truncated M-fractional by using simplest equation method, Publication: 2024.
  3. Applications of the Simplest Equation Procedure to Some Fractional Order Differential Equations in Mathematical Physics, Publication: 2024.
  4. The kink solitary wave and numerical solutions for conformable non-linear space–time fractional differential equationsPublication: 2024.
  5. Searching the new exact wave solutions to the beta-fractional Paraxial nonlinear Schrödinger model via three different approaches, cited by: 3, Publication: 2024.
  6. New analytical wave solitons and some other wave solutions of truncated M-fractional LPD equation along parabolic law of non-linearitycited by: 4, Publication: 2023.
  7. Solitary wave solutions of coupled nerve fibers model based on two analytical techniques, cited by: 2, Publication: 2023.
  8. Optical solitons to the beta-fractional density dependent diffusion-reaction model via three different techniques, Publication: 2023.
  9. New Three Wave and Periodic Solutions for the Nonlinear (2+ 1)-Dimensional Burgers Equations, Publication: 2023.
  10. Research Article Solitary Wave Solutions of Conformable Time Fractional Equations Using Modified Simplest Equation Method, Publication: 2022.
.