Chi-Wen Liu | Theoretical Advances | Best Researcher Award

Assist. Prof. Dr. Chi-Wen Liu | Theoretical Advances | Best Researcher Award

Assistant Professor at University of Science and Technology | Taiwan

Chi-Wen Liu is an Assistant Professor in the Department of Electronic Engineering at Minghsin University of Science and Technology in Taiwan, where he is engaged in a NSTC Research Project (2024–2025). Prior to his academic appointment, he worked as a Senior ADTT Photo Engineer at Micron Technology from 2019 to 2024. With a Ph.D. in Manufacturing Technology from National Taipei University of Technology, he specializes in semiconductor devices, materials science, and nanotechnology. Liu’s research interests lie in advanced materials processing and diamond-like carbon films for electronics applications.

👨‍🎓Profile

Scopus

Early Academic Pursuits 🎓

Liu’s academic journey began at Tamkang University where he earned his Bachelor’s degree in Chemical and Materials Engineering (2013). His passion for material science led him to National Taipei University of Technology, where he earned a Master’s degree in Manufacturing Technology (2016). Liu’s Ph.D. (2019) focused on semiconductor device physics, materials science, and nanostructured materials processing, areas that set the foundation for his future contributions to advanced manufacturing and materials engineering.

Professional Endeavors 💼

Chi-Wen Liu’s professional career has spanned both industry and academia, giving him a unique perspective on bridging theoretical research with real-world applications. At Micron Technology, he made significant strides in photo engineering, contributing to the 0.2nm overlay de-stack achievement and implementing new concepts in photo rework. His efforts improved yield rates and cycle times, showcasing his ability to innovate in highly complex, high-precision environments. In his current role as an Assistant Professor, Liu is dedicated to cutting-edge research in materials science and semiconductor technologies, driving innovation through interdisciplinary collaboration and advanced engineering practices.

Contributions and Research Focus 🔬

Chi-Wen Liu has made substantial contributions to the fields of semiconductor manufacturing and nanomaterials. His research focus includes the synthesis and applications of diamond films, diamond-like carbon films, and nanostructured materials for electronic applications. Liu’s research has yielded notable advancements in flexible display devices, ultraviolet detection, and field emission technologies. He has worked extensively on the development of new deposition techniques, such as microwave plasma jet CVD, to improve material properties for various high-performance applications in electronics.

Impact and Influence 🌍

Chi-Wen Liu’s work has had a significant impact on both academic research and industrial practices. His innovations in diamond-like carbon films and nanostructured material applications have contributed to enhanced material properties, improving the performance of devices used in flexible electronics, LEDs, and semiconductors. Liu’s research has opened new avenues for energy-efficient technologies and advanced electronic systems. His ability to integrate practical, real-world solutions into his research makes him a key figure in the materials science community.

Academic Cites 📊

Chi-Wen Liu’s work has been published in a variety of high-impact journals, such as Vacuum, Applied Surface Science, and Chemical Physics, with notable impact factors ranging from 1.1 to 6.7. His most recent publication, “Synthesis mechanism and applications of edge-controlled diamond films”, was published in Vacuum (2025) with an impact factor of 3.8. Liu’s research is frequently cited by other academics and professionals, reflecting its broad relevance and importance to the fields of material science and semiconductor technology.

Research Skills ⚙️

Chi-Wen Liu possesses advanced technical skills in CVD/PVD processes, SEM/TEM operation, photolithography, and semiconductor fabrication techniques. His deep knowledge of advanced materials processing enables him to design and implement novel experimental methodologies, such as microwave plasma jet CVD, to enhance material properties for specific applications. Liu’s skill set is a key asset in his ability to contribute to cutting-edge research in nanotechnology and materials science.

Teaching Experience 🏫

As an Assistant Professor at Minghsin University of Science and Technology, Chi-Wen Liu teaches undergraduate and graduate-level courses in electronic engineering and manufacturing technology. His teaching is informed by his own experiences in industry, where he combines theoretical knowledge with practical insights. Liu encourages his students to engage in hands-on learning and innovative thinking, fostering the next generation of engineers and researchers in electronic materials and nanotechnology.

Awards and Honors 🏅

Chi-Wen Liu’s excellence in research and academia has been recognized through multiple awards, including the International Society for Engineers and Researchers (ISER) Excellent Paper Award. This recognition highlights his outstanding contributions to the field of materials science and semiconductor technology. His work continues to receive recognition from both industry leaders and academics, establishing him as a leader in his field.

Legacy and Future Contributions 🌱

Chi-Wen Liu is well on his way to becoming a leading figure in the global research community in the areas of advanced materials, nanotechnology, and semiconductor manufacturing. His contributions have already made a lasting impact on industry standards and academic knowledge, particularly in the fields of diamond films and nanostructured materials. Looking forward, Liu’s research promises to further push the boundaries of material science and electronic device fabrication, potentially contributing to next-generation technologies in quantum computing, energy-efficient electronics, and flexible display technologies. As he continues to expand his research horizons and collaborations, his legacy will undoubtedly leave a significant mark on the scientific community.

Publications Top Notes

Synthesis mechanism and applications of edge-controlled diamond films

  • Authors: Chi-Wen Liu
    Journal: Vacuum, vol. 233, no. 114029
    Year: 2025

Extraordinary Field Emission of Diamond Film Developed on a Graphite Substrate by Microwave Plasma Jet Chemical Vapor Deposition

  • Authors: Chi-Wen Liu
    Journal: Applied Sciences, vol. 13, no. 2531
    Year: 2023

Dramatically enhanced mechanical properties of diamond-like carbon films on polymer substrate for flexible display devices via argon plasma pretreatment

  • Authors: Chi-Wen Liu
    Journal: Chemical Physics, vol. 529, no. 110551
    Year: 2020

Moisture Resistance Coating for High Power White Leds Using Diamond Like Carbon

  • Authors: Chi-Wen Liu
    Journal: Archives of Physics Research, vol. 9, no. 1, pp. 41–46
    Year: 2018

Effects of metallic interlayers on the performance of nanocrystalline diamond metal-semiconductor-metal photodetectors

  • Authors: Chi-Wen Liu
    Journal: Applied Surface Science, vol. 455, pp. 581–590
    Year: 2018

 

Jia Zhang | Theoretical Advances | Best Researcher Award

Assoc. Prof. Dr. Jia Zhang | Theoretical Advances | Best Researcher Award

Associate professor at Shenyang University of Technology | China

Dr. Zhang Jia is an accomplished Associate Professor at the School of Information Science and Engineering at Shenyang University of Technology. With a Ph.D. in Instrument Science and Technology, she specializes in Non-destructive Testing (NDT), particularly focusing on electromagnetic and piezoelectric ultrasonic testing technologies. Over the years, Dr. Zhang has gained recognition for her research in measurement and control technologies, and her innovations in electromagnetic ultrasonic testing have significantly advanced industrial safety and inspection systems.

👨‍🎓Profile

Scopus

ORCID

Early Academic Pursuits 📚

Dr. Zhang began her academic journey by pursuing a Ph.D. in Instrument Science and Technology, diving deep into the theoretical and practical aspects of non-destructive testing. She has built a solid foundation in ultrasonic testing technologies, specifically electromagnetic acoustic testing (EMAT), an area that combines electromagnetic fields with ultrasonic waves to inspect materials without causing damage. Her early academic pursuits led her to develop innovative models and transducer technologies, which have set the stage for her future breakthroughs.

Professional Endeavors 💼

Dr. Zhang is not only a leading researcher but also an active participant in educational reforms. She has led significant projects funded by prestigious institutions like the National Natural Science Foundation of China, the Liaoning Province Science and Technology Department, and China Aerospace Science and Technology Corporation. Dr. Zhang has managed over 9 research projects, with a total cost of $963,900, and collaborated on cutting-edge technologies that improve industrial inspection methods. She has also supervised graduate students, guiding them to success in both academic and professional arenas.

Contributions and Research Focus 🔬

Dr. Zhang’s main focus is on improving the detection sensitivity of electromagnetic ultrasonic transducers. By optimizing structural parameters and energy conversion efficiency, she has developed new methodologies to overcome sensitivity bottlenecks in conventional ultrasonic testing systems. Her research explores the multi-field conversion mechanisms of electricity, magnetism, force, and sound, resulting in high-sensitivity transducers with electrically controlled dynamic compensation. This innovative approach holds great promise for safety applications in industries such as steel production, high-speed rail, shipbuilding, and pressure pipelines.

Impact and Influence 🌍

Dr. Zhang’s research has had a profound impact on the field of non-destructive testing. Her work in electromagnetic ultrasonic testing has resulted in the development of next-generation inspection technologies, significantly improving the accuracy and reliability of defect detection in critical infrastructure. The practical applications of her research have already contributed to the safety and efficiency of industries worldwide, and the commercial potential of her innovations is immense. She has published more than 20 SCI/EI-indexed papers and 13 patents, reflecting her strong research influence in the global scientific community.

Academic Cites 📈

With a cumulative impact factor of 10.6 over the last three years and an H-index of 2, Dr. Zhang’s work has been recognized in international scientific communities. Her research papers have garnered 12 citations in Scopus/Web of Science and are regularly cited by peers in the field of NDT and material inspection technologies.

Research Skills 🧪

Dr. Zhang is highly skilled in advanced research methodologies, including electromagnetic simulation, data processing, and modeling of multi-field interactions. Her expertise extends to guided wave propagation, signal decoupling, and the optimization of ultrasonic transducer designs. These skills have been crucial in addressing complex challenges in material inspection and safety monitoring across various sectors, making her an expert in the innovation of non-destructive testing technologies.

Teaching Experience 🍎

As an Associate Professor and Master Supervisor, Dr. Zhang has been deeply involved in educational reforms and has mentored numerous students in the fields of NDT and instrumentation. She has contributed to undergraduate and postgraduate teaching reforms in Liaoning Province, fostering a new generation of scientists and engineers who are equipped with the knowledge and skills to tackle real-world challenges in materials inspection. Through her guidance, many of her students have won provincial awards and participated in national innovation competitions.

Awards and Honors 🏆

Dr. Zhang’s academic excellence and significant contributions to research and development have earned her 15 awards and recognitions, including provincial honors and national research grants. Her success in leading industry-sponsored projects and her innovations in ultrasonic testing technologies have been widely celebrated, positioning her as a leader in the field of non-destructive testing.

Legacy and Future Contributions 🔮

Dr. Zhang’s work has already left a lasting impact on the non-destructive testing field, particularly through her development of high-sensitivity transducers and novel testing methods. Looking to the future, she aims to continue pushing the boundaries of her research, particularly in the areas of multi-field physical coupling and advanced ultrasonic testing techniques. Dr. Zhang’s legacy will be defined by her innovative contributions to industrial safety and the advancement of non-destructive testing technologies, which will undoubtedly shape the future of material inspection and quality control across numerous industries

Publications Top Notes

Mechanistic analysis of electromagnetic ultrasonic transverse wave detection of steel plates in high-temperature multi-physical environments

  • Authors: Jia Zhang, Haibo Pang, Yanhao Xing
    Journal: Measurement
    Year: 202

Improved singular spectrum decomposition method for resonance recognition of air-coupled ultrasonic signals in through-transmission steel plate detection

  • Authors: Rongxue Li, Lijian Yang, Jia Zhang, Zheng Lian
    Journal: Measurement Science and Technology
    Year: 2025

Research on the electromagnetic ultrasonic detection method of initiation crack based on multi-acoustic coefficients fusion

  • Authors: Yanhao Xing, Xiaohui Zhang, Jia Zhang, Haiyu Jin, Hongwei Lin
    Journal: Measurement Science and Technology
    Year: 2025

Research on the mechanism of electromagnetic ultrasonic energy transfer based on dynamic multi-magnetic vector coupling

  • Authors: Jia Zhang, Yan-hao Xing, Hai-bo Pang
    Journal: Measurement Science and Technology
    Year: 2024

Development of a biaxial grid-coil-type electromagnetic acoustic transducer

  • Authors: Li-Jian Yang, Jia Zhang, Yan-Hao Xing, Song-Wei Gao, Zhe Xie, Hong-Wen Fu
    Journal: Measurement Science and Technology
    Year: 2021

Basaad Hamza | Theoretical Advances | Editorial Board Member

Assist. Prof. Dr. Basaad Hamza | Theoretical Advances | Editorial Board Member

Mustansiriyah university | Iraq

Dr. Basaad Hadi Hamza is an Assistant Professor in Electro-Optical Physics at Mustansiriyah University, College of Sciences. With a Ph.D. in Electro-Optical Physics (2004) from Mustansiriyah University, his academic expertise spans simulation programs for electro-optical tracking systems and optical systems. His commitment to advancing the field of electro-optical physics is evident through his teaching and research contributions.

👨‍🎓Profile

Google scholar

Scopus

ORCID

Early Academic Pursuits 🎓

Dr. Basaad’s academic journey began at Mustansiriyah University, where he earned his B.Sc. in Physics (1992), followed by a M.Sc. in Nuclear Physics (1998), and eventually his Ph.D. in Electro-Optical Physics (2004). His doctoral thesis focused on the development of a simulation program for electro-optical tracking systems, laying the foundation for his career in applied physics.

Professional Endeavors 💼

Dr. Basaad has an extensive teaching background, contributing to the development of future scientists and engineers. He taught various undergraduate courses in Physics 1, Electricity and Magnetism, Thermodynamics, and Analytical Mechanics. He has also guided graduate students, particularly in specialized topics for Ph.D. comprehensive examinations. His professional affiliations include serving as the Chairman of the Diversity Committee, overseeing curriculum preparation, and leading both undergraduate and graduate examination committees.

Contributions and Research Focus 🔬

Dr. Basaad’s research focus includes polarization effects on soliton propagation, radiance calculations, and the discrimination of targets from background in infrared (IR) imagery. He is particularly interested in the development of simulation programs for transforming IR images across various bands, a significant contribution to remote sensing and infrared imaging technologies. His work also includes improving detector performance in optical spectral ranges to enhance the accuracy of images.

Impact and Influence 🌍

Dr. Basaad’s research has had a broad impact, particularly in IR imaging, target discrimination, and optical physics. His innovative work on transforming IR images from band to band, coupled with his simulation techniques, has contributed to advancements in defense technologies, remote sensing, and optical systems. His publications, including in journals like the International Journal of Application or Innovation in Engineering & Management and Mustansiriyah Journal of Science, highlight his significant role in these fields.

Research Skills 🔍

Dr. Basaad possesses strong analytical skills, particularly in the areas of simulation programming, optical imaging, and IR technology. His proficiency in simulation software and knowledge of IR wavelength bands make him a leader in image transformation techniques. His work on target discrimination using multi-channel data and threshold methods highlights his ability to solve complex problems in infrared imagery.

Teaching Experience 📘

Dr. Basaad’s teaching experience spans over two decades, during which he has taught a range of undergraduate and graduate-level physics courses. He has taught Physics 1, Electricity and Magnetism, Thermodynamics, and Analytical Mechanics, and has supervised graduate theses. His guidance on special topics for Ph.D. students and his role in preparing students for comprehensive exams demonstrates his deep commitment to academic development.

Legacy and Future Contributions 🌱

Dr. Basaad’s legacy is marked by his contributions to electro-optical physics, especially in the development of simulation techniques for infrared imaging. Looking ahead, he plans to continue advancing research in target discrimination and optical systems, with potential applications in remote sensing, security, and environmental monitoring. His ongoing mentorship of graduate students will further ensure his influence in academic research and scientific innovation.

Publications Top Notes

Green Synthesis of Silver Nanoparticles and Their Effect on the Skin Determined Using IR Thermography

  • Authors: Alaabedin Alrabab Ali Zain, Majeed Aseel Musafa Abdul, Basaad Hadi Hamza
    Journal: Kuwait Journal of Science
    Year: 2024

Infrared Imaging of Skin Cancer Cell Treated with Copper Oxide and Silver Nanoparticles

  • Authors: M.M. Mowat, M.S. Khallaf, B.H. Hamza
    Journal: Bionatura
    Year: 2023

People Identification via Tongue Print Using Fine-Tuning Deep Learning

  • Authors: A.S. Obaid, M.Y. Kamil, B.H. Hamza
    Journal: International Journal of Reconfigurable and Embedded Systems
    Year: 2023

People Recognition via Tongue Print Using Deep and Machine Learning

  • Authors: A.S. Obaid, M.Y. Kamil, B.H. Hamza
    Journal: Journal of Artificial Intelligence and Technology
    Year: 2023

Improved Detector Performance Rendering in the Optical Spectral Ranges to Provide Accurate Image

  • Authors: Basaad Hadi Hamza
    Journal: Mustansiriyah Journal of Science
    Year: 2019

 

Sadhana Singh | Theoretical Advances | Best Researcher Award

Mrs. Sadhana Singh | Theoretical Advances | Best Researcher Award

NIT JALANDHAR | India

Dr. Sadhana Singh is a highly accomplished academic and researcher with a strong background in Electronics and Communication Engineering. Currently pursuing her Ph.D. at NIT Jalandhar, her research is focused on Low Power VLSI Circuits. With a passion for education, she has also contributed significantly to teaching at DAVIET as an Assistant Professor in the past.

👨‍🎓Profile

Scopus

ORCID

Early Academic Pursuits 🎓

Dr. Sadhana Singh’s journey began with a solid foundation in electronics and communication, starting from her early education at St. Antony’s Convent School, followed by KMV Collegiate Senior Sec. School. She later pursued her B.E. in Electronics and Communication from SSGPURC, Bajwara, with a 75.42% academic achievement. She further excelled by completing her M.Tech. in Electronics and Communication at NIT Kurukshetra, achieving an impressive 8.7742 CGPA.

Professional Endeavors 🏢

From July 2017 to June 2018, Dr. Singh served as an Assistant Professor at DAVIET, Jalandhar, contributing to the Department of Electronics and Communication Engineering. Her professional experience has been instrumental in shaping her career as a dedicated educator, imparting both theoretical and practical knowledge to students in the electronics and communication domains.

Contributions and Research Focus 🔬

Dr. Singh’s research primarily revolves around the design and performance analysis of Low Power VLSI circuits and semiconductor devices. Her Ph.D. thesis focuses on the Heterojunction GAA-NWTFET with a core insulator for low power applications, which is an important area in nanoelectronics and VLSI design. Furthermore, her M.Tech. research explored innovative techniques for PAPR reduction in OFDM systems. This demonstrates her deep engagement with modern communication systems and their optimization.

Impact and Influence 🌍

Dr. Singh has made significant strides in both academic research and the engineering industry. She has contributed to 4 SCI research papers published in reputable journals, demonstrating her technical expertise and her contributions to the field of electronics. Her research has also impacted the field of wireless communication and nanoelectronics.

Academic Cites 📚

Her scholarly work has been widely cited in academic circles, with research papers on topics such as Wide Band Semiconductors and the performance analysis of TFET devices. Notably, her work has appeared in high-impact journals like J. Silicon, ECS Journal of Solid State Science and Technology, and J. Micro and Nanostructures, making her a recognized name in nanotechnology and low-power circuit design.

Research Skills 🧠

Dr. Singh is proficient in various technical tools and languages, including MATLAB, Silvaco TCAD Atlas, Xilinx, and Quartus. She has strong research skills in digital signal processing, wireless communication, and embedded systems. Additionally, her expertise in low-power VLSI, MIMO systems, and digital communication has made her an asset to the electronics research community.

Teaching Experience 🎓

Her experience as an Assistant Professor at DAVIET reflects her commitment to quality teaching and her ability to guide students in electronics and communication subjects. She has also participated in faculty development programs and short-term courses to enhance her pedagogical skills, ensuring that she remains up-to-date with modern teaching methodologies.

Awards and Honors 🏆

Dr. Singh has earned recognition for her work, including the Best Paper Award at the IC3ICT-2015, presented in Bangalore. She has been honored for her outstanding academic performance, having received the MHRD scholarship for her M.Tech. and Ph.D. studies. Her scholarly excellence has been recognized with multiple GATE qualifications and National Science Olympiad achievements.

Legacy and Future Contributions 🌱

Dr. Sadhana Singh’s legacy lies in her contributions to both academia and research. With a rich background in low-power VLSI circuits, nanotechnology, and communication systems, her work is expected to influence the design and development of next-generation electronics and communication technologies. Her research can significantly impact the evolution of 5G and future wireless communication systems. Moving forward, she aims to deepen her expertise in nanoelectronics and VLSI, paving the way for breakthroughs in energy-efficient technologies.

Publications Top Notes

Recent Advancements in Wide Band Semiconductors (SiC and GaN) Technology for Future Devices

  • Authors: S. Singh, T. Chaudhary, & G. Khanna
    Journal: J. Silicon
    Year: 2021

Performance and Comparative Analysis of Heterojunction Structure based GAA-NWTFET for Low Power Applications

  • Authors: S. Singh, T. Chaudhary
    Journal: J. Silicon
    Year: 2021

Gate-All-Around Nanowire TFET with Heterojunction and Core Insulator: Design and Analysis

  • Authors: S. Singh, T. Chaudhary
    Journal: ECS Journal of Solid State Science and Technology
    Year: 2021

Estimation of process-induced variability in SiGe-GAA-NWTFET to improve reliability

  • Authors: S. Singh, T. Chaudhary
    Journal: J. Micro and Nanostructures
    Year: 2024

A Modified Clipping Algorithm for Reduction of PAPR in OFDM Systems

  • Authors: Sadhana Singh and Arvind Kumar
    Conference: Proc. IEEE International Conference on Computational Intelligence and Computing Research (ICCIC)
    Year: 2015

 

 

 

Ahmed Y. Ali | Theoretical Advances | Editorial Board Member

Mr. Ahmed Y. Ali | Theoretical Advances | Editorial Board Member

University of Anbar | Iraq

Mr. Ahmed Yasin Ali is a Lecturer in the Mechanical Engineering Department at the University of Anbar, specializing in Mechanical Engineering and Applied Mechanics. He holds an M.Sc. in Mechanical Engineering with a focus on applied mechanics and has significant expertise in numerical methods, FEM (Finite Element Method), and engineering analysis. With a solid foundation in mechanical design and vibration analysis, Ahmed is committed to advancing engineering education and research.

👨‍🎓Profile

Scopus

Orcid

Early Academic Pursuits 🎓

Ahmed’s academic journey began at the University of Anbar, where he earned both his B.Sc. and M.Sc. degrees in Mechanical Engineering with a specialization in Applied Mechanics. His academic performance and research interests shaped his future career as a lecturer and researcher in the same institution. His early academic years reflected his passion for mechanics and his drive to contribute to engineering advancements.

Professional Endeavors 💼

Since 2023, Ahmed has served as a Lecturer and Researcher in the Mechanical Engineering Department at the University of Anbar. His professional role involves teaching subjects such as Mechanical Drawing, Engineering Numerical Methods, FEM/Tutorial, and Engineering Analysis. Additionally, his commitment to research has resulted in significant contributions to the fields of dynamic stability, vibration analysis, and nonlinear dynamics.

Contributions and Research Focus 🔬

Ahmed’s research primarily focuses on the nonlinear dynamic stability of orthotropic functionally graded materials (FGM), especially in the context of vibration and stability analysis of cylindrical shells and plates. His work on shear deformable material toroidal shell segments and the vibration of graphene-reinforced composites has contributed valuable insights into material behavior under thermal effects and boundary conditions. His focus is on advancing applied mechanics through both theoretical and numerical research methods.

Impact and Influence 🌍

Ahmed’s research on nonlinear vibrations and dynamic stability in mechanical systems has contributed significantly to the field of applied mechanics. His work is influencing the design and analysis of FGM-based structures in engineering applications, providing more reliable and efficient methods for understanding material behavior and structural integrity under complex loading conditions. His research is particularly influential in the development of advanced materials used in aerospace and automotive industries.

Research Skills 🔧

Ahmed possesses strong skills in numerical methods, Finite Element Modeling (FEM), and dynamic analysis. His proficiency with software like MATLAB, ABAQUS, and ANSYS allows him to perform complex simulations on FGM materials and vibrational systems. His quantitative research skills are complemented by a deep understanding of applied mechanics, which aids in modeling mechanical systems and analyzing material behavior under various conditions.

Teaching Experience 🧑‍🏫

As a lecturer at the University of Anbar, Ahmed teaches a variety of courses, including Mechanical Drawing, Engineering Numerical Methods, FEM/Tutorial, and Mechanical Drawing LAB. His teaching experience reflects his commitment to student development and engineering education. Through his courses, he imparts valuable practical knowledge and theoretical understanding to students, preparing them for careers in mechanical engineering.

Legacy and Future Contributions 🌟

Ahmed’s legacy lies in his contributions to mechanical engineering and applied mechanics. As a researcher, he is paving the way for more advanced, efficient materials and structural systems in engineering. His future contributions will focus on further innovating mechanical design through nonlinear dynamic analysis and FGM material applications. As he continues his work, he is poised to make even greater strides in engineering education and scientific research, benefiting future generations of engineers.

Publication top notes

Nonlinear dynamic buckling of a simply supported imperfect nanocomposite shear deformable plate under the effect of in-plane velocities

  • Authors: Ahmed Y. Ali; Hamad M. Hasan; Farag M. Mohammed
    Journal: Communications in Nonlinear Science and Numerical Simulation
    Year: 2024

Nonlinear Forced Vibration of Functionally Graded Graphene-Reinforced Composite (FG-GRC) Laminated Cylindrical Shells under Different Boundary Conditions with Thermal Repercussions

  • Authors: Hamad M. Hasan; Ahmed Y. Ali
    Journal: International Journal of Structural Stability and Dynamics
    Year: 2024

Non-linear large amplitude vibration of orthotropic FGM convex and concave toroidal shell segments including the damping effect using the shear deformation theory

  • Authors: Ahmed Y. Ali; Hamad M. Hasan
    Journal: Thin-Walled Structures
    Year: 2022

Nonlinear dynamic stability of an imperfect shear deformable orthotropic functionally graded material toroidal shell segments under the longitudinal constant velocity

  • Authors: Ahmed Y. Ali; Hamad M. Hasan
    Journal: Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science
    Year: 2019

 

 

Theoretical Advances

 

Introduction to Theoretical Advances:

Theoretical advances represent the driving force behind scientific progress, pushing the boundaries of our understanding of the natural world. In every scientific discipline, from physics and chemistry to biology and cosmology, theoretical breakthroughs pave the way for innovative discoveries and applications.

Quantum Field Theory (QFT):

Dive into the realm of quantum field theory, a theoretical framework that underlies particle physics and quantum mechanics. Explore advances in QFT that illuminate the behavior of particles and forces at the smallest scales, driving discoveries in fundamental physics.

String Theory and Quantum Gravity:

Investigate string theory and its quest to unify all fundamental forces of nature, including gravity, within a single theoretical framework. Explore how theoretical advances in string theory could provide insights into the nature of the universe.

Theoretical Biology and Evolution:

Delve into theoretical biology, where mathematical and computational models are used to understand complex biological processes, such as evolution, ecology, and the dynamics of ecosystems.

Astrophysical Models and Cosmology:

Focus on advances in astrophysical and cosmological theories, including the development of models that explain the origin and evolution of the universe, the behavior of dark matter and dark energy, and the properties of celestial objects.

Materials Science and Nanotechnology:

Explore theoretical advancements in materials science and nanotechnology, where models and simulations are used to design novel materials with tailored properties, enabling breakthroughs in electronics, energy storage, and beyond.

 

 

  Introduction of Chiral spinors and helicity amplitudes Chiral spinors and helicity amplitudes are fundamental concepts in the realm of quantum field theory and particle physics    They play a
  Introduction to Chiral Symmetry Breaking: Chiral symmetry breaking is a pivotal phenomenon in the realm of theoretical physics, particularly within the framework of quantum chromodynamics (QCD) and the study
  Introduction to Effective Field Theory and Renormalization: Effective field theory (EFT) and renormalization are foundational concepts in theoretical physics, particularly in the realm of quantum field theory. They provide
  Introduction to Experimental Methods: Experimental methods are the backbone of scientific investigation, enabling researchers to empirically explore and validate hypotheses, theories, and concepts. These techniques encompass a wide array
  Introduction to Free Particle Wave Equations: Free particle wave equations are fundamental concepts in quantum mechanics, describing the behavior of particles that are not subject to external forces. These
  Introduction to High Energy Physics: High-energy physics, also known as particle physics, is a branch of science dedicated to the study of the most fundamental building blocks of the
  Introduction to Interactions and Fields: Interactions and fields form the foundation of modern physics, providing the framework for understanding how particles and objects interact with one another and the
  Introduction to Invariance Principles and Conservation Laws: Invariance principles and conservation laws are fundamental concepts in physics that play a pivotal role in understanding the behavior of the physical
  Introduction to Lepton and Quark Scattering and Conservation Laws: Lepton and quark scattering processes are fundamental phenomena in particle physics, allowing us to probe the structure and interactions of
  Introduction to Particle Physics and Cosmology: Particle physics and cosmology are two closely intertwined fields of scientific inquiry that seek to unravel the mysteries of the universe at both

Theoretical Advances

 

Introduction to Theoretical Advances:

Theoretical advances represent the driving force behind scientific progress, pushing the boundaries of our understanding of the natural world. In every scientific discipline, from physics and chemistry to biology and cosmology, theoretical breakthroughs pave the way for innovative discoveries and applications.

Quantum Field Theory (QFT):

Dive into the realm of quantum field theory, a theoretical framework that underlies particle physics and quantum mechanics. Explore advances in QFT that illuminate the behavior of particles and forces at the smallest scales, driving discoveries in fundamental physics.

String Theory and Quantum Gravity:

Investigate string theory and its quest to unify all fundamental forces of nature, including gravity, within a single theoretical framework. Explore how theoretical advances in string theory could provide insights into the nature of the universe.

Theoretical Biology and Evolution:

Delve into theoretical biology, where mathematical and computational models are used to understand complex biological processes, such as evolution, ecology, and the dynamics of ecosystems.

Astrophysical Models and Cosmology:

Focus on advances in astrophysical and cosmological theories, including the development of models that explain the origin and evolution of the universe, the behavior of dark matter and dark energy, and the properties of celestial objects.

Materials Science and Nanotechnology:

Explore theoretical advancements in materials science and nanotechnology, where models and simulations are used to design novel materials with tailored properties, enabling breakthroughs in electronics, energy storage, and beyond.

 

 

Introduction of Chiral spinors and helicity amplitudes Chiral spinors and helicity amplitudes are fundamental concepts in the realm of quantum field theory and particle physics    They play a pivotal
  Introduction to Chiral Symmetry Breaking: Chiral symmetry breaking is a pivotal phenomenon in the realm of theoretical physics, particularly within the framework of quantum chromodynamics (QCD) and the study
Introduction to Effective Field Theory and Renormalization: Effective field theory (EFT) and renormalization are foundational concepts in theoretical physics, particularly in the realm of quantum field theory. They provide a
  Introduction to Experimental Methods: Experimental methods are the backbone of scientific investigation, enabling researchers to empirically explore and validate hypotheses, theories, and concepts. These techniques encompass a wide array
  Introduction to Free Particle Wave Equations: Free particle wave equations are fundamental concepts in quantum mechanics, describing the behavior of particles that are not subject to external forces. These
  Introduction to High Energy Physics: High-energy physics, also known as particle physics, is a branch of science dedicated to the study of the most fundamental building blocks of the
  Introduction to Interactions and Fields: Interactions and fields form the foundation of modern physics, providing the framework for understanding how particles and objects interact with one another and the
  Introduction to Invariance Principles and Conservation Laws: Invariance principles and conservation laws are fundamental concepts in physics that play a pivotal role in understanding the behavior of the physical
  Introduction to Lepton and Quark Scattering and Conservation Laws: Lepton and quark scattering processes are fundamental phenomena in particle physics, allowing us to probe the structure and interactions of
  Introduction to Particle Physics and Cosmology: Particle physics and cosmology are two closely intertwined fields of scientific inquiry that seek to unravel the mysteries of the universe at both