Shuxia Zhao | Theoretical Advances | Best Researcher Award

Assoc. Prof. Dr. Shuxia Zhao | Theoretical Advances | Best Researcher Award

Associate Professor at Dalian University of Technology, China

Dr. Shuxia Zhao is an Associate Professor at the Dalian University of Technology, with a specialization in electronegative and inductively coupled plasmas. She has an extensive academic background, with degrees in Physics, Materials Science, and Plasma Physics from Hebei Normal University and Dalian University of Technology, followed by Postdoctoral Research at the University of Antwerp. Dr. Zhao’s expertise lies in exploring the complex discharge structures of plasma and establishing interdisciplinary links across various fields of plasma physics.

👨‍🎓Profile

Early Academic Pursuits 🎓

Dr. Zhao began her academic journey at Hebei Normal University in 2000, where she completed her Bachelor’s degree in Physics. She continued her studies at the same institution, earning her Master’s degree in Physics and Chemistry of Material in 2007. Further refining her expertise, she pursued her Doctorate at Dalian University of Technology, specializing in Plasma Physics. Dr. Zhao also enriched her research experience as a Postdoctoral Researcher at the University of Antwerp, focusing on fluorocarbon inductively coupled plasmas.

Professional Endeavors 💼

Dr. Zhao has contributed to various significant research projects funded by the National Natural Science Foundation of China. In her current role as Associate Professor at DUT since 2013, she continues to advance knowledge in electronegative plasmas and inductively coupled plasmas. Dr. Zhao has led industry collaborations, notably with North microelectronics base, enhancing plasma source technologies.

Contributions and Research Focus 🔬

Dr. Zhao’s research explores the discharge mechanism and etching processes of fluorocarbon plasmas, as well as the complex discharge structures of electronegative plasmas. She is particularly interested in low-temperature plasmas and their potential connections with high-temperature fusion plasmas and astrophysical plasmas. Her work on mode transition and hysteresis in inductively coupled plasma sources has provided critical insights into plasma behavior and interactions.

Impact and Influence 🌍

Dr. Zhao’s groundbreaking work in plasma science has impacted both the academic community and the industry. Her research has provided important theories and models that enhance the understanding of plasma behaviors and their applications in various fields, including microelectronics and fusion energy. Her published books and articles have been well-cited, showcasing her role in advancing plasma physics.

Academic Citations 📊

Dr. Zhao’s research contributions are widely recognized, with a Web of Science ResearcherID of AFT-8684-2022. She has published 39 journals in renowned international databases like SCI and Scopus. Her work is highly cited and continues to shape plasma science research globally.

Research Skills 🧑‍🔬

Dr. Zhao is skilled in fluid modeling, plasma diagnostics, and theoretical plasma physics. She has developed innovative software for modeling argon inductively coupled plasmas and ionic species transport coefficients in low-pressure RF plasmas, securing patents for these developments. Her expertise extends to data analysis, numerical simulations, and plasma characterization.

Teaching Experience 🍎

Dr. Zhao has been an educator at Dalian University of Technology for over a decade. She is deeply invested in nurturing the next generation of plasma scientists and engineers. Dr. Zhao’s commitment to teaching and mentoring extends beyond the classroom, as she actively supervises graduate students and postdoctoral researchers in their own academic pursuits.

Legacy and Future Contributions 🌱

As Dr. Zhao continues to explore the complexities of inductively coupled plasmas, her future work will likely further advance the field of plasma physics, especially in the context of microelectronics and fusion energy. Her research legacy is one of interdisciplinary collaboration, innovative discoveries, and educational excellence, contributing to both scientific advancements and technological applications.

Publications Top Notes

Simulation of mode transitions in capacitively coupled Ar/O2 plasmas

  • Authors: X. Liu, S. Zhang, S. Zhao, H. Li, X. Ren
    Journal: Plasma Science and Technology
    Year: 2024

Self-Coagulation Theory and Related Comet- and Semi-Circle-Shaped Structures in Electronegative and Gaseous Discharging Plasmas in the Laboratory

  • Authors: Y. Tian, S. Zhao
    Journal: Applied Sciences (Switzerland)
    Year: 2024

Effect of gas flow on the nanoparticles transport in dusty acetylene plasmas

  • Authors: X. Liu, W. Liu, X. Zhang, X. Dong, S. Zhao
    Journal: Plasma Science and Technology
    Year: 2023

 

 

Sunil Kumar Maurya | The Relativity theory | Member

Assoc Prof Dr. Sunil Kumar Maurya | The Relativity theory | Member

PHD at IIT Roorkee, India

Dr. Sunil Kumar Maurya is an Associate Professor and Assistant Dean for Graduate Studies and Research at the University of Nizwa, Oman. With a Ph.D. in Mathematics from IIT Roorkee, India, his expertise lies in Differential Equations, Mathematical Physics, and General Relativity. He has taught a wide range of courses and supervised numerous graduation projects and international Ph.D. students. Dr. Maurya has presented and attended conferences globally, contributing significantly to research in cosmology, astrophysics, and modified gravity theories. With over 3955 Google Scholar citations, he continues to advance the field through extensive publications and funded research projects.

Professional Profiles:

Academic Qualifications

Ph.D. in Mathematics, IIT Roorkee – India, March 2013 M.Sc. in Mathematics, BHU – India, 2008 B.Sc. in Mathematics and Physics, Lucknow University – India, June 2006

Position/Designation: Assistant Dean for Graduate Studies and Research, and Associate Professor Department: Department of Mathematical and Physical Sciences College: Arts and Sciences University: University of Nizwa, Sultanate of Oman

Research interests:

Differential Equations, Similarity Transformations Method, Exact Solutions of Einstein’s Field Equations, Mathematical Physics, Applied Mathematics, General Relativity and Cosmology, Modelling of Compact Stars, Astronomy and Astrophysics, Wormholes, Modified Theory of Gravity, Gravitational Decoupling.

Research Projects

Title: The Astrophysical and Cosmological Implications: From Dark Energy to Modified Theory of Gravity Application Date: December 2019 Amount: 19,504 USD Status: Completed in September 2022 as a Principal Investigator

Research Focus:

Dr. Sunil Kumar Maurya’s research primarily focuses on theoretical astrophysics and general relativity, with a specific emphasis on anisotropic models for compact stars. Through various publications in reputable journals like The European Physical Journal C and Physical Review D, he has extensively explored the properties and behaviors of anisotropic compact objects, investigating their structural characteristics and gravitational effects. Dr. Maurya’s work delves into the intricate interplay between matter and geometry within these compact stellar systems, contributing significantly to our understanding of relativistic astrophysics and providing insights into the fundamental nature of compact stars.

Publications 

  1. Anisotropic models for compact stars, cited by: 162, Publication date: 2015.
  2. Study of anisotropic strange stars in  gravity: An embedding approach under the simplest linear functional of the matter-geometry coupling, cited by: 156, Publication date: 2019.
  3. Generalised model for anisotropic compact starscited by: 145, Publication date: 2016.
  4. A new exact anisotropic solution of embedding class one, cited by: 139, Publication date: 2016.
  5. Anisotropic compact stars in the Buchdahl model: A comprehensive study, cited by: 133, Publication date: 2019.
  6. Charged anisotropic compact star in f (R, T) gravity: A minimal geometric deformation gravitational decoupling approach, cited by: 126, Publication date: 2020.
  7. Generalized relativistic anisotropic compact star models by gravitational decoupling, cited by: 117, Publication date: 2019.
  8. Class I approach as MGD generatorcited by: 102, Publication date: 2020.
  9. Gravitational decoupling minimal geometric deformation model in modified f (R, T) gravity theory, cited by: 97, Publication date: 2020.
  10. Anisotropic relativistic fluid spheres: an embedding class I approach, cited by: 82, Publication date: 2019.

 

 

 

.