Ivan Uzunov | Quantum Technologies | Best Researcher Award

Prof. Dr. Ivan Uzunov | Quantum Technologies | Best Researcher Award

Researcher at Institute of Mechanics, Bulgarian Academy of Sciences | Bulgaria

Prof. D. Sc. Ivan M. Uzunov is an internationally respected physicist and expert in nonlinear fiber optics, photonics, and optical solitons. With over four decades of academic and research experience, he has become a pivotal figure in advancing the theory and application of nonlinear wave propagation in optical systems. His work bridges theoretical physics and applied photonics, making substantial contributions to both fundamental science and practical technologies in fiber optics and communications.

👨‍🎓Profile

Google scholar

Scopus

ORCID

🎓 Early Academic Pursuits

Prof. Uzunov’s academic journey began with a Master’s degree in Physics from the University of Sofia (1981), followed by a Ph.D. in Physics from the Institute of General Physics in Moscow (1986). His Ph.D. thesis on “Instability of laser radiation in media with thermal nonlinearity” set the tone for his lifelong focus on nonlinear optical phenomena. He later achieved a Doctor Rerum Naturalium Habilitatus from Friedrich-Schiller University, Jena, Germany (1998), and earned a prestigious Doctor of Science (D.Sc.) in Radiophysics and Quantum Electronics in Bulgaria (1999).

🏛️ Professional Endeavors

Prof. Ivan M. Uzunov has held prominent academic and research positions across Bulgaria, Germany, Russia, and Canada, showcasing his broad international engagement. He served as Professor (2008–2025) and Director (2007–2015) of the Department of Applied Physics at the Technical University of Sofia, where he provided both academic leadership and research guidance. He was also Head of the Laboratory of Fibre and Nonlinear Optics at the Institute of Electronics, Bulgarian Academy of Sciences, and worked as Research Manager at Optiwave Corporation in Ottawa, Canada. His career reflects a strong dedication to scientific innovation, administration, and interdisciplinary collaboration.

🔬 Contributions and Research Focus

Prof. Ivan M. Uzunov has made significant contributions to photonics, nonlinear fiber optics, and soliton theory, with a strong focus on Ginzburg–Landau-type equations. He is especially recognized for his pioneering work on N-soliton interactions, self-frequency shifts of dark solitons, and pulse switching in nonlinear couplers. His research incorporates advanced theoretical modeling, including bifurcation theory and numerical simulations. In recent years, he has explored Raman-scattering-perturbed Ginzburg–Landau systems, enhancing scientific understanding of ultrafast pulse dynamics, coherent structures, and kink/anti-kink solutions in nonlinear optical media, reinforcing his role as a leader in nonlinear wave physics.

🌍 Impact and Influence

Prof. Uzunov has authored 164 scientific publications, including 65 papers in high-impact international journals and 47 peer-reviewed conference proceedings. His work has attracted 931 citations (excluding self-citations), with an h-index of 14 on Scopus. His collaborations with global experts like Prof. Falk Lederer and institutions such as Friedrich-Schiller University highlight his international recognition. His research has had significant influence on the development of nonlinear wave theory, shaping the evolution of fiber optic technologies over the past three decades.

📊 Academic Citations & Research Skills

Prof. Ivan M. Uzunov’s impressive citation record underscores the scientific impact of his research, with top-cited papers published in prestigious journals such as Optics Letters, Physical Review Letters, and Optical and Quantum Electronics. These works are frequently referenced in the fields of nonlinear optics and fiber communications. He possesses advanced research skills in numerical simulations, nonlinear differential equations, bifurcation analysis, and modeling of ultrafast optical pulses. His methodology effectively integrates rigorous mathematical frameworks with practical photonic applications, enabling deep insights into nonlinear wave phenomena and reinforcing his expertise in complex optical systems.

🧑‍🏫 Teaching Experience

Prof. Uzunov has taught extensively at Technical University of Sofia, mentoring numerous graduate students, supervising doctoral dissertations, and guiding postdoctoral researchers. His experience spans both theoretical physics and applied engineering, making him a valuable educator who bridges the gap between academic knowledge and industry practice. He has also been involved in curriculum development, introducing courses in nonlinear optics, fiber communication systems, and optical signal processing.

🏅 Awards and Honors

While specific award titles are not listed, Prof. Uzunov’s selection as Director, invitations to international collaborative projects, and invited publications (e.g., Optik’s Golden Jubilee of Solitons) reflect his peer recognition and professional standing. His profile positions him as a leading candidate for prestigious accolades like the Best Researcher Award, especially in photonics and applied physics.

🌟 Legacy and Future Contributions

Prof. Uzunov’s legacy lies in his ability to integrate theoretical excellence with practical relevance, influencing optical communication systems and nonlinear wave studies. As he continues publishing in top journals through 2025, his ongoing work on solitons, Ginzburg–Landau models, and Raman effects promises to open new research pathways. He is a mentor, a scientist, and a thought leader whose influence will likely continue to shape the future of optical physics and nonlinear dynamics.

Top Noted Publications

Transitions of stationary to pulsating solutions in the complex cubic-quintic Ginzburg-Landau equation under the influence of nonlinear gain and higher-order effects

  • Authors: Uzunov I.M., Georgiev Zh.D., Arabadzhiev T.N.

  • Journal: Physical Review E

  • Year: 2018

Kink solutions of the complex cubic–quintic Ginzburg-Landau equation in the presence of intrapulse Raman scattering

  • Authors: Uzunov I.M., Vassilev V.M., Arabadzhiev T.N., Nikolov S.G.

  • Journal: Optik – International Journal for Light and Electron Optics

  • Year: 2023

Coherent structures and sequences of exact kink and anti kink solutions to the complex cubic–quintic Ginzburg–Landau equation perturbed by intrapulse Raman scattering

  • Authors: Uzunov I.M., Arabadzhiev T.N., Vassilev V.M., Nikolov S.G.

  • Journal: Optical and Quantum Electronics

  • Year: 2023

Long-living periodic solutions of complex cubic-quintic Ginzburg–Landau equation in the presence of intrapulse Raman scattering: a bifurcation and numerical study

  • Authors: Uzunov I.M., Nikolov S.G., Arabadzhiev T.N., Georgiev Zh.D.

  • Journal: Physical Review E

  • Year: 2024

One approach to find the pulsating pulse solutions of the complex cubic Ginzburg–Landau equation considering intrapulse Raman scattering

  • Authors: Uzunov I.M., Nikolov S.G., Arabadzhiev T.N.

  • Journal: Optical and Quantum Electronics

  • Year: 2025

 

 

Aftab Alam | Quantum Technologies | Excellence in Research Award

Prof. Aftab Alam | Quantum Technologies | Excellence in Research Award

Professor at Indian Institute of Technology Bombay  | India

Professor Aftab Alam is a distinguished physicist specializing in computational materials science, currently serving at the Department of Physics, IIT Bombay. With an expansive career rooted in quantum materials, electronic structure, and vibrational dynamics, Prof. Alam has significantly contributed to both theoretical advancements and applied computational frameworks. His academic journey and professional trajectory reflect a commitment to scientific excellence, interdisciplinary collaboration, and mentorship.

👨‍🎓Profile

Google scholar

Scopus

ORCID

🎓 Early Academic Pursuits

Professor Alam’s academic foundation was built at the University of Calcutta, where he earned his B.Sc. in Physics (Honors) with Mathematics and Chemistry, followed by an M.Sc. in Physics, specializing in Nuclear Physics. He later completed a rigorous Post-M.Sc. course at the S. N. Bose Centre for Basic Sciences, which included intensive examinations and seminar presentations. He pursued his doctoral studies (Ph.D.) at the same institute under the guidance of Prof. Abhijit Mookerjee, focusing on vibrational properties of disordered systems.

🧑‍🏫 Professional Endeavors

Prof. Alam has held progressive academic roles at IIT Bombay since 2013—from Assistant Professor to Associate Professor, and now Professor since April 2022. Before returning to India, he served as a Research Associate at the University of Illinois at Urbana-Champaign and later as Research Staff at the Ames Laboratory (USA). His international exposure greatly enriched his perspective on materials design, thermodynamic modeling, and quantum phase transitions.

🔬 Contributions and Research Focus

Professor Aftab Alam’s research focuses on electronic structure theory, thermoelectric materials, disordered alloys, and vibrational dynamics. He has developed advanced algorithms and efficient computational codes, integrating them with tools like Quantum-Espresso to explore phonon behavior in complex systems. His work covers structural, magnetic, and quantum phase transitions in intermetallics, exotic phases in topological insulators and superconductors, ab-initio transport theory beyond the Boltzmann formalism, and optoelectronic properties of emerging energy materials.

🌍 Impact and Influence

With over 136 peer-reviewed publications, 10 papers under review, and multiple book chapters, Prof. Alam is a globally cited expert in his domain. His pioneering techniques in phonon dispersion and disorder modeling have been cited across research on thermal transport, neutron scattering, and novel quantum materials. His work supports energy innovation, material design, and next-gen computing applications.

📚 Academic Citations and Publications

Professor Aftab Alam’s research portfolio reflects his prolific academic contributions. He has authored books and book chapters, including Lattice Dynamics of Disordered Systems (2016) and key Springer publications on halide perovskites and spin gapless semiconductors. His work includes 4 conference papers, 10 articles under review, and an impressive 136 international journal publications. His complete list of publications is accessible via Google Scholar, highlighting his high-impact research in condensed matter physics and computational material science.

🛠️ Research Skills and Technical Expertise

Prof. Aftab Alam possesses exceptional expertise in first-principles calculations and density functional theory (DFT), with deep specialization in phonon calculations, vibrational entropy, and inelastic neutron scattering. He is proficient in tools like TB-LMTO, KKR-CPA, VASP, Recursion Method, and Tight-Binding, alongside strong FORTRAN programming skills. Notably, he has developed generalized lattice dynamical models for disordered alloys, interfacing efficiently with Quantum-Espresso, which marks a significant advancement in material simulations and computational modeling.

👨‍🏫 Teaching Experience and Mentorship

Over his academic journey, Prof. Aftab Alam has mentored 10 Ph.D. scholars (completed) and is currently guiding 6 ongoing Ph.D. students. He has also supervised 7 postdoctoral fellows, with 2 more ongoing, showcasing his strong role in academic leadership. He actively fosters scholarly engagement, having played a pivotal role in student-led symposia like SYMPHY at IIT Bombay. Additionally, he extended his influence internationally as General Secretary of the ISU Postdoctoral Association, USA, promoting academic collaboration and outreach.

🏅 Awards and Honors

Professor Alam has been consistently recognized for his academic leadership:

  • 🏆 IAAM Scientist Medal, 2016

  • 🎖 DST Young Scientist Award, 2014

  • 🏅 Early Research Achiever Award, IIT Bombay, 2017

  • 🏵 Young Faculty Award, 2013

  • ✍️ Editorial roles in journals such as Chinese Journal of Physics, Frontiers in Physics, and Advanced Materials Letters

  • 📜 Featured in Marquis Who’s Who in the World, 2008

  • 🧪 Multiple national-level exam qualifications: NET-CSIR, JEST

🌟 Legacy and Future Contributions

Prof. Alam is currently involved in organizing international events, including a conference on Photophysics and Photochemistry (2024), and continues to lead multi-crore research projects funded by DST-SERB, MNRE, and IIT Bombay. His focus remains on advancing fundamental understanding while promoting scientific computing tools for widespread academic use. His legacy lies in nurturing next-generation physicists, building research infrastructure, and pushing the boundaries of quantum materials science.

Top Noted Publications

Giant Topological Hall Effect in Magnetic Weyl Metal Mn₂Pd₀.₅Ir₀.₅Sn

  • Authors: Arnab Bhattacharya, P. C. Sreeparvathy, Afsar Ahmed, Aftab Alam, Indranil Das
    Journal: Advanced Functional Materials
    Year: 2025

Photoemission spectroscopy and ab-initio simulation of CrFeVGa and CoFeVSb: a comparative study

  • Authors: Jadupati Nag, Kritika Vijay, Barnabha Bandyopadhyay, Aftab Alam, Krishna Gopinatha Suresh
    Journal: Journal of Physics: Condensed Matter
    Year: 2025

Facilitating White Light Emission through Heterovalent Sr²⁺-Doped Nanocrystals for Visible Light Transparent Electronics

  • Authors: Monika Salesh, Sumit Kumar Sharma, Sanika S. Padelkar, Aftab Alam, Aswani Yella
    Journal: ACS Materials Letters
    Year: 2025

Enhanced piezoresponse in van der Waals 2D CuCrInP₂S₆ through nanoscale phase segregation

  • Authors: Sharidya Rahman, Sanika S. Padelkar, Lan Nguyen, Aftab Alam, Jacek Jaroslaw Jasieniak
    Journal: Nanoscale Horizons
    Year: 2025

Robust Nernst magnetothermoelectricity in the topological spin semimetal FeCrRhX (X=Si, Ge)

  • Authors: Amit Chanda, Jadupati Nag, Noah Schulz, Manhhuong Phan, Hariharan V. Srikanth
    Journal: Physical Review B
    Year: 2025

Aftab Khan | Quantum Technologies | Excellence in Research Award

Dr. Aftab Khan | Quantum Technologies | Excellence in Research Award

Visiting Lecturer at University of Peshawar | Pakistan

Aftab Khan is a passionate physicist and researcher with a strong academic and research foundation in quantum optics, plasmonics, and nanocomposite materials. With an enduring curiosity about the interplay between light and matter, he has contributed significantly to the understanding of optical and plasmonic behaviors in metal-dielectric systems. He is currently associated with the Quantum Optics & Quantum Information (QOQI) research group at the University of Malakand, where he continues to explore cutting-edge concepts in quantum information and ultra-cold atomic systems.

👨‍🎓Profile

Google scholar

📚 Early Academic Pursuits

Aftab’s journey in physics began with a BSc at Govt. AKL P.G College Matta Swat, progressing to an M.Sc in Physics (2010–12) from University of Malakand, where he developed a solid foundation in quantum mechanics, electromagnetic theory, and solid-state physics. His academic path naturally evolved into a focused interest in quantum optics, leading to an M.Phil and eventually a Ph.D. program at University of Peshawar, specializing in nanocomposite media embedded in rubidium.

🧑‍🏫 Professional Endeavors

Aftab Khan began his teaching career as a Lecturer in Physics at Bright Education Academy and QIMS College Khwaza Khela, serving from 2013 to 2018. Since March 2018, he has held a position as a Visiting Lecturer at the University of Swat, where he continues to inspire students through both theoretical instruction and practical insights from his research work.

🔬 Contributions and Research Focus

Aftab’s research focuses on quantum-atom optics, Kerr nonlinearity, optical cloaking, and cavity quantum electrodynamics. He has notably worked on the optical and plasmonic properties of nanocomposite systems involving gold and silver nanoparticles in rubidium atomic media, combining theoretical modeling with experimental data interpretation. His Ph.D. work, and earlier M.Phil research on rotary photon dragging and Kerr nonlinearity, stand as significant contributions to the field.

🌍 Impact and Influence

With multiple publications in high-impact journals such as Optical and Quantum Electronics, Physics Letters A, and Optik, Aftab Khan’s work has contributed to the understanding of light-matter interactions, plasmonic hole burning, and temporal cloaking mechanisms. These studies offer potential applications in quantum computing, nonlinear optics, and invisibility cloaking technologies, showing his commitment to impactful, forward-looking research.

🛠️ Research Skills

Aftab Khan possesses a diverse and technically rich research skillset, including quantum simulations, mathematical modeling of light-matter interactions, and plasmonic material design. His expertise extends to theoretical optics involving Kerr nonlinearity and the proficient use of computational tools in physics. With a deep understanding of coherent atomic media, nonlinear optical effects, and plasmon dynamics, he plays a vital role in advancing both collaborative and independent scientific research, contributing meaningfully to the field of quantum optics and plasmonics.

👨‍🏫 Teaching Experience

Aftab has taught undergraduate and graduate-level physics for over a decade, emphasizing quantum theory, classical mechanics, computational physics, and electromagnetic theory. His role as a Visiting Lecturer at the University of Swat has helped him bridge theoretical knowledge with practical research applications, enriching the academic experience for his students.

🔮 Legacy and Future Contributions

With a clear trajectory rooted in quantum optics, Aftab Khan is poised to make lasting contributions in the fields of quantum information processing, nanophotonics, and optical material design. His future goals likely include interdisciplinary research, collaborations on global platforms, and mentoring young scientists in cutting-edge physics. His evolving work promises to expand the possibilities of optical cloaking and coherent quantum control systems.

Publications Top Notes

Surface plasmon hole burning at the interface of Cesium and Gold by Kerr nonlinearity

  • Authors: U. Wahid, A. Khan, B. Amin, A. Ullah
    Journal: Optik, Volume 202, Article 163651
    Year: 2020

Theoretical investigation of the optical and plasmonic properties of the nanocomposite media composed of silver nanoparticles embedded in rubidium

  • Authors: A. Khan, A. Ullah, R.U. Din, A. Khan
    Journal: Physics Letters A, Volume 527, Article 129993
    Year: 2024

Optical and plasmonic properties of coherently prepared nanocomposite composed of gold nanoparticles embedded in rubidium atomic media

  • Authors: A. Khan, A. Ullah, A. Khan
    Journal: Optical and Quantum Electronics, Volume 57, Issue 5, Article 266
    Year: 2025

Investigating the effect of rotary photon dragging on temporal cloaking under the influence of Kerr nonlinearity

  • Authors: A. Khan, A. Khan, R.U. Din
    Journal: Optical and Quantum Electronics, Volume 57, Issue 3, Pages 1–13
    Year: 2025

 

 

Hua Zhang | Quantum Technologies | Best Researcher Award

Prof. Hua Zhang | Quantum Technologies | Best Researcher Award

Institute of Physical Science and Information Technology, Anhui University | China

Dr. Hua Zhang is an accomplished materials scientist and researcher with a deep specialization in perovskite solar cells, currently making significant contributions to the advancement of photovoltaic technology. With over a decade of academic training and an exceptional portfolio of high-impact publications, Dr. Zhang has emerged as a leading figure in sustainable energy research.

👨‍🎓Profile

ORCID

🎓 Early Academic Pursuits

Dr. Zhang began his academic journey with a Bachelor of Science in Chemistry from Henan Normal University (2006–2010), followed by a Master’s degree in Organic Chemistry from Huazhong Normal University (2010–2013). He then earned a Ph.D. in Optical Engineering from Huazhong University of Science and Technology (2013–2016), where he began refining his expertise in materials and optoelectronic devices. His interdisciplinary background has uniquely positioned him to tackle complex challenges in solar energy.

🧪 Professional Endeavors

Dr. Zhang has held postdoctoral and research roles in internationally collaborative environments, working with globally recognized scholars such as Alex K.-Y. Jen and Michael Grätzel. His career has been marked by a progressive trajectory of innovation, leadership, and research excellence in cutting-edge solar technologies.

🔬 Contributions and Research Focus

Dr. Zhang’s research revolves around advanced materials for perovskite solar cells, particularly focusing on inverted device architectures, interface engineering, and lead leakage prevention. He has pioneered the use of novel materials like CuCrO₂ nanocrystals, BiOBr flakes, and superhydrophobic surfaces to enhance the efficiency, stability, and safety of solar cells. His work has addressed some of the most critical bottlenecks in photovoltaic research, such as nonradiative recombination, interface degradation, and toxic material containment, offering practical solutions for real-world deployment.

🌍 Impact and Influence

With 11 peer-reviewed publications, many of which are featured in top-tier journals like Advanced Materials, ACS Energy Letters, and Journal of Materials Chemistry A, Dr. Zhang’s research has not only contributed to academic knowledge but also holds the potential for industrial application and commercialization. Several of his papers have been marked as JMCA Hot Papers, signifying their scientific importance and readership impact.

📊 Academic Citations and Recognition

Dr. Zhang’s works have been highly cited, reflecting their influence on the scientific community. He has consistently published as first author and corresponding author, showcasing his role as a key driver of innovation in his research collaborations. His articles are often referenced in subsequent high-impact studies, underlining his thought leadership in the domain.

🛠️ Research Skills

Dr. Zhang possesses advanced skills in materials synthesis, device fabrication, surface engineering, and photovoltaic performance analysis. His technical toolkit includes experience with low-temperature solution processing, interface modification, and characterization techniques essential for next-generation solar cell development.

👨‍🏫 Teaching and Mentorship Experience

While the current profile does not detail formal teaching positions, Dr. Zhang’s first-author contributions and research leadership suggest active involvement in mentoring junior researchers, guiding lab activities, and contributing to academic training in collaborative research settings.

🧭 Legacy and Future Contributions

Looking forward, Dr. Zhang is poised to become a trailblazer in renewable energy technologies, with ongoing contributions expected to push the boundaries of green energy solutions. His work addresses global challenges in energy sustainability, environmental safety, and materials efficiency, ensuring a legacy that transcends academia and impacts industry and society. His research trajectory suggests continued breakthroughs in interface science, eco-friendly solar cell development, and energy materials, making him a strong candidate for leadership roles, global recognition, and future awards in scientific innovation.

Publications Top Notes

Colloidal Self‐Assembly of CuCrO₂ Nanocrystals for Durable Inverted Perovskite Solar Cells

  • Authors: Hua Zhang, Rong Wang, Zhixiu Zhao, Jianfei Liang, Chunlin Zhu, Hongyang Liu, Huan Wang
    Journal: Small
    Year: 2025

Strengthened cathode interface using an ultrathin 2D ferroelectric semiconductor for inverted perovskite solar cells

  • Authors: Hua Zhang, Weihong Liu, Yongping Bao, Rong Wang, Jianfei Liang, Lei Wan, Huan Wang
    Journal: Journal of Materials Chemistry A
    Year: 2024

Overcoming C60-Induced Nonradiative Recombination via Interfacial Embedding of BiOBr Flakes in Inverted Perovskite Solar Cells

  • Authors: Hua Zhang
    Journal: ACS Energy Letters
    Year: 2023

Design of Superhydrophobic Surfaces for Stable Perovskite Solar Cells with Reducing Lead Leakage

  • Authors: Hua Zhang, Kang Li, Man Sun, Fanglin Wang, Huan Wang, Alex K.-Y. Jen
    Journal: Advanced Energy Materials
    Year: 2021

HxMoO₃−y nanobelts: an excellent alternative to carbon electrodes for high performance mesoscopic perovskite solar cells

  • Authors: Hua Zhang, Huan Wang, Yinglong Yang, Chen Hu, Yang Bai, Teng Zhang, Wei Chen, Shihe Yang
    Journal: Journal of Materials Chemistry A
    Year: 2019

Faustino WAHAIA | Quantum Physics | Best Researcher Award

Dr. Faustino WAHAIA | Quantum Physics | Best Researcher Award

Millennium Institte for Research in Optics (MIRO), Institute of Physics , ANID and PUC | Chile

Dr. Faustino Wahaia is a distinguished researcher and academic professional in the fields of lasers, quantum optics, and terahertz (THz) photonics. He is currently affiliated with the Institute of Physics at Pontificia Universidad Católica de Chile as part of the Millennium Institute for Research in Optics (MIRO). His research has had a significant impact in the realms of biomedical applications, nanomaterials characterization, and advanced laser technologies. Faustino’s multidisciplinary expertise integrates lasers, ultrafast systems, and photonics, contributing to both theoretical and practical advancements.

👨‍🎓Profile

Scopus

ORCID

Early Academic Pursuits 📚

Dr. Wahaia’s academic journey has been remarkable, marked by a robust educational foundation across multiple international institutions. He earned his Ph.D. in Engineering Physics from the University of Porto in Portugal, with his dissertation focusing on spectroscopic and imaging techniques using the terahertz frequency band for biomedical applications. His pursuit of knowledge began with an MSc in Physics Engineering from the University of Lisbon – IST, where he specialized in the diagnostic and control of terawatt laser systems. Faustino’s academic journey expanded further through his research at University of Sofia and the Center for Physical Sciences and Technology in Vilnius, Lithuania. His early academic pursuits laid the groundwork for his cutting-edge research in THz photonics and quantum optics.

Professional Endeavors 🏢

Throughout his career, Dr. Wahaia has held prestigious positions at various research institutes across the globe. He has contributed significantly to the Institute for Nanotechnology and Nano-Sciences in Porto, Portugal, and Center for Physical Sciences and Technology in Vilnius, Lithuania. His work has focused on developing and characterizing ultrashort pulse lasers, THz spectroscopic systems, and biomedical imaging technologies. His role in the Institute for Research and Innovation in Health (i3S) reflects his commitment to applying his scientific expertise to real-world problems in biomedical science, particularly through terahertz techniques for nanomaterials and biomedical studies.

Contributions and Research Focus 🔬

Dr. Wahaia’s research spans several cutting-edge technologies, such as ultrafast lasers, THz communications, and spectroscopic techniques like Raman spectroscopy and ellipsometry. His work in terahertz photonics for biomedical applications, hazardous residue detection, and pharmaceutical quality assessment has had substantial contributions to fields such as materials science, food safety, and security. Additionally, Faustino has delved deeply into quantum optics, advancing the understanding of laser-matter interactions, plasma physics, and spectral selection devices.

Impact and Influence 🌍

Dr. Wahaia’s work has influenced several scientific and industrial domains, notably in biomedical diagnostics, photonics-based security systems, and advanced materials research. His terahertz imaging systems and laser-based technologies have been groundbreaking in medical imaging and nanomaterials characterization. Faustino’s contributions to nanotechnology and THz photonics have significantly shaped the research landscape in these areas. Through his involvement with international organizations and his role in the Millennium Institute for Research in Optics (MIRO), his influence extends globally, positioning him as a key leader in optical and quantum sciences.

Academic Cites 📊

Dr. Wahaia’s research is widely recognized, with numerous citations in highly regarded journals, particularly in optics, quantum photonics, and terahertz science. His peer-reviewed publications in journals such as Frontiers in Physics, Sensors, and MDPI highlight the impact of his contributions to lasers and photonics technologies. Additionally, Faustino has been instrumental in editing influential books such as “Ellipsometry: Principles and Techniques for Materials Characterization” and “Quantum Electronics”, which have further solidified his standing in the scientific community.

Research Skills 💡

Dr. Wahaia possesses a broad range of highly specialized research skills, including:

  • Laser System Design: Expertise in developing terawatt lasers and related technologies.
  • Terahertz Spectroscopy: In-depth experience in terahertz wave generation, detection, and characterization.
  • Biomedical Imaging: Significant contributions to Optical Computed Tomography (OCT) and Raman spectroscopy for medical applications.
  • Materials Characterization: Pioneering work in THz photonics for the study of nanomaterials and pharmaceutical quality control.

His technical expertise spans ultrafast lasers, laser-plasma interactions, pulse amplification techniques, and fiber-coupled terahertz systems.

Teaching Experience 🎓

Dr. Wahaia has made substantial contributions to education through his roles as a doctoral adviser and master’s student mentor. He has supervised cutting-edge research in areas like atomic force microscopy and Raman spectroscopy for biomedical applications. He has taught engineering physics at the University of Maputo and radiological physics at the Higher Institute of Health Sciences of Maputo, contributing significantly to the education and development of future scientists in quantum optics and laser technologies.

Awards and Honors 🏅

Throughout his career, Faustino has been recognized with several prestigious awards and fellowships:

  • Ph.D. Fellowship in Physics Engineering focusing on lasers and quantum optics.
  • MSc Fellowship in diagnostics and wavefront control of terawatt lasers.
  • PostDoc Grant in Ultrafast Lasers and THz Photonics, contributing to biomedical and nanomaterial studies.

These honors reflect his academic excellence and his dedication to advancing the fields of optics, photonics, and terahertz science.

Legacy and Future Contributions 🔮

Dr. Faustino Wahaia’s legacy in laser and THz photonics research is set to continue shaping the future of biomedical imaging, nanomaterials research, and photonics-based technologies. As a mentor, his guidance is ensuring that the next generation of scientists will carry forward his contributions. His future work is poised to further advance applications of terahertz waves in security, agriculture, and pharmaceuticals, and to develop new solutions that address global challenges in healthcare and environmental safety.

Publications Top Notes

Optical properties of millimeter-size metal-organic framework single crystals using THz techniques

  • Authors: Faustino Wahaia, Irmantas KaĹĄalynas, Daniil Pashnev, Gintaras ValuĹĄis, Andrzej Urbanowicz, Mindaugas Karaliunas, Dinesh Pratap Singh, Sascha Wallentowitz, Birger Seifert
    Journal: Journal of Molecular Structure
    Year: 2025

Terahertz spectroscopy and imaging for gastric cancer diagnosis

  • Authors: Faustino Wahaia, Irmantas KaĹĄalynas, Linas Minkevičius, Catia Carvalho Silva, Andrzej Urbanowicz, Gintaras ValuĹĄis
    Journal: Journal of Spectral Imaging
    Year: 2020

Spectroscopic Terahertz Imaging at Room Temperature Employing Microbolometer Terahertz Sensors and Its Application to the Study of Carcinoma Tissues

  • Authors: Irmantas KaĹĄalynas, Rimvydas Venckevičius, Linas Minkevičius, Aleksander SeĹĄek, Faustino Wahaia, Vincas TamoĹĄiĹŤnas, Bogdan Voisiat, Dalius Seliuta, Gintaras ValuĹĄis, Andrej Ĺ vigelj, et al.
    Journal: Sensors
    Year: 2016

 

Hosam M Gomaa | Material Science | Member

Dr. Hosam M Gomaa | Material Science | Member

PHD at Faculty of Science, Al-Azhar University, Cairo, Egypt

Dr. Hosam M. Gomaa, based in Giza, Egypt, is an accomplished physicist specializing in Solid State Physics. With a background from Al-Azhar University, Cairo, he has lectured extensively in Libya and Egypt, covering diverse topics from General Physics to Optics. Currently affiliated with the Pharaohs Higher Institute, his research spans Materials, Optics, and Physics, focusing on areas like Oxide Glasses and Nanomaterials. Dr. Gomaa is known for his expertise in Thermal Analysis and Spectral Techniques. He has been an integral part of prestigious scientific teams, contributing significantly to Mossbauer Effect and Nanoscience research labs.

Professional Profiles:

Educational Qualifications

B. Sc. of Physics, Physics Department, Faculty of Science, Al-Azhar University, Cairo, Egypt, 1999/2000 M. Sc. of Solid State Physics, Department of Physics, Faculty of Science, Al-Azhar University, Cairo, Egypt, 2005 Ph. D. of Solid State Physics, Department of Physics, Faculty of Science, Al-Azhar University, Cairo, Egypt, 2008

Statement of Previous Experience:

Formal Lecturer (Assistant Professor) of Physics, Department of Physics, Faculty of Arts and Sciences, Sert University, Libya, 2009-2015 Lecturer (Assistant Professor) of Engineering Physics, Department of Physics, Faculty of Engineering Technology, Sert University, Libya, 2009-2015 Formal Tutor (Assistant Professor) of Basic Sciences (Physics, Electrical Engineering, Fundamentals of Electronics, Optics), Optical Branch, High Institute of Optical Technology, Cairo, Egypt, 2016-2020

Research Focus:

Dr. Hosam M. Gomaa’s research primarily focuses on the optical and structural properties of various glass systems, with a particular emphasis on bismuth borate glasses. His work encompasses the investigation of dopants like zinc, calcium, and niobium, and their effects on linear and nonlinear optical parameters. Additionally, he explores the structural modifications induced by the inclusion of different metal oxides, such as vanadium, copper, and titanium. Dr. Gomaa’s research contributes significantly to the understanding of glass materials for optoelectronic applications and radiation shielding. His studies offer valuable insights into the development of novel glass compositions with tailored optical and functional properties.

Publications

  1. Non-zero θ13 and δCP phase with A4 flavor symmetry and deviations to tri-bi-maximal mixing via Z2 × Z2 invariant perturbations in the neutrino sector, Publication: 2024.
  2. Effect of replacing B2O3 with Dy2O3 on the structural, physical, and radiation shielding properties of sodium boroaluminate glass, Publication: 2024.
  3. Investigating La2O3-enriched glass compositions: thermal, optical, structural properties and Gamma-Ray shielding efficiency, Publication: 2024.
  4. Photoimpedance spectroscopy of ZnTe/ZnMnTe heterojunction for photodetector devices using Cole–Cole diagrams and relaxation time process, Publication: 2023.
  5. Effect of BaO doping on the structural and optical properties of some cerium-copper sodium borate glasses, Publication: 2023.
  6. Estimate of the effect of adding CoCl 2 in different amounts on the structural, optical properties, and the radiation shielding ability of arsenic borate glasses containing Na+, Ca++, and Pb++ cations, Publication: 2023.
  7. New mathematical formulas for more accurate physical descriptions of the optical and optoelectric conductivities of an optical medium, Publication: 2023.
  8. Effect of Graphene Nanopowder on the Structural and Optical Characteristics of Lead Borovanadate Glass Containing Ca2+ and Na+ Cations, Publication: 2023.
  9. Structural properties, linear, and non-linear optical parameters of ternary Se80Te(20−x)Inx chalcogenide glass systemsAnálisis estructural y parámetros ópticos lineales y no lineales de sistemas ternarios de vidrio de calcogenuro de composición Se80Te(20-x)Inx, Publication: 2023.
  10. Toward a novel and accurate relationship between electrical and optical conductivity in opto-material sciences: New strategy, Publication: 2022.

 

.

Mestapha Arejdal | Condensed Matter | Member

Dr. Mestapha Arejdal | Condensed Matter | Member

PHD at Mohammed V University, Rabat, Morocco

Mestapha Arejdal, PhD, is a physicist specializing in computational modeling and condensed matter physics. With teaching experience at the University of Marrakech and research tenure at Mohammed V University, Rabat, his work delves into Spintronics and magnetic refrigeration materials. His expertise lies in Monte Carlo simulations and Ab-initio methods, contributing to advancements in energy harvesting and green technologies. Arejdal’s publications in renowned journals and roles as a reviewer underscore his commitment to scientific rigor. Proficient in various programming languages and fluent in French and English, he blends theoretical prowess with practical applications, fostering innovation in physics and beyond.

Professional Profiles:

Academic Background

2014-2017: PhD in Physics, specializing in Computer Physics and Condensed Matter Modeling, Mohammed V University, Rabat, Morocco. 2012-2014: Master in Physics Informatics, Faculty of Sciences, Mohammed V University, Rabat, Morocco. 2011-2012: Licence in Energy Physics, University Ibn ZOHR, Agadir, Morocco. 2009-2011: Diploma of General University Studies in Physics, University Ibn ZOHR, Agadir, Morocco. 2008-2009: Bachelor of Experimental Sciences in Physics, High School Moulay Abdellah Ben Hassain, Agadir, Morocco

Academic Positions

2017-2019: Teacher at the private University of Marrakech. 2017-2019: Researcher at Laboratory of Condensed Matter and Interdisciplinary Sciences (LaMCScI), Faculty of Sciences, Mohammed V University, Rabat, Morocco

Area of Research Interests

Enjoys reading and traveling. Demonstrates strong teamwork, adaptability, flexibility, and autonomy.

Skills

Proficient in modeling and computer science tools such as Matlab, Scilab, Fortran, and Gaussian. Experienced in programming languages like C and C++. Fluent in French and English.

Research Focus:

Specializes in the theoretical study of magnetic properties and the magnetocaloric effect of materials, particularly in Spintronics (Dendrimer models) and magnetic refrigeration materials (MnAs/MnBi). Expertise in Monte Carlo simulations, Ab-initio methods (DFT), and mean-field approximation. Investigates nanomaterials and complex systems for potential applications in energy harvesting and green technologies.

Publications 

  1. Prediction of the magnetocaloric behaviors of the Kekulene structure for the magnetic refrigeration, cited by: 17, Publication date: 2020.
  2. Structural and optical properties of Zn1−x−yAlx SiyO wurtzite heterostructure thin film for photovoltaic applications, cited by: 2, Publication date: 2020.
  3. The theoretical study of the magneto-caloric effect in a nano-structure formed on a Dendrimer structure, cited by: 4, Publication date: 2020.
  4. Magneto-caloric effect in Pb2CoUO6 with the second-order phase transition, Publication date: 2021.
  5. The electronic, magnetic and optical properties of Ba2MUO6 compounds with (M = Ni, Co, Cd and Zn): DFT calculation, cited by: 2, Publication date: 2021.
  6. The magnetic cooling of YTiO3 compound for magnetic refrigeration, cited by: 3, Publication date: 2022.
  7. Magnetic cooling and critical exponents at near room temperature: The SrCoO3 perovskite,Publication date: 2022.
  8. Effect of Thickness Size on Magnetic Behavior of Layered Ising Nanocube Fe/Co/Fe: a Monte Carlo Simulation, Publication date: 2022.
  9. Effects of size for an assembly of core-shell nanoparticles with the cubic structure: Monte Carlo simulations, Publication date: 2022.
  10. Theoretical aspects of magnetic, magnetocaloric, and critical exponents: Nanomaterial model, Publication date: 2023.

 

.

Houda Jebari | Materials Science | Member

Mrs. Houda Jebari | Materials Science | Member

PHD at Mohammed V University of Rabat, Morocco

Houda Jebari is a Ph.D. student in Physics specializing in Condensed Matter and Modeling of Systems at the Laboratory of Condensed Matter and Interdisciplinary Sciences (LaMCSci) at Mohammed V University of Rabat, Morocco. Her research focuses on experimental studies and theoretical calculations using Density Functional Theory (DFT) and Monte Carlo simulation. She investigates the structural, electronic, transport, mechanical, optical, and magnetic properties of various materials and 2D-materials for applications in spintronics, photovoltaics, optoelectronics, batteries, magnetic fields, photocatalysis, and magnetocalorics, with a long-term interest in environmental applications of multiferroic materials and 2D-materials.

Professional Profiles:

Education and Diploma:

Ph.D. in Physics (Condensed Matter and Modeling of Systems) Master’s degree in Computational Physics Bachelor’s degree in Physics General University Study’s degree in Physics (DEUG) High school degree in Mathematical Sciences A option

Professional Experiences:

Research internship at the LPCMIO Laboratory, Ecole Normal SupĂŠrieure Rabat Substitute professor of practical works at the Faculty of Sciences Rabat, Morocco

Scientific Communications:

Presented at various conferences including the LaMCScI Meeting and EURO-MEDITERRANEAN CONFERENCE ON MATERIALS AND RENEWABLE ENERGIES Oral and poster communications at international conferences Multiple articles submitted for publication in scientific journals

Skills

Computer Skills: Proficient in programming languages (C/C++/C#/FORTRAN), DFT codes (Akai-KKR, WIEN2K, QUANTUM ESPRESSO, CASTEP), operating systems (Windows, Linux), and other software such as 3DS Max and Unity. Soft Skills: Strong teamwork, motivation, flexibility, and time management. Experimental Skills: Experience in synthesis methods and characterization techniques including FT-IR spectroscopy, DSC, and dielectric measurement.

Research Focus:

Houda Jebari’s research focuses on theoretical investigations of various materials, particularly exploring their electronic, optical, and thermoelectric properties. She has contributed significantly to the study of halide perovskite compounds, such as AGeI2Br, for photovoltaic applications. Additionally, her work extends to the exploration of magnetocaloric properties in compounds like Bi25FeO40 and EuCrO3. Jebari’s research also encompasses the analysis of novel materials like MoS2 for hydrogen production and CsGeI2Br for optoelectronic applications. Through her studies, she aims to advance understanding and facilitate the practical applications of these materials in renewable energy and environmental technologies.

Publications 

  1. The investigation of the electronic, optical, and thermoelectric properties of the Ge‐based halide perovskite AGeI2Br (a = K, Rb, Cs) compound for a photovoltaic …, cited by: 26, Publication date: 2022.
  2. Theoretical investigation of electronic, magnetic and magnetocaloric properties of Bi25FeO40 compound, cited by: 12, Publication date: 2021.
  3. Structural, optical, dielectric, and magnetic properties of iron-sillenite Bi25FeO, cited by: 8, Publication date: 2022.
  4. First-principles calculations to investigate structural, electronic, optical, thermoelectric, magnetic, and magnetocaloric properties of the orthochromite EuCrO3, cited by: 4, Publication date: 2023.
  5. Tensile effect on photocatalytic and optoelectronic properties of MoS2 for hydrogen production: DFT study, cited by: 1, Publication date: 2024.
  6. Structural, Infrared and Raman Spectroscopy Reinvestigation, and Theoretical Optoelectronic Properties of Hydrazinium (1+) Hexafluorosilicate (N2H5) 2SiF6, Publication date: 2023.
  7. Insights into optoelectronic behaviors of novel double halide perovskites Cs2KInX6 (X= Br, Cl, I) for energy harvesting: First principal calculation, Publication date: 2024.
  8. First principal calculation of the physical proprieties of the ternary intermetallic compound Gd2Cu2Cd for magnetic refrigeration applications, Publication date: 2024.
  9. Analysis of the structural, electronic, optical and mechanical properties of CsGeI2Br under tensile and compressive strain for optoelectronic applications: A DFT computational …, Publication date: 2024.
  10. Photovoltaic and thermoelectric properties of Ag2MnGeS4_Kesterite: First-principal investigations, Publication date: 2023.

 

.