Hua Zhang | Quantum Technologies | Best Researcher Award

Prof. Hua Zhang | Quantum Technologies | Best Researcher Award

Institute of Physical Science and Information Technology, Anhui University | China

Dr. Hua Zhang is an accomplished materials scientist and researcher with a deep specialization in perovskite solar cells, currently making significant contributions to the advancement of photovoltaic technology. With over a decade of academic training and an exceptional portfolio of high-impact publications, Dr. Zhang has emerged as a leading figure in sustainable energy research.

👨‍🎓Profile

ORCID

🎓 Early Academic Pursuits

Dr. Zhang began his academic journey with a Bachelor of Science in Chemistry from Henan Normal University (2006–2010), followed by a Master’s degree in Organic Chemistry from Huazhong Normal University (2010–2013). He then earned a Ph.D. in Optical Engineering from Huazhong University of Science and Technology (2013–2016), where he began refining his expertise in materials and optoelectronic devices. His interdisciplinary background has uniquely positioned him to tackle complex challenges in solar energy.

🧪 Professional Endeavors

Dr. Zhang has held postdoctoral and research roles in internationally collaborative environments, working with globally recognized scholars such as Alex K.-Y. Jen and Michael Grätzel. His career has been marked by a progressive trajectory of innovation, leadership, and research excellence in cutting-edge solar technologies.

🔬 Contributions and Research Focus

Dr. Zhang’s research revolves around advanced materials for perovskite solar cells, particularly focusing on inverted device architectures, interface engineering, and lead leakage prevention. He has pioneered the use of novel materials like CuCrO₂ nanocrystals, BiOBr flakes, and superhydrophobic surfaces to enhance the efficiency, stability, and safety of solar cells. His work has addressed some of the most critical bottlenecks in photovoltaic research, such as nonradiative recombination, interface degradation, and toxic material containment, offering practical solutions for real-world deployment.

🌍 Impact and Influence

With 11 peer-reviewed publications, many of which are featured in top-tier journals like Advanced Materials, ACS Energy Letters, and Journal of Materials Chemistry A, Dr. Zhang’s research has not only contributed to academic knowledge but also holds the potential for industrial application and commercialization. Several of his papers have been marked as JMCA Hot Papers, signifying their scientific importance and readership impact.

📊 Academic Citations and Recognition

Dr. Zhang’s works have been highly cited, reflecting their influence on the scientific community. He has consistently published as first author and corresponding author, showcasing his role as a key driver of innovation in his research collaborations. His articles are often referenced in subsequent high-impact studies, underlining his thought leadership in the domain.

🛠️ Research Skills

Dr. Zhang possesses advanced skills in materials synthesis, device fabrication, surface engineering, and photovoltaic performance analysis. His technical toolkit includes experience with low-temperature solution processing, interface modification, and characterization techniques essential for next-generation solar cell development.

👨‍🏫 Teaching and Mentorship Experience

While the current profile does not detail formal teaching positions, Dr. Zhang’s first-author contributions and research leadership suggest active involvement in mentoring junior researchers, guiding lab activities, and contributing to academic training in collaborative research settings.

🧭 Legacy and Future Contributions

Looking forward, Dr. Zhang is poised to become a trailblazer in renewable energy technologies, with ongoing contributions expected to push the boundaries of green energy solutions. His work addresses global challenges in energy sustainability, environmental safety, and materials efficiency, ensuring a legacy that transcends academia and impacts industry and society. His research trajectory suggests continued breakthroughs in interface science, eco-friendly solar cell development, and energy materials, making him a strong candidate for leadership roles, global recognition, and future awards in scientific innovation.

Publications Top Notes

Colloidal Self‐Assembly of CuCrO₂ Nanocrystals for Durable Inverted Perovskite Solar Cells

  • Authors: Hua Zhang, Rong Wang, Zhixiu Zhao, Jianfei Liang, Chunlin Zhu, Hongyang Liu, Huan Wang
    Journal: Small
    Year: 2025

Strengthened cathode interface using an ultrathin 2D ferroelectric semiconductor for inverted perovskite solar cells

  • Authors: Hua Zhang, Weihong Liu, Yongping Bao, Rong Wang, Jianfei Liang, Lei Wan, Huan Wang
    Journal: Journal of Materials Chemistry A
    Year: 2024

Overcoming C60-Induced Nonradiative Recombination via Interfacial Embedding of BiOBr Flakes in Inverted Perovskite Solar Cells

  • Authors: Hua Zhang
    Journal: ACS Energy Letters
    Year: 2023

Design of Superhydrophobic Surfaces for Stable Perovskite Solar Cells with Reducing Lead Leakage

  • Authors: Hua Zhang, Kang Li, Man Sun, Fanglin Wang, Huan Wang, Alex K.-Y. Jen
    Journal: Advanced Energy Materials
    Year: 2021

HxMoO₃−y nanobelts: an excellent alternative to carbon electrodes for high performance mesoscopic perovskite solar cells

  • Authors: Hua Zhang, Huan Wang, Yinglong Yang, Chen Hu, Yang Bai, Teng Zhang, Wei Chen, Shihe Yang
    Journal: Journal of Materials Chemistry A
    Year: 2019

Faustino WAHAIA | Quantum Physics | Best Researcher Award

Dr. Faustino WAHAIA | Quantum Physics | Best Researcher Award

Millennium Institte for Research in Optics (MIRO), Institute of Physics , ANID and PUC | Chile

Dr. Faustino Wahaia is a distinguished researcher and academic professional in the fields of lasers, quantum optics, and terahertz (THz) photonics. He is currently affiliated with the Institute of Physics at Pontificia Universidad Católica de Chile as part of the Millennium Institute for Research in Optics (MIRO). His research has had a significant impact in the realms of biomedical applications, nanomaterials characterization, and advanced laser technologies. Faustino’s multidisciplinary expertise integrates lasers, ultrafast systems, and photonics, contributing to both theoretical and practical advancements.

👨‍🎓Profile

Scopus

ORCID

Early Academic Pursuits 📚

Dr. Wahaia’s academic journey has been remarkable, marked by a robust educational foundation across multiple international institutions. He earned his Ph.D. in Engineering Physics from the University of Porto in Portugal, with his dissertation focusing on spectroscopic and imaging techniques using the terahertz frequency band for biomedical applications. His pursuit of knowledge began with an MSc in Physics Engineering from the University of Lisbon – IST, where he specialized in the diagnostic and control of terawatt laser systems. Faustino’s academic journey expanded further through his research at University of Sofia and the Center for Physical Sciences and Technology in Vilnius, Lithuania. His early academic pursuits laid the groundwork for his cutting-edge research in THz photonics and quantum optics.

Professional Endeavors 🏢

Throughout his career, Dr. Wahaia has held prestigious positions at various research institutes across the globe. He has contributed significantly to the Institute for Nanotechnology and Nano-Sciences in Porto, Portugal, and Center for Physical Sciences and Technology in Vilnius, Lithuania. His work has focused on developing and characterizing ultrashort pulse lasers, THz spectroscopic systems, and biomedical imaging technologies. His role in the Institute for Research and Innovation in Health (i3S) reflects his commitment to applying his scientific expertise to real-world problems in biomedical science, particularly through terahertz techniques for nanomaterials and biomedical studies.

Contributions and Research Focus 🔬

Dr. Wahaia’s research spans several cutting-edge technologies, such as ultrafast lasers, THz communications, and spectroscopic techniques like Raman spectroscopy and ellipsometry. His work in terahertz photonics for biomedical applications, hazardous residue detection, and pharmaceutical quality assessment has had substantial contributions to fields such as materials science, food safety, and security. Additionally, Faustino has delved deeply into quantum optics, advancing the understanding of laser-matter interactions, plasma physics, and spectral selection devices.

Impact and Influence 🌍

Dr. Wahaia’s work has influenced several scientific and industrial domains, notably in biomedical diagnostics, photonics-based security systems, and advanced materials research. His terahertz imaging systems and laser-based technologies have been groundbreaking in medical imaging and nanomaterials characterization. Faustino’s contributions to nanotechnology and THz photonics have significantly shaped the research landscape in these areas. Through his involvement with international organizations and his role in the Millennium Institute for Research in Optics (MIRO), his influence extends globally, positioning him as a key leader in optical and quantum sciences.

Academic Cites 📊

Dr. Wahaia’s research is widely recognized, with numerous citations in highly regarded journals, particularly in optics, quantum photonics, and terahertz science. His peer-reviewed publications in journals such as Frontiers in Physics, Sensors, and MDPI highlight the impact of his contributions to lasers and photonics technologies. Additionally, Faustino has been instrumental in editing influential books such as “Ellipsometry: Principles and Techniques for Materials Characterization” and “Quantum Electronics”, which have further solidified his standing in the scientific community.

Research Skills 💡

Dr. Wahaia possesses a broad range of highly specialized research skills, including:

  • Laser System Design: Expertise in developing terawatt lasers and related technologies.
  • Terahertz Spectroscopy: In-depth experience in terahertz wave generation, detection, and characterization.
  • Biomedical Imaging: Significant contributions to Optical Computed Tomography (OCT) and Raman spectroscopy for medical applications.
  • Materials Characterization: Pioneering work in THz photonics for the study of nanomaterials and pharmaceutical quality control.

His technical expertise spans ultrafast lasers, laser-plasma interactions, pulse amplification techniques, and fiber-coupled terahertz systems.

Teaching Experience 🎓

Dr. Wahaia has made substantial contributions to education through his roles as a doctoral adviser and master’s student mentor. He has supervised cutting-edge research in areas like atomic force microscopy and Raman spectroscopy for biomedical applications. He has taught engineering physics at the University of Maputo and radiological physics at the Higher Institute of Health Sciences of Maputo, contributing significantly to the education and development of future scientists in quantum optics and laser technologies.

Awards and Honors 🏅

Throughout his career, Faustino has been recognized with several prestigious awards and fellowships:

  • Ph.D. Fellowship in Physics Engineering focusing on lasers and quantum optics.
  • MSc Fellowship in diagnostics and wavefront control of terawatt lasers.
  • PostDoc Grant in Ultrafast Lasers and THz Photonics, contributing to biomedical and nanomaterial studies.

These honors reflect his academic excellence and his dedication to advancing the fields of optics, photonics, and terahertz science.

Legacy and Future Contributions 🔮

Dr. Faustino Wahaia’s legacy in laser and THz photonics research is set to continue shaping the future of biomedical imaging, nanomaterials research, and photonics-based technologies. As a mentor, his guidance is ensuring that the next generation of scientists will carry forward his contributions. His future work is poised to further advance applications of terahertz waves in security, agriculture, and pharmaceuticals, and to develop new solutions that address global challenges in healthcare and environmental safety.

Publications Top Notes

Optical properties of millimeter-size metal-organic framework single crystals using THz techniques

  • Authors: Faustino Wahaia, Irmantas Kašalynas, Daniil Pashnev, Gintaras Valušis, Andrzej Urbanowicz, Mindaugas Karaliunas, Dinesh Pratap Singh, Sascha Wallentowitz, Birger Seifert
    Journal: Journal of Molecular Structure
    Year: 2025

Terahertz spectroscopy and imaging for gastric cancer diagnosis

  • Authors: Faustino Wahaia, Irmantas Kašalynas, Linas Minkevičius, Catia Carvalho Silva, Andrzej Urbanowicz, Gintaras Valušis
    Journal: Journal of Spectral Imaging
    Year: 2020

Spectroscopic Terahertz Imaging at Room Temperature Employing Microbolometer Terahertz Sensors and Its Application to the Study of Carcinoma Tissues

  • Authors: Irmantas Kašalynas, Rimvydas Venckevičius, Linas Minkevičius, Aleksander Sešek, Faustino Wahaia, Vincas Tamošiūnas, Bogdan Voisiat, Dalius Seliuta, Gintaras Valušis, Andrej Švigelj, et al.
    Journal: Sensors
    Year: 2016

 

Hosam M Gomaa | Material Science | Member

Dr. Hosam M Gomaa | Material Science | Member

PHD at Faculty of Science, Al-Azhar University, Cairo, Egypt

Dr. Hosam M. Gomaa, based in Giza, Egypt, is an accomplished physicist specializing in Solid State Physics. With a background from Al-Azhar University, Cairo, he has lectured extensively in Libya and Egypt, covering diverse topics from General Physics to Optics. Currently affiliated with the Pharaohs Higher Institute, his research spans Materials, Optics, and Physics, focusing on areas like Oxide Glasses and Nanomaterials. Dr. Gomaa is known for his expertise in Thermal Analysis and Spectral Techniques. He has been an integral part of prestigious scientific teams, contributing significantly to Mossbauer Effect and Nanoscience research labs.

Professional Profiles:

Educational Qualifications

B. Sc. of Physics, Physics Department, Faculty of Science, Al-Azhar University, Cairo, Egypt, 1999/2000 M. Sc. of Solid State Physics, Department of Physics, Faculty of Science, Al-Azhar University, Cairo, Egypt, 2005 Ph. D. of Solid State Physics, Department of Physics, Faculty of Science, Al-Azhar University, Cairo, Egypt, 2008

Statement of Previous Experience:

Formal Lecturer (Assistant Professor) of Physics, Department of Physics, Faculty of Arts and Sciences, Sert University, Libya, 2009-2015 Lecturer (Assistant Professor) of Engineering Physics, Department of Physics, Faculty of Engineering Technology, Sert University, Libya, 2009-2015 Formal Tutor (Assistant Professor) of Basic Sciences (Physics, Electrical Engineering, Fundamentals of Electronics, Optics), Optical Branch, High Institute of Optical Technology, Cairo, Egypt, 2016-2020

Research Focus:

Dr. Hosam M. Gomaa’s research primarily focuses on the optical and structural properties of various glass systems, with a particular emphasis on bismuth borate glasses. His work encompasses the investigation of dopants like zinc, calcium, and niobium, and their effects on linear and nonlinear optical parameters. Additionally, he explores the structural modifications induced by the inclusion of different metal oxides, such as vanadium, copper, and titanium. Dr. Gomaa’s research contributes significantly to the understanding of glass materials for optoelectronic applications and radiation shielding. His studies offer valuable insights into the development of novel glass compositions with tailored optical and functional properties.

Publications

  1. Non-zero θ13 and δCP phase with A4 flavor symmetry and deviations to tri-bi-maximal mixing via Z2 × Z2 invariant perturbations in the neutrino sector, Publication: 2024.
  2. Effect of replacing B2O3 with Dy2O3 on the structural, physical, and radiation shielding properties of sodium boroaluminate glass, Publication: 2024.
  3. Investigating La2O3-enriched glass compositions: thermal, optical, structural properties and Gamma-Ray shielding efficiency, Publication: 2024.
  4. Photoimpedance spectroscopy of ZnTe/ZnMnTe heterojunction for photodetector devices using Cole–Cole diagrams and relaxation time processPublication: 2023.
  5. Effect of BaO doping on the structural and optical properties of some cerium-copper sodium borate glasses, Publication: 2023.
  6. Estimate of the effect of adding CoCl 2 in different amounts on the structural, optical properties, and the radiation shielding ability of arsenic borate glasses containing Na+, Ca++, and Pb++ cations, Publication: 2023.
  7. New mathematical formulas for more accurate physical descriptions of the optical and optoelectric conductivities of an optical medium, Publication: 2023.
  8. Effect of Graphene Nanopowder on the Structural and Optical Characteristics of Lead Borovanadate Glass Containing Ca2+ and Na+ Cations, Publication: 2023.
  9. Structural properties, linear, and non-linear optical parameters of ternary Se80Te(20−x)Inx chalcogenide glass systemsAnálisis estructural y parámetros ópticos lineales y no lineales de sistemas ternarios de vidrio de calcogenuro de composición Se80Te(20-x)Inx, Publication: 2023.
  10. Toward a novel and accurate relationship between electrical and optical conductivity in opto-material sciences: New strategyPublication: 2022.

 

.

Mestapha Arejdal | Condensed Matter | Member

Dr. Mestapha Arejdal | Condensed Matter | Member

PHD at Mohammed V University, Rabat, Morocco

Mestapha Arejdal, PhD, is a physicist specializing in computational modeling and condensed matter physics. With teaching experience at the University of Marrakech and research tenure at Mohammed V University, Rabat, his work delves into Spintronics and magnetic refrigeration materials. His expertise lies in Monte Carlo simulations and Ab-initio methods, contributing to advancements in energy harvesting and green technologies. Arejdal’s publications in renowned journals and roles as a reviewer underscore his commitment to scientific rigor. Proficient in various programming languages and fluent in French and English, he blends theoretical prowess with practical applications, fostering innovation in physics and beyond.

Professional Profiles:

Academic Background

2014-2017: PhD in Physics, specializing in Computer Physics and Condensed Matter Modeling, Mohammed V University, Rabat, Morocco. 2012-2014: Master in Physics Informatics, Faculty of Sciences, Mohammed V University, Rabat, Morocco. 2011-2012: Licence in Energy Physics, University Ibn ZOHR, Agadir, Morocco. 2009-2011: Diploma of General University Studies in Physics, University Ibn ZOHR, Agadir, Morocco. 2008-2009: Bachelor of Experimental Sciences in Physics, High School Moulay Abdellah Ben Hassain, Agadir, Morocco

Academic Positions

2017-2019: Teacher at the private University of Marrakech. 2017-2019: Researcher at Laboratory of Condensed Matter and Interdisciplinary Sciences (LaMCScI), Faculty of Sciences, Mohammed V University, Rabat, Morocco

Area of Research Interests

Enjoys reading and traveling. Demonstrates strong teamwork, adaptability, flexibility, and autonomy.

Skills

Proficient in modeling and computer science tools such as Matlab, Scilab, Fortran, and Gaussian. Experienced in programming languages like C and C++. Fluent in French and English.

Research Focus:

Specializes in the theoretical study of magnetic properties and the magnetocaloric effect of materials, particularly in Spintronics (Dendrimer models) and magnetic refrigeration materials (MnAs/MnBi). Expertise in Monte Carlo simulations, Ab-initio methods (DFT), and mean-field approximation. Investigates nanomaterials and complex systems for potential applications in energy harvesting and green technologies.

Publications 

  1. Prediction of the magnetocaloric behaviors of the Kekulene structure for the magnetic refrigeration, cited by: 17, Publication date: 2020.
  2. Structural and optical properties of Zn1−x−yAlx SiyO wurtzite heterostructure thin film for photovoltaic applications, cited by: 2, Publication date: 2020.
  3. The theoretical study of the magneto-caloric effect in a nano-structure formed on a Dendrimer structure, cited by: 4, Publication date: 2020.
  4. Magneto-caloric effect in Pb2CoUO6 with the second-order phase transition, Publication date: 2021.
  5. The electronic, magnetic and optical properties of Ba2MUO6 compounds with (M = Ni, Co, Cd and Zn): DFT calculation, cited by: 2, Publication date: 2021.
  6. The magnetic cooling of YTiO3 compound for magnetic refrigeration, cited by: 3, Publication date: 2022.
  7. Magnetic cooling and critical exponents at near room temperature: The SrCoO3 perovskite,Publication date: 2022.
  8. Effect of Thickness Size on Magnetic Behavior of Layered Ising Nanocube Fe/Co/Fe: a Monte Carlo Simulation, Publication date: 2022.
  9. Effects of size for an assembly of core-shell nanoparticles with the cubic structure: Monte Carlo simulations, Publication date: 2022.
  10. Theoretical aspects of magnetic, magnetocaloric, and critical exponents: Nanomaterial model, Publication date: 2023.

 

.

Houda Jebari | Materials Science | Member

Mrs. Houda Jebari | Materials Science | Member

PHD at Mohammed V University of Rabat, Morocco

Houda Jebari is a Ph.D. student in Physics specializing in Condensed Matter and Modeling of Systems at the Laboratory of Condensed Matter and Interdisciplinary Sciences (LaMCSci) at Mohammed V University of Rabat, Morocco. Her research focuses on experimental studies and theoretical calculations using Density Functional Theory (DFT) and Monte Carlo simulation. She investigates the structural, electronic, transport, mechanical, optical, and magnetic properties of various materials and 2D-materials for applications in spintronics, photovoltaics, optoelectronics, batteries, magnetic fields, photocatalysis, and magnetocalorics, with a long-term interest in environmental applications of multiferroic materials and 2D-materials.

Professional Profiles:

Education and Diploma:

Ph.D. in Physics (Condensed Matter and Modeling of Systems) Master’s degree in Computational Physics Bachelor’s degree in Physics General University Study’s degree in Physics (DEUG) High school degree in Mathematical Sciences A option

Professional Experiences:

Research internship at the LPCMIO Laboratory, Ecole Normal Supérieure Rabat Substitute professor of practical works at the Faculty of Sciences Rabat, Morocco

Scientific Communications:

Presented at various conferences including the LaMCScI Meeting and EURO-MEDITERRANEAN CONFERENCE ON MATERIALS AND RENEWABLE ENERGIES Oral and poster communications at international conferences Multiple articles submitted for publication in scientific journals

Skills

Computer Skills: Proficient in programming languages (C/C++/C#/FORTRAN), DFT codes (Akai-KKR, WIEN2K, QUANTUM ESPRESSO, CASTEP), operating systems (Windows, Linux), and other software such as 3DS Max and Unity. Soft Skills: Strong teamwork, motivation, flexibility, and time management. Experimental Skills: Experience in synthesis methods and characterization techniques including FT-IR spectroscopy, DSC, and dielectric measurement.

Research Focus:

Houda Jebari’s research focuses on theoretical investigations of various materials, particularly exploring their electronic, optical, and thermoelectric properties. She has contributed significantly to the study of halide perovskite compounds, such as AGeI2Br, for photovoltaic applications. Additionally, her work extends to the exploration of magnetocaloric properties in compounds like Bi25FeO40 and EuCrO3. Jebari’s research also encompasses the analysis of novel materials like MoS2 for hydrogen production and CsGeI2Br for optoelectronic applications. Through her studies, she aims to advance understanding and facilitate the practical applications of these materials in renewable energy and environmental technologies.

Publications 

  1. The investigation of the electronic, optical, and thermoelectric properties of the Ge‐based halide perovskite AGeI2Br (a = K, Rb, Cs) compound for a photovoltaic …, cited by: 26, Publication date: 2022.
  2. Theoretical investigation of electronic, magnetic and magnetocaloric properties of Bi25FeO40 compoundcited by: 12, Publication date: 2021.
  3. Structural, optical, dielectric, and magnetic properties of iron-sillenite Bi25FeO, cited by: 8, Publication date: 2022.
  4. First-principles calculations to investigate structural, electronic, optical, thermoelectric, magnetic, and magnetocaloric properties of the orthochromite EuCrO3, cited by: 4, Publication date: 2023.
  5. Tensile effect on photocatalytic and optoelectronic properties of MoS2 for hydrogen production: DFT study, cited by: 1, Publication date: 2024.
  6. Structural, Infrared and Raman Spectroscopy Reinvestigation, and Theoretical Optoelectronic Properties of Hydrazinium (1+) Hexafluorosilicate (N2H5) 2SiF6, Publication date: 2023.
  7. Insights into optoelectronic behaviors of novel double halide perovskites Cs2KInX6 (X= Br, Cl, I) for energy harvesting: First principal calculation, Publication date: 2024.
  8. First principal calculation of the physical proprieties of the ternary intermetallic compound Gd2Cu2Cd for magnetic refrigeration applications, Publication date: 2024.
  9. Analysis of the structural, electronic, optical and mechanical properties of CsGeI2Br under tensile and compressive strain for optoelectronic applications: A DFT computational …, Publication date: 2024.
  10. Photovoltaic and thermoelectric properties of Ag2MnGeS4_Kesterite: First-principal investigations, Publication date: 2023.

 

.