Kriti Ranjan Sahu | Experimental methods | Best Researcher Award

Assist. Prof. Dr. Kriti Ranjan Sahu | Experimental methods | Best Researcher Award

Dr. Kriti Ranjan Sahu is a distinguished physicist and academic leader, currently serving as the Head of the Department of Physics and Assistant Professor at Bhatter College, Dantan (Autonomous) in Paschim Medinipur, West Bengal, India. With a strong background in material science, applied physics, and experimental techniques, Dr. Sahu has made pioneering contributions across multiple fields of science including piezoelectric materials, superconductivity, and optical technologies.

šŸ‘Øā€šŸŽ“Profile

Google scholar

Scopus

ORCID

šŸ“˜ Early Academic Pursuits

Dr. Sahu’s academic journey began in Tickrapara Ambikyamoye High School, culminating in his B.Sc in Physics from P.K. College, Contai under Vidyasagar University in 2002. He pursued his M.Sc in Physics from G.G.D. University, Bilaspur, securing a strong academic footing with 64.39% marks in 2004. He earned his PhD in 2016 from Jadavpur University, working under Prof. Dr. Udayan De (Retd. Senior Scientist at VECC, Kolkata) with a thesis focused on “Study of Some Piezoelectric and Other Oxides and of Their Polymeric Composites for Applications“.

šŸ§‘ā€šŸ« Professional Endeavors

Dr. Sahu began his teaching career as a Lecturer and HoD in Egra S.S.B. College in 2005, later transitioning to Bhatter College in 2019 as a full-time Assistant Professor and Department Head. With over 19 years of academic service, he is a veteran educator deeply committed to student-centric scientific inquiry and interdisciplinary learning.

🧪 Contributions and Research Focus

Dr. Sahu has spearheaded numerous innovative research projects and groundbreaking discoveries. He developed a novel and safe technique for preparing orthorhombic PbNbā‚‚O₆ piezoelectric material in 2014, widely used in nuclear imaging sensors. In 2020, he reported a surprising ~8°C enhancement in the superconducting transition temperature of Fe-based superconductors due to Ar⁶⁺ ion beam irradiation. In 2022, he invented a new laser-based experimental method for measuring refractive indices in solid materials, suitable for undergraduate laboratories. He also discovered a new natural cellulosic fiber from Cyperus compactus (2023), and synthesized high-quality Naā‚‚O–ZnO–TeOā‚‚ glasses for optical communication (2020–2023).

🌐 Impact and Influence

Dr. Sahu’s work has gained national and international recognition. His cutting-edge research has been published in top-tier journals like Physica C, Carbohydrate Polymer Technologies, Glass Physics and Chemistry, and Journal of Physics and Chemistry of Solids. His findings in superconductivity and piezoelectric materials have laid foundational work for future advancements in sensor technology, nuclear applications, and sustainable electronics.

šŸ“š Academic Cites and Publications

Dr. Sahu has made extensive contributions to peer-reviewed literature with numerous publications across Q1 to Q4 journals. Notably, he reported a remarkable 50% increase in superconducting critical temperature (Tc) due to ion implantation, published in Physica C (2025). His work on the characterization of a new natural cellulosic fiber appeared in Carbohydrate Polymer Technologies (2023). He also introduced a laser-based refractive index measurement technique featured in The Physics Teacher (2022). Additionally, Dr. Sahu has co-authored several papers on glass materials, organic solar cells, and the effects of ion irradiation, showcasing his broad research expertise.

🧠 Research Skills

Dr. Sahu possesses a wide range of research skills encompassing material synthesis, including piezoelectrics, superconductors, EMI shielding composites, and glass materials. He is proficient in advanced characterization techniques such as XRD, UV-Vis spectroscopy, SEM, TEM, FTIR, DSC, DTA, TGA, impedance analysis, and vector network analysis (VNA). His expertise also extends to device fabrication, particularly in creating organic solar cells. Additionally, Dr. Sahu has conducted numerous irradiation experiments using gamma rays and ion beams at renowned facilities like UGC-DAE, IUAC, and SAMEER, reflecting his strong interdisciplinary research capabilities.

šŸ‘Øā€šŸ« Teaching Experience

Dr. Sahu has nearly two decades of teaching experience. He has been instrumental in integrating innovative lab experiments, interdisciplinary research modules, and undergraduate research projects into college curricula. His initiative, BASIS (Bengal Academic Society for Interactive Sciences), has helped UG/PG students showcase poster-based research across colleges.

šŸ† Awards and Honors

  • šŸ„‡ International Research Award (2020) by RULA and World Research Council for outstanding work on piezoelectric spectroscopy.

  • šŸ“œ Certificate of Publication from Thermochimica Acta for significant findings on Nbā‚‚Oā‚… phase in PbNbā‚‚O₆ formation.

  • 🧾 Life Member of Indian Association of Physics Teachers (IAPT).

šŸ“ Editorial Roles and Peer Review

  • Associate Editor: Bhatter College Journal of Multidisciplinary Studies, since 2023.

  • Editorial Member: International Journal of Materials Science and Applications (USA).

  • Reviewer: International Journal of Energy Research, Material Science Research India.

šŸ”¬ Legacy and Future Contributions

Dr. Kriti Ranjan Sahu continues to inspire scientific curiosity through poster-based symposiums, interactive webinars, and hands-on experimental training under the umbrella of BASIS. His commitment to low-cost science education, research democratization, and young investigator mentorship ensures a lasting impact on the next generation of physicists and applied researchers. Looking ahead, Dr. Sahu aims to bridge research with industry, focusing on green technologies, high-Tc superconductors, and materials for next-gen optics and electronics.

Top Noted Publications

Superconducting Single Crystals Show About 50% Increase of the Superconducting Critical Temperature after Ar Ion Implantation

  • Authors: Sahu, K.R.; Wolf, T.; Mishra, A.K.; Chakraborty, K.R.; Banerjee, A.; Ganesan, V.; De, U.
    Journal: SSRN (Other)
    Year: 2025

Characterization of new natural cellulosic fibers from Cyperus compactus Retz. (Cyperaceae) Plant

  • Authors: Bhunia, A.K.; Mondal, D.; Sahu, K.R.; Mondal, A.K.
    Journal: Carbohydrate Polymer Technologies and Applications
    Year: 2023

Enhancement of Optical and Electrical Properties of Pr³⁺ Doped Naā‚‚O–ZnO–TeOā‚‚ Glass Materials

  • Authors: Mirdda, J.N.; Mukhopadhyay, S.; Sahu, K.R.; Goswami, M.N.
    Journal: Glass Physics and Chemistry
    Year: 2023

Modification of Optical Bandgap and Formation of Carbonaceous Clusters Due to 1.75 MeV N⁵⁺ Ion Irradiation in PET Polymers and Search for Chemical Reaction Mechanisms

  • Authors: Prasad, S.G.; Lal, C.; Sahu, K.R.; De, U.
    Journal: Biointerface Research in Applied Chemistry
    Year: 2023

Ultrastructural and Spectroscopic Analysis of Lignin of Stone Cells in Mimusops elengi L. (Sapotaceae) Fruit Mesocarp

  • Authors: Khatun, M.; Sahu, K.R.; Mondal, A.K.
    Journal: Biointerface Research in Applied Chemistry
    Year: 2023

 

 

Fouad Belhora | Materials for Energy | Member

Prof Dr. Fouad Belhora | Materials for Energy | Member

Professor HDR at Chouaib Doukkali University, Morocco

Fouad Belhora, a Professor HDR at the National School of Applied Sciences, Chouaib Doukkali University, Morocco, specializes in energy conversion of functional dielectrics and electrical aging in renewable energy systems. With a Ph.D. in materials behaviors and vibration control, he has contributed significantly to research, publishing 37 articles and participating in numerous national and international communications. His expertise extends to piezoelectric, pyroelectric, and thermoelectric systems, focusing on energy harvesting and vibration control. Belhora’s research projects, including PHC Toubkal and Project Mira, exemplify his commitment to advancing innovative solutions for sustainable energy utilization.

Professional Profiles:

Education

2018: Ability to conduct researches in university: Materials Science and Energy, National School of Applied Sciences, Chouaib Doukkali University, El Jadida, Morocco. 2013: Ph.D. degree in materials behaviors, vibration control and energy harvesting INSA de Lyon, at Electricity and Ferroelectricity Laboratory (LGEF), INSA Lyon, France and France Laboratory of Condensed Matter Physics (LPMC), Faculty of Sciences Ben M’Sik, Hassan II University of Casablanca, Morocco. 2010: Master’s degree in physics at Faculty of Sciences Ben M’Sik, Hassan II University of Casablanca, Morocco. 2008: Bachelor’s degree in physics at Faculty of Sciences Ben M’Sik, Hassan II University of Casablanca, Morocc

Professional Experiences

2018- Now: Professor (HDR) at ENSA-El Jadida. 2014-2018: Assistant Professor (PESA) at ENSA-El Jadida. 2014-2015: Temporarily attached to education and research (ATER) at University of Evry-val d’Essonne (Lab LAMBE (UMR 8587) – Teams MPI: Scientific context of the research: Polymeric Materials at Interfaces. 2013-2014: Temporarily attached to education and research (ATER) at Electricity and Ferroelectricity Laboratory (LGEF), INSA Lyon, France. Scientific context of the research: Embedded intelligence.

Area of Research Interests

Energy Conversion of Functional Dielectrics (piezoelectric, Magnetoelectric, Electrostrictive, Electromechanical effect applied in sensors and actuators, Thermoelectric and Pyroelectric) Electrical Aging and Insulation Diagnosis of Electrical Equipment in Renewable Energy System. Current research activities include piezoelectric systems, energy harvesting, vibration control, pyroelectric, and Thermoelectric systems.

Research Focus:

Fouad Belhora’s research primarily focuses on energy harvesting and multifunctional materials for sensor and actuator applications. He has contributed significantly to the optimization and improvement of thermal energy harvesting using pyroelectric materials, as well as the enhancement of the magnetoelectric effect for flexible current sensor applications. His work also includes the hybridization of electrostrictive polymers and electrets for mechanical energy harvesting, and the modeling of polyurethane/lead zirconate titanate composites for vibration energy harvesting. Belhora’s research underscores his commitment to developing innovative solutions for energy conversion and utilization in various fields, from renewable energy systems to advanced sensor technologies.

PublicationsĀ 

  1. Optimization and improvement of thermal energy harvesting by using pyroelectric materials, cited by: 43, Publication date: 2016.
  2. Friction and wear performance of disc brake pads and pyroelectric energy harvesting, cited by: 27, Publication date: 2021.
  3. Modeling of polyurethane/lead zirconate titanate composites for vibration energy harvesting, cited by: 26, Publication date: 2019.
  4. Optical and electronic properties of the natural alizarin dye: theoretical and experimental investigations for DSSCs application, cited by: 15, Publication date: 2022.
  5. Synthesis by sol-gel method and characterization of nano-TiO2 powders, cited by: 15, Publication date: 2022.
  6. Aging study of a lead-acid storage bank in a multi-source hybrid system, cited by: 14, Publication date: 2020.
  7. Enhancing CZTS solar cell parameters using CZTSe BSF layer and non-toxic SnS2/In2S3 buffer layer, cited by: 11, Publication date: 2022.
  8. Mechanical energy harvesting using polyurethane/lead zirconate titanate composites, cited by: 11, Publication date: 2018.
  9. Recent advances in magnesium hydride for solid-state hydrogen storage by mechanical treatment: A DFT study,Ā cited by: 10, Publication date: 2023.
  10. Efficiency enhancement by simulation method of Copper Antimony Disulfide thin film based solar cells, cited by: 8, Publication date: 2022.

 

.

Houda Jebari | Materials Science | Member

Mrs. Houda Jebari | Materials Science | Member

PHD at Mohammed V University of Rabat, Morocco

Houda Jebari is a Ph.D. student in Physics specializing in Condensed Matter and Modeling of Systems at the Laboratory of Condensed Matter and Interdisciplinary Sciences (LaMCSci) at Mohammed V University of Rabat, Morocco. Her research focuses on experimental studies and theoretical calculations using Density Functional Theory (DFT) and Monte Carlo simulation. She investigates the structural, electronic, transport, mechanical, optical, and magnetic properties of various materials and 2D-materials for applications in spintronics, photovoltaics, optoelectronics, batteries, magnetic fields, photocatalysis, and magnetocalorics, with a long-term interest in environmental applications of multiferroic materials and 2D-materials.

Professional Profiles:

Education and Diploma:

Ph.D. in Physics (Condensed Matter and Modeling of Systems) Master’s degree in Computational Physics Bachelor’s degree in Physics General University Study’s degree in Physics (DEUG) High school degree in Mathematical Sciences A option

Professional Experiences:

Research internship at the LPCMIO Laboratory, Ecole Normal SupƩrieure Rabat Substitute professor of practical works at the Faculty of Sciences Rabat, Morocco

Scientific Communications:

Presented at various conferences including the LaMCScI Meeting and EURO-MEDITERRANEAN CONFERENCE ON MATERIALS AND RENEWABLE ENERGIES Oral and poster communications at international conferences Multiple articles submitted for publication in scientific journals

Skills

Computer Skills: Proficient in programming languages (C/C++/C#/FORTRAN), DFT codes (Akai-KKR, WIEN2K, QUANTUM ESPRESSO, CASTEP), operating systems (Windows, Linux), and other software such as 3DS Max and Unity. Soft Skills: Strong teamwork, motivation, flexibility, and time management. Experimental Skills: Experience in synthesis methods and characterization techniques including FT-IR spectroscopy, DSC, and dielectric measurement.

Research Focus:

Houda Jebari’s research focuses on theoretical investigations of various materials, particularly exploring their electronic, optical, and thermoelectric properties. She has contributed significantly to the study of halide perovskite compounds, such as AGeI2Br, for photovoltaic applications. Additionally, her work extends to the exploration of magnetocaloric properties in compounds like Bi25FeO40 and EuCrO3. Jebari’s research also encompasses the analysis of novel materials like MoS2 for hydrogen production and CsGeI2Br for optoelectronic applications. Through her studies, she aims to advance understanding and facilitate the practical applications of these materials in renewable energy and environmental technologies.

PublicationsĀ 

  1. The investigation of the electronic, optical, and thermoelectric properties of the Ge‐based halide perovskite AGeI2Br (aĀ =Ā K, Rb, Cs) compound for a photovoltaic …, cited by: 26, Publication date: 2022.
  2. Theoretical investigation of electronic, magnetic and magnetocaloric properties of Bi25FeO40Ā compound,Ā cited by: 12, Publication date: 2021.
  3. Structural, optical, dielectric, and magnetic properties of iron-sillenite Bi25FeO, cited by: 8, Publication date: 2022.
  4. First-principles calculations to investigate structural, electronic, optical, thermoelectric, magnetic, and magnetocaloric properties of the orthochromite EuCrO3, cited by: 4, Publication date: 2023.
  5. Tensile effect on photocatalytic and optoelectronic properties of MoS2 for hydrogen production: DFT study, cited by: 1, Publication date: 2024.
  6. Structural, Infrared and Raman Spectroscopy Reinvestigation, and Theoretical Optoelectronic Properties of Hydrazinium (1+) Hexafluorosilicate (N2H5) 2SiF6, Publication date: 2023.
  7. Insights into optoelectronic behaviors of novel double halide perovskites Cs2KInX6 (X= Br, Cl, I) for energy harvesting: First principal calculation, Publication date: 2024.
  8. First principal calculation of the physical proprieties of the ternary intermetallic compound Gd2Cu2Cd for magnetic refrigeration applications, Publication date: 2024.
  9. Analysis of the structural, electronic, optical and mechanical properties of CsGeI2Br under tensile and compressive strain for optoelectronic applications: A DFT computational …, Publication date: 2024.
  10. Photovoltaic and thermoelectric properties of Ag2MnGeS4_Kesterite: First-principal investigations, Publication date: 2023.

 

.