Xuechao Zhai | Chiral symmetry breaking | Best Researcher Award

Prof. Xuechao Zhai | Chiral symmetry breaking | Best Researcher Award

Nanjing University of Science and Technology | China

Xuechao Zhai is a Professor and doctoral advisor at the Department of Applied Physics at Nanjing University of Science and Technology, China. His primary research focuses on condensed matter theory, semiconductor physics, and quantum device design. He is well known for his work on topological phase transitions, quantum transport in low-dimensional structures, and spin and valley control. Over the years, he has contributed significantly to quantum information encoding mechanisms, enhancing low-power quantum devices.

👨‍🎓Profile

Scopus 

ORCID

Early Academic Pursuits 🎓

Xuechao Zhai’s academic journey began at Xiangtan University, where he obtained his B.S. in Physics in 2009. He continued his studies at Nanjing University, earning his Ph.D. in Physics in 2014. His early academic years were marked by a keen interest in quantum mechanics and material science, which laid the foundation for his pioneering research in condensed matter physics.

Professional Endeavors 💼

Following his doctoral studies, Zhai took on several roles at Nanjing University of Posts & Telecommunications, where he served as Lecturer (2014–2017) and Associate Professor (2017–2021). His expertise led him to a Visiting Scholar position at the Kavli Institute at Delft University of Technology (2019–2020), where he collaborated on international research projects in the fields of semiconductor physics and quantum transport. In 2021, Zhai was appointed Professor at Nanjing University of Science & Technology, where he continues to mentor graduate students and advance his research in quantum devices.

Contributions and Research Focus 🔬

Zhai’s research focuses primarily on topological phase transitions and quantum transport in low-dimensional structures. His work in spin and valley control and the design of quantum devices has significantly influenced the understanding of spintronics and valleytronics. He is particularly known for his studies on the electrical control of spin polarization and valley-mediated effects, which have important applications in quantum computing and advanced material design.

Impact and Influence 🌍

Xuechao Zhai’s research has garnered recognition in both the academic and scientific communities. His work has been published in top journals, such as Nature Communications, Advanced Functional Materials, and Physical Review series. His contributions to the understanding of quantum transport and the development of low-power quantum devices have positioned him as a leading figure in the field of semiconductor physics. Zhai has also been awarded several prestigious National Natural Science Foundation projects and has earned accolades such as the “Youth Top Talent” program at Nanjing University of Science and Technology.

Research Skills 📚

His research is widely referenced in the scientific community, contributing significantly to advancements in quantum device design. Zhai’s proficiency in condensed matter theory, material characterization, and theoretical modeling allows him to approach complex problems from a multidisciplinary perspective. His work on spin-orbit coupling and valleytronics continues to shape current research trends.

Teaching Experience 📖

As a doctoral advisor and professor, Zhai has mentored numerous graduate students and postdoctoral researchers. He emphasizes the importance of critical thinking, research innovation, and scientific rigor. His teaching approach integrates advanced theoretical concepts with hands-on experience in quantum device fabrication, preparing students to contribute to the next generation of quantum scientists and material engineers. Zhai’s leadership in the classroom is complemented by his role in guiding the future of applied physics research.

Awards and Honors 🏆

Xuechao Zhai has been recognized for his excellence in both research and teaching. His achievements include:

  • Four National Natural Science Foundation projects, including three general projects and one youth fund.
  • A Jiangsu Provincial Natural Science Foundation project.
  • Selection for the “Youth Top Talent” program at Nanjing University of Science and Technology in 2021.
  • Recognition as an outstanding young backbone teacher in the “Qinglan Project” of Jiangsu Province in 2019.

These accolades reflect his outstanding contributions to the scientific community and his commitment to nurturing young researchers.

Legacy and Future Contributions 🔮

Xuechao Zhai’s research is shaping the future of quantum devices, spintronics, and low-dimensional materials. His work on topological materials and quantum transport is paving the way for the development of next-generation quantum computing technologies. As he continues to make strides in quantum information encoding and device design, Zhai’s legacy will likely influence future advancements in material science and quantum physics. His ongoing dedication to pushing the boundaries of theoretical physics ensures that he will remain a key figure in the global scientific community.

Publications Top Notes

Realization of robust Ohmic contact for semiconducting black arsenic by coupling with graphene

  • Authors: Xinjuan Cheng, Xuechao Zhai
    Journal: Chinese Physics B, 2025

Large Anomalous Hall Effect in a Noncoplanar Magnetic Heterostructure

  • Authors: Anke Song, Jine Zhang, Yequan Chen, Rong Zhang, Xuefeng Wang
    Journal: Advanced Functional Materials, 2025

Defect-induced helicity dependent terahertz emission in Dirac semimetal PtTe2 thin films

  • Authors: Zhongqiang Chen, Hongsong Qiu, Xinjuan Cheng, Rong Zhang, Xuefeng Wang
    Journal: Nature Communications, 2024

Rashba spin splitting based on trilayer graphene systems

  • Authors: Xinjuan Cheng, Liangyao Xiao, Xuechao Zhai
    Journal: Physical Review B, 2024

Proximity-induced diversified magnetic states and electrically controllable spin polarization in bilayer graphene: Towards layered spintronics

  • Authors: Xuechao Zhai, Yaroslav M. Blanter
    Journal: Physical Review B, 2022

 

Emmanuel Adeyefa | Theoretical Physics | Member

Assoc Prof Dr. Emmanuel Adeyefa | Theoretical Physics | Member

PHD at University of Ilorin, Nigeria

Dr. Emmanuel Oluseye Adeyefa is a distinguished mathematician and academic leader from Nigeria. With a Ph.D. in Mathematics from the University of Ilorin, he currently serves as a Reader at the Department of Mathematics, Federal University Oye-Ekiti. His administrative roles include acting as Head of Department and Postgraduate Coordinator. With a passion for teaching, he has instructed various courses and supervised numerous undergraduate and postgraduate projects. A committed scholar, he actively participates in conferences and workshops, contributing to advancements in mathematics and cryptography. Beyond academia, he engages in community service and enjoys activities such as reading, football, and music.

Professional Profiles:

Education

Ph.D. in Mathematics, University of Ilorin, 2014 M.Sc. in Mathematics, University of Ilorin, 2007 B.Sc. in Mathematics, University of Ilorin, 2003 PGD in Education, Obafemi Awolowo University, 2014

Administrative Experience

Acting Head, Department of Mathematics Postgraduate Coordinator University Examination Committee Member Level Adviser/Coordinator Departmental Seminar Coordinator Staff Secretary Various Committee Memberships and Chairmanships. Federal University Wukari, Taraba State Oduduwa University, Osun State Southern Institute of Innovative Technology (SNIIT Polytechnic), Osun State

Teaching Experience

Various courses in Mathematics including Linear Algebra, Mathematical Packages, Vector and Tensor Analysis, Real Analysis, Mathematical Methods, Analytical Dynamics, Fluid Dynamics, and Numerical Analysis.

Awards

Recipient of various awards including Departmental Best Graduating Student and Best Lecturer of the year.

Research Focus:

Dr. Emmanuel Oluseye Adeyefa’s research focus primarily revolves around the development and application of advanced numerical methods for solving various classes of ordinary and partial differential equations. His work spans topics such as direct integration methods, orthogonal basis function formulations, hybrid block methods, and collocation approaches. Additionally, he explores the use of polynomial and orthogonal basis functions, particularly Chebyshev polynomials, in continuous formulations of numerical solvers. Adeyefa’s contributions bridge mathematical theory with practical applications, showcasing his expertise in computational mathematics and algorithm development, with potential applications in cryptography and queueing systems.

Publications

  1. Error estimation of the integral tau method for fourth order overdetermined ODES, Publication: 2023.
  2. Integral tau Method for Certain Over-determined Fourth-Order Ordinary Differential Equations., Publication: 2023.
  3. A Generalized Series Solution of 𝒏𝒕𝒉 Order Ordinary Differential Equations, Publication: 2023.
  4. Improved 2-Point Hybrid Block Model for Direct Integration of Third and Fourth-Order Initial Value Problems, Publication: 2023.
  5. Algebraic characterization of Ifa main divination codes, Publication: 2023.
  6. Ninth-order Multistep Collocation Formulas for Solving Models of PDEs Arising in Fluid Dynamics: Design and Implementation Strategies, Publication: 2023.
  7. Hybrid block methods with constructed orthogonal basis for solution of third-order ordinary differential equations, Publication: 2023.
  8. A continuous five-step implicit block unification method for numerical solution of second-order elliptic partial differential equations, Publication: 2023.
  9. Implicit hybrid block methods for solving second, third and fourth orders ordinary differential equations directly, Publication: 2022.
  10. New developed numerical formula for solution of first and higher order ordinary differential equations, Publication: 2022.
.

Mestapha Arejdal | Condensed Matter | Member

Dr. Mestapha Arejdal | Condensed Matter | Member

PHD at Mohammed V University, Rabat, Morocco

Mestapha Arejdal, PhD, is a physicist specializing in computational modeling and condensed matter physics. With teaching experience at the University of Marrakech and research tenure at Mohammed V University, Rabat, his work delves into Spintronics and magnetic refrigeration materials. His expertise lies in Monte Carlo simulations and Ab-initio methods, contributing to advancements in energy harvesting and green technologies. Arejdal’s publications in renowned journals and roles as a reviewer underscore his commitment to scientific rigor. Proficient in various programming languages and fluent in French and English, he blends theoretical prowess with practical applications, fostering innovation in physics and beyond.

Professional Profiles:

Academic Background

2014-2017: PhD in Physics, specializing in Computer Physics and Condensed Matter Modeling, Mohammed V University, Rabat, Morocco. 2012-2014: Master in Physics Informatics, Faculty of Sciences, Mohammed V University, Rabat, Morocco. 2011-2012: Licence in Energy Physics, University Ibn ZOHR, Agadir, Morocco. 2009-2011: Diploma of General University Studies in Physics, University Ibn ZOHR, Agadir, Morocco. 2008-2009: Bachelor of Experimental Sciences in Physics, High School Moulay Abdellah Ben Hassain, Agadir, Morocco

Academic Positions

2017-2019: Teacher at the private University of Marrakech. 2017-2019: Researcher at Laboratory of Condensed Matter and Interdisciplinary Sciences (LaMCScI), Faculty of Sciences, Mohammed V University, Rabat, Morocco

Area of Research Interests

Enjoys reading and traveling. Demonstrates strong teamwork, adaptability, flexibility, and autonomy.

Skills

Proficient in modeling and computer science tools such as Matlab, Scilab, Fortran, and Gaussian. Experienced in programming languages like C and C++. Fluent in French and English.

Research Focus:

Specializes in the theoretical study of magnetic properties and the magnetocaloric effect of materials, particularly in Spintronics (Dendrimer models) and magnetic refrigeration materials (MnAs/MnBi). Expertise in Monte Carlo simulations, Ab-initio methods (DFT), and mean-field approximation. Investigates nanomaterials and complex systems for potential applications in energy harvesting and green technologies.

Publications 

  1. Prediction of the magnetocaloric behaviors of the Kekulene structure for the magnetic refrigeration, cited by: 17, Publication date: 2020.
  2. Structural and optical properties of Zn1−x−yAlx SiyO wurtzite heterostructure thin film for photovoltaic applications, cited by: 2, Publication date: 2020.
  3. The theoretical study of the magneto-caloric effect in a nano-structure formed on a Dendrimer structure, cited by: 4, Publication date: 2020.
  4. Magneto-caloric effect in Pb2CoUO6 with the second-order phase transition, Publication date: 2021.
  5. The electronic, magnetic and optical properties of Ba2MUO6 compounds with (M = Ni, Co, Cd and Zn): DFT calculation, cited by: 2, Publication date: 2021.
  6. The magnetic cooling of YTiO3 compound for magnetic refrigeration, cited by: 3, Publication date: 2022.
  7. Magnetic cooling and critical exponents at near room temperature: The SrCoO3 perovskite,Publication date: 2022.
  8. Effect of Thickness Size on Magnetic Behavior of Layered Ising Nanocube Fe/Co/Fe: a Monte Carlo Simulation, Publication date: 2022.
  9. Effects of size for an assembly of core-shell nanoparticles with the cubic structure: Monte Carlo simulations, Publication date: 2022.
  10. Theoretical aspects of magnetic, magnetocaloric, and critical exponents: Nanomaterial model, Publication date: 2023.

 

.

Christian Kenfack Sadem | Condensed Matter Physics | Member

Assoc Prof Dr. Christian Kenfack Sadem | Condensed Matter Physics | Member

PHD at University of Abomey Calavi, Benin

Christian Kenfack Sadem, an Associate Professor born on July 26, 1983, in Buea, Cameroon, holds Ph.D.s in Physical Oceanography and Condensed Matter Physics. With a diverse teaching background, including roles as a lecturer and visiting lecturer across Cameroon, he currently serves as an Associate Professor at the University of Dschang. Kenfack’s expertise spans research, teaching, and supervision of junior researchers, focusing on condensed matter physics and exciton-polaron dynamics. Recognized for his teaching excellence, he inspires students to pursue research careers. Kenfack is also skilled in data management and scientific software, contributing significantly to climate modeling.

Professional Profiles:

Education

Ph.D. in Physical Oceanography and Applications, University of Abomey Calavi, Benin, May 2021 Ph.D. in Condensed Matter Physics, University of Dschang, Cameroon, November 2011 Masters in Physical Oceanography and Applications, University of Abomey Calavi, Benin, November 2010 M.Sc. in Condensed Matter Physics, University of Dschang, Cameroon, June 2008 B.Sc. in General Physics, University of Ngaoundere, Cameroon, September 2005

Employment History

Associate Professor: University of Dschang, Cameroon (2019 – Present) Lecturer and Visiting Lecturer: Various institutions in Cameroon (2012 – 2019) Visiting Lecturer: National Polytechnic Bambui, Cameroon (2008 – 2009) Visiting Lecturer: Intitut Privé Polyvalent la Reforme, Cameroon (2007 – 2008)

Teaching Activities

Taught a range of courses including Statistical Physics, Group Theory, General Physics, Electromagnetism, and more

Prizes, Awards, Fellowships

Received various scholarships and fellowships including the Mwalimu Nyerere African Union Scholarship and the DAAD fellowship. Conducted groundbreaking research in the field of condensed matter physics, particularly in the areas of exciton-polaron dynamics and optical properties of transition metal dichalcogenides

Research Focus:

Christian Kenfack Sadem has contributed significantly to various scientific publications, including “Mobility and Decoherence of Bipolaron in Transition Metal Dichalcogenides Pseudodot Quantum Qubit” published in the Iranian Journal of Science. Additionally, he has co-authored articles such as “Enhancement of the group delay in quadratic coupling optomechanical systems subjected to an external force” in Chinese Physics B and “First principle investigation of electronic and optical properties of graphene/h-BN bilayers using Tran-Blaha-modified Becke-Johnson potential” in Optical and Quantum Electronics. His research covers a wide range of topics, including exciton-polaron dynamics, optical properties of graphene, and magnetic barrier effects on transition metal dichalcogenides.

Publications 

  1. Deformation and size effects on electronic properties of toroidal quantum dot in the presence of an off-center donor atom, cited by: 5, Publication date: 2022.
  2. The intensity and direction of the electric field effects on off-center shallow-donor impurity binding energy in wedge-shaped cylindrical quantum dots, cited by: 18, Publication date: 2022.
  3. Magnetic barrier and temperature effects on optical and dynamic properties of exciton-polaron in monolayers transition metal dichalcogenidescited by: 1, Publication date: 2022.
  4. Impacts of an initial axial force and surface effects on the dynamic characteristics of a bioliquid-filled microtubule in cytosol, Publication date: 2022.
  5. A Ginzburg-Landau approach to field theories for single, isolated zero-dimensional superconductors, Publication date: 2022.
  6. Magnetic barrier and electric field effects on exciton-polaron relaxation and transport properties in transition metal dichalcogenide monolayers, Publication date: 2023.
  7. First principle investigation of electronic and optical properties of graphene/h-BN bilayers using Tran-Blaha-modified Becke-Johnson potential, Publication date: 2023.
  8. Enhancement of the group delay in quadratic coupling optomechanical systems subjected to an external force, Publication date: 2023.
  9. Mobility and Decoherence of Bipolaron in Transition Metal Dichalcogenides Pseudodot Quantum QubitPublication date: 2024.

 

.