Basaad Hamza | Theoretical Advances | Editorial Board Member

Assist. Prof. Dr. Basaad Hamza | Theoretical Advances | Editorial Board Member

Mustansiriyah university | Iraq

Dr. Basaad Hadi Hamza is an Assistant Professor in Electro-Optical Physics at Mustansiriyah University, College of Sciences. With a Ph.D. in Electro-Optical Physics (2004) from Mustansiriyah University, his academic expertise spans simulation programs for electro-optical tracking systems and optical systems. His commitment to advancing the field of electro-optical physics is evident through his teaching and research contributions.

👨‍🎓Profile

Google scholar

Scopus

ORCID

Early Academic Pursuits 🎓

Dr. Basaad’s academic journey began at Mustansiriyah University, where he earned his B.Sc. in Physics (1992), followed by a M.Sc. in Nuclear Physics (1998), and eventually his Ph.D. in Electro-Optical Physics (2004). His doctoral thesis focused on the development of a simulation program for electro-optical tracking systems, laying the foundation for his career in applied physics.

Professional Endeavors 💼

Dr. Basaad has an extensive teaching background, contributing to the development of future scientists and engineers. He taught various undergraduate courses in Physics 1, Electricity and Magnetism, Thermodynamics, and Analytical Mechanics. He has also guided graduate students, particularly in specialized topics for Ph.D. comprehensive examinations. His professional affiliations include serving as the Chairman of the Diversity Committee, overseeing curriculum preparation, and leading both undergraduate and graduate examination committees.

Contributions and Research Focus 🔬

Dr. Basaad’s research focus includes polarization effects on soliton propagation, radiance calculations, and the discrimination of targets from background in infrared (IR) imagery. He is particularly interested in the development of simulation programs for transforming IR images across various bands, a significant contribution to remote sensing and infrared imaging technologies. His work also includes improving detector performance in optical spectral ranges to enhance the accuracy of images.

Impact and Influence 🌍

Dr. Basaad’s research has had a broad impact, particularly in IR imaging, target discrimination, and optical physics. His innovative work on transforming IR images from band to band, coupled with his simulation techniques, has contributed to advancements in defense technologies, remote sensing, and optical systems. His publications, including in journals like the International Journal of Application or Innovation in Engineering & Management and Mustansiriyah Journal of Science, highlight his significant role in these fields.

Research Skills 🔍

Dr. Basaad possesses strong analytical skills, particularly in the areas of simulation programming, optical imaging, and IR technology. His proficiency in simulation software and knowledge of IR wavelength bands make him a leader in image transformation techniques. His work on target discrimination using multi-channel data and threshold methods highlights his ability to solve complex problems in infrared imagery.

Teaching Experience 📘

Dr. Basaad’s teaching experience spans over two decades, during which he has taught a range of undergraduate and graduate-level physics courses. He has taught Physics 1, Electricity and Magnetism, Thermodynamics, and Analytical Mechanics, and has supervised graduate theses. His guidance on special topics for Ph.D. students and his role in preparing students for comprehensive exams demonstrates his deep commitment to academic development.

Legacy and Future Contributions 🌱

Dr. Basaad’s legacy is marked by his contributions to electro-optical physics, especially in the development of simulation techniques for infrared imaging. Looking ahead, he plans to continue advancing research in target discrimination and optical systems, with potential applications in remote sensing, security, and environmental monitoring. His ongoing mentorship of graduate students will further ensure his influence in academic research and scientific innovation.

Publications Top Notes

Green Synthesis of Silver Nanoparticles and Their Effect on the Skin Determined Using IR Thermography

  • Authors: Alaabedin Alrabab Ali Zain, Majeed Aseel Musafa Abdul, Basaad Hadi Hamza
    Journal: Kuwait Journal of Science
    Year: 2024

Infrared Imaging of Skin Cancer Cell Treated with Copper Oxide and Silver Nanoparticles

  • Authors: M.M. Mowat, M.S. Khallaf, B.H. Hamza
    Journal: Bionatura
    Year: 2023

People Identification via Tongue Print Using Fine-Tuning Deep Learning

  • Authors: A.S. Obaid, M.Y. Kamil, B.H. Hamza
    Journal: International Journal of Reconfigurable and Embedded Systems
    Year: 2023

People Recognition via Tongue Print Using Deep and Machine Learning

  • Authors: A.S. Obaid, M.Y. Kamil, B.H. Hamza
    Journal: Journal of Artificial Intelligence and Technology
    Year: 2023

Improved Detector Performance Rendering in the Optical Spectral Ranges to Provide Accurate Image

  • Authors: Basaad Hadi Hamza
    Journal: Mustansiriyah Journal of Science
    Year: 2019

 

Shewa Getachew | High energy physics | Editorial Board Member

Mr. Shewa Getachew | High energy physics | Editorial Board Member

Lecturer at Wolkite University | Ethiopia

Shewa Getachew Mamo is a dedicated Physics Lecturer and researcher with a specialized focus on optical properties of nanocomposites, material science, refractive index, and group velocity. Passionate about advancing scientific knowledge, he is committed to both academic excellence and innovative research in the realm of condensed matter physics. His expertise extends to investigating local field enhancements, optical properties of nanostructures, and exploring nanoparticle-based materials and geometries.

👨‍🎓Profile

ORCID

Early Academic Pursuits 🎓

Shewa’s academic journey began at Wolkite University, where he earned his Bachelor’s degree in Physics (2016-2019) and later pursued a Master’s degree in Condensed Matter Physics (2022-2023). Throughout his education, he developed a strong foundation in experimental and theoretical physics, which propelled him into a career of teaching and research in the field.

Professional Endeavors 💼

Currently, Shewa serves as a Physics Teacher at Wolkite University (since December 2023). In this role, he is responsible for preparing and presenting undergraduate and sometimes postgraduate courses in various areas of physics, including mechanics, electromagnetism, thermodynamics, quantum mechanics, and material science. He plays a vital role in designing curricula, developing lesson plans, and selecting relevant textbooks to ensure effective learning outcomes. His academic influence extends to advising students on academic matters and guiding them through research projects.

Contributions and Research Focus 🔬

Shewa’s research focus is primarily on the optical properties of core-shell spherical nanocomposites and local field enhancements. His research aims to explore the interaction between optical fields and nanocomposites, as well as investigating the influence of depolarization on the local field enhancement factor in passive and active composites with pure metal spheroidal nanoinclusions. One of his notable research areas includes optical bistability in nanoparticle composites and the role of tunable dielectric cores in cylindrical core-shell nanocomposites.

Impact and Influence 🌍

Shewa’s research has led to significant contributions to the field of material science and nanotechnology, specifically in understanding the optical properties of nanostructured materials. His findings have been widely discussed in the scientific community, with numerous publications in prominent journals. He is committed to staying updated with the latest advancements in condensed matter physics and nanotechnology, consistently striving to push the boundaries of existing scientific knowledge.

Academic Cites 📚

Shewa’s work has been widely cited, with his contributions being recognized across several prestigious journals. His publications include studies such as:

  • Tsegaye, A., & Getachew, S. (2024). “Investigation Optical Properties of ZnTe@Ag Core-Shell Spherical Nanocomposites Within Varies Dielectric Host Matrices”. Advances in Materials, 13(4), 80-91.
  • Getachew, S. (2024). “Effect of Tunable Dielectric Core on Optical Bistability in Cylindrical Core-Shell Nanocomposites”. Advances in Condensed Matter Physics, 2024(1), 9911970.
  • Getachew, S. (2024). “Investigation of Refractive Index and Group Velocity Metal Coated Dielectric Spherical Nanocomposites”. Iranian Journal of Physics Research, 24(3), 75-87.

His academic citations are a testament to his research impact and scientific contributions.

Research Skills 🔍

Shewa possesses advanced knowledge in condensed matter physics, with strong analytical and problem-solving skills. He is proficient in a range of experimental and theoretical physics techniques. His technical expertise includes programs such as Matlab, Word, Excel, PowerPoint, OpenOffice, and Latex, and he is skilled in computer languages like Python, Fortran, and Gnuplot. He also has experience with Unix systems and software like xmgrace, showcasing his comprehensive research toolset.

Teaching Experience 📘

Shewa’s teaching experience is extensive, having taught various physics courses at the undergraduate and postgraduate levels. He designs engaging lesson plans and works closely with students to help them grasp key concepts in physics. By preparing and grading exams, assignments, and laboratory reports, he ensures students receive constructive feedback for their academic growth. His role as a mentor goes beyond the classroom, advising students on their academic and career paths and supervising their research projects.

Legacy and Future Contributions 🌱

Shewa is committed to leaving a lasting legacy in the fields of nanotechnology, material science, and condensed matter physics. His ongoing research will likely continue to make valuable contributions to the understanding of optical properties and nanocomposite materials. Looking ahead, Shewa is dedicated to mentoring the next generation of scientists and physicists, sharing his knowledge and advancing the boundaries of nanophysics and material science research. Through continuous publication and collaboration, his work is set to influence the scientific community for years to come.

Publications Top Notes

Effect of Tunable Dielectric Function of the Core on Optical Bistability in Small Spherical Metal-Dielectric Composite

  • Authors: Hawi Aboma, Shewa Getachew, Sisay Shewamare
    Journal: Ethiopian Journal of Applied Sciences
    Year: 2025

Investigation Optical Properties of ZnTe@Ag Core-Shell Spherical Nanocomposites Within Varies Dielectric Host Matrices

  • Authors: Tsegaye Atnaf, Shewa Getachew
    Journal: Advances in Materials
    Year: 2024

Investigating the Optical Bistability of Pure Spheroidal Nanoinclusions in Passive and Active Host Matrices

  • Authors: Shewa Getachew, Girma Berga
    Journal: Canadian Journal of Physics
    Year: 2024

Investigation of Refractive Index and Group Velocity Metal Coated Dielectric Spherical Nanocomposites Within Passive and Active Dielectric Cores

  • Authors: Shewa Getachew
    Journal: Iranian Journal of Physics Research (IJPR)
    Year: 2024

Effect of Tunable Dielectric Core on Optical Bistability in Cylindrical Core–Shell Nanocomposites

  • Authors: Shewa Getachew, Junjie Li
    Journal: Advances in Condensed Matter Physics
    Year: 2024

 

 

Sanae ZRIOUEL | Computational Particle Physics | Women Researcher Award

Prof. Dr. Sanae ZRIOUEL | Computational Particle Physics | Women Researcher Award

Cadi Ayyad university | Morocco

Professor Dr. Sanae Zriouel is an esteemed Associate Professor of Physics at the Faculty of Sciences and Technology, Cadi Ayyad University in Marrakech, Morocco. With a deep passion for Mathematical Physics and cutting-edge research in nanomaterials, Dr. Zriouel has made significant contributions in various areas of condensed matter physics. Her academic journey spans multiple prestigious institutions in Morocco, and she has established herself as a key figure in the academic and scientific communities.

👨‍🎓Profile

Google scholar

Scopus

Early Academic Pursuits 📚

Dr. Zriouel’s journey began with a Bachelor’s degree in Physical Science from Ibn Tofail University, Morocco, followed by a Master’s degree in Mathematical Physics at Mohammed V University, Morocco. Her academic prowess was evident from early on, as she earned the highest distinctions in her Master’s and later in her PhD in Mathematical Physics from the same institution. She furthered her education with an Engineer’s degree in Electro-mechanics from ENSMR, Rabat, Morocco.

Professional Endeavors 🌍

Dr. Zriouel’s career in academia includes various teaching and research roles. She is currently an Associate Professor at Cadi Ayyad University, where she has been since 2022. Prior to this, she held positions as an Assistant Professor at Sultan Moulay Slimane University, Beni Mellal, and worked as a Dr. Researcher at Mohammed V University, where she developed a profound interest in nanomaterials and theoretical physics. Her roles are not limited to academia; she has been actively involved in multiple administrative responsibilities, serving as an elected member of university councils and commissions that contribute to the growth and development of scientific research and academic programs.

Contributions and Research Focus 🔬

Dr. Zriouel’s research interests include Graphene and related materials, the physics of 2D nanostructures, topological insulators, and chalcopyrite semiconductors. She has worked extensively on quantum dots, ab-initio calculations, and Monte Carlo simulations. Her work on spintronic properties, magnetocaloric effects, and the phase transitions of new materials has been instrumental in advancing our understanding of the physical properties of materials at the nano-scale. She has authored over 10 impactful scientific papers, contributing significant knowledge to materials science and theoretical physics.

Impact and Influence 🌟

Dr. Zriouel has had a far-reaching impact on both research and education. Her work has influenced various collaborations with institutions such as the Institut Néel, CNRS, Yildiz Technical University, and Abdus Salam International Centre for Theoretical Physics. Additionally, she has received recognition as a scientific visitor to prestigious institutions across the globe, including in Turkey, Italy, and France. Her leadership roles, including coordinating projects like the Extended African Network for Advanced 2D Materials, demonstrate her commitment to scientific collaboration and her efforts to foster an international exchange of ideas.

Academic Cites 📑

Dr. Zriouel’s research papers have been widely cited in the scientific community. Her work on half-metallic ferromagnetic properties, phase transitions in graphene, and DFT-based materials simulations has paved the way for significant advancements in spintronics and quantum materials. Notable publications include her contributions to Computational Condensed Matter and Modern Physics Letters. Her research continues to be cited globally, influencing the fields of nanotechnology, magnetism, and advanced materials.

Research Skills 🧠

Dr. Zriouel possesses a remarkable set of research skills that span theoretical physics and computational simulations. She is proficient in C++, Fortran, MATLAB, and other programming languages used for numerical simulations and ab-initio calculations. Her expertise includes tools like Quantum Espresso, LAMMPS, Wien2k, and SPRKKR, which she uses to explore the properties of advanced graphene-based materials, quantum dots, and other nanomaterials.

Teaching Experience 🎓

Dr. Zriouel is a dedicated educator, teaching a wide array of courses in physics at both the undergraduate and graduate levels. She teaches courses such as Quantum Mechanics, Electromagnetism, and Thermodynamics. Over the years, she has supervised more than 30 students, including Bachelor’s, Master’s, and PhD candidates. Her mentorship extends beyond coursework, as she is involved in guiding students in their research projects and helping them navigate the world of theoretical physics and computational modeling.

Awards and Honors 🏆

Dr. Zriouel has been recognized for her academic excellence with several prestigious awards. Notable honors include being awarded Full Membership of the Organization for Women in Science for the Developing World (OWSD) in 2020, and receiving the Award of Excellence from the National Center of Scientific Research of Morocco in 2014. In addition, she was the Valedictorian of both her Engineering program and her Physics graduate program. These accolades underline her exceptional academic achievements and her dedication to the advancement of science.

Legacy and Future Contributions 🔮

Dr. Zriouel’s legacy lies not only in her groundbreaking research but also in the impact she has had on the next generation of scientists. She has inspired and mentored numerous students, guiding them toward their own successful academic and research careers. Her contributions to the field of nanomaterials and quantum physics are set to influence future developments in green energy, quantum computing, and material science.

Publications Top Notes

In-depth study of double perovskite Sr₂NiTaO₆: Structural, electronic, thermoelectric, and spintronic properties for sustainable and high-performance applications

  • Authors: JU Ahsan, MR Rather, K Sultan, S Zriouel, E Hlil
    Journal: Computational Condensed Matter
    Year: 2025

Investigating thermodynamic and magnetic behavior of graphullerene-like nanostructure using Monte Carlo techniques

  • Authors: S Zriouel, A Mhirech, B Kabouchi, L Bahmad, Z Fadil, FM Husain
    Journal: Philosophical Magazine
    Year: 2025

Magnetic properties and magnetocaloric effects of the graphullerene-like 4-(Mg₄C) nanostructure: A Monte Carlo study

  • Authors: N Saber, S Zriouel, A Mhirech, B Kabouchi, L Bahmad, Z Fadil
    Journal: Modern Physics Letters B
    Year: 2024

Phase transitions and critical dielectric phenomena of janus transition metal oxides

  • Authors: S Zriouel
    Journal: Materials Science and Engineering: B
    Year: 2021

Effect of p–d hybridization on half metallic properties of some diluted II–IV–V₂ chalcopyrites for spintronic applications

  • Authors: S Zriouel, B Taychour, B Drissi
    Journal: Physica Scripta
    Year: 2020

 

 

Muhammad Danish Sultan | High energy physics | Best Researcher Award

Mr. Muhammad Danish Sultan | High energy physics | Best Researcher Award

Visiting Lecturer at Emerson University | Pakistan

Muhammad Danish Sultan is an emerging researcher and educator specializing in the field of Black Hole Physics. He is currently a Visiting Lecturer at Emerson University in Multan, Pakistan, where he shares his knowledge and expertise with aspiring students. His academic journey has been marked by deep theoretical exploration into the nature of black holes, particularly focusing on their thermodynamics, Hawking evaporation, acceleration processes, and shadow images. Sultan’s research is known for its innovative approach, leading to numerous published works in high-impact journals.

👨‍🎓Profile

Scopus

Early Academic Pursuits 🎓

Sultan’s academic foundation was laid during his BS in Physics at Govt. College University Faisalabad, where he developed a strong understanding of core physics principles. He further enhanced his academic depth with a Master’s degree (MS) in Black Holes Physics from Riphah International University, where his specialization included complex phenomena like Hawking radiation and black hole accretion. Sultan also pursued an MA in Education to bridge his passion for science with teaching methodology, solidifying his commitment to both research and education.

Professional Endeavors 📚

Sultan’s professional trajectory reflects a profound commitment to education and research. He began his teaching career as a Physics Teacher at Ravi College in Mian Channu (2021-2022), where he imparted knowledge on fundamental physics concepts. In his current role as a Visiting Lecturer at Emerson University Multan, he is recognized for his ability to make complex topics in theoretical physics accessible and engaging for students. His focus on innovative teaching methods enhances students’ learning experiences, positioning him as a dynamic figure in the academic community.

Contributions and Research Focus 🔬

Sultan’s research contributions in black hole physics have been extensive and groundbreaking. He has co-authored numerous papers on subjects like the Hawking evaporation of black holes, thermodynamics of black holes, and greybody factors. His research on Kerr-Newman-Kasuya black holes and Charged Ads black holes has been instrumental in broadening the understanding of phase transitions, stability analysis, and the impact of modified gravity on black holes. His focus is primarily on understanding advanced theoretical phenomena in black hole physics, contributing valuable insights into how gravity theories affect accretion disks, quasinormal modes, and shadow images of black holes.

Impact and Influence 🌍

Sultan’s research publications have made a significant impact in the field of astrophysics, especially within high-energy astrophysics. With contributions to journals such as Physica Scripta, Nuclear Physics B, and High Energy Astrophysics, his work is cited by many in the theoretical physics community. Sultan’s studies on the optical aspects of black holes, along with the dynamic stability of charged dilatonic black holes, reflect his deep understanding and innovative approach to black hole dynamics. His work influences not only theoretical physics but also astronomical observations in terms of black hole imaging and radiation.

Academic Citations 📑

Sultan’s work has already garnered attention in the scientific community, with multiple papers published in high-impact journals and several others under submission. His publications on topics like Hawking Evaporation, Accretion Disk Dynamics, and Greybody Factors are frequently cited by researchers in the fields of general relativity and cosmology. His comprehensive studies on the thermodynamic geometry of black holes have become an essential reference for anyone working in the domain of astrophysical research.

Research Skills 🧑‍🔬

Sultan is well-versed in utilizing advanced computational tools for his research, including Mathematica, Maple, and WinEdt. His proficiency in these tools has enabled him to perform complex calculations, simulations, and data analysis, which are crucial for modeling phenomena such as black hole accretion and shadow images. His ability to engage with complex theories and translate them into computational results further strengthens his research.

Teaching Experience 📚

In addition to his research, Sultan’s teaching career has played a vital role in shaping his professional journey. He has taught undergraduate and postgraduate students at Emerson University and Ravi College, focusing on general physics, theoretical physics, and astrophysics. His teaching philosophy is centered on promoting active learning and fostering critical thinking in students. Sultan’s commitment to pedagogical development is evident through his participation in various workshops, such as Classroom Management and Computational Tools in Research.

Awards and Honors 🏅

Throughout his academic career, Sultan has been recognized for his outstanding contributions to both teaching and research. He has received Certificates of Appreciation for his participation in several prestigious workshops, including those on Nanotechnology Innovations, Classroom Management, and Computational Research Tools. These accolades reflect his dedication to enhancing both his research skills and his teaching effectiveness.

Legacy and Future Contributions 🔮

Muhammad Danish Sultan’s career is marked by his growing influence in the realm of black hole physics and astrophysics. With a solid foundation in both theoretical research and education, Sultan is poised to leave a lasting legacy in the scientific community. His future contributions are likely to push the boundaries of gravitational physics, and his work in emerging gravity theories could lead to new theoretical models and observational technologies in astrophysics. His dedication to research, teaching, and professional development ensures that he will continue to have a significant impact in the academic world, influencing both future researchers and students.

Publications Top Notes

Analysis of Hawking evaporation, shadows, and thermodynamic geometry of black holes within the Einstein SU(N) non-linear sigma model

  • Authors: Shahid Chaudhary, Muhammad Danish Sultan, Asifa Ashraf, Awatef Abidi, Ali M. Mubaraki
    Journal: Journal of High Energy Astrophysics
    Year: 2025

Effect of Modified Gravity in the Hawking Evaporation of Charged Ads Black Hole

  • Authors: Shahid Chaudhary, Muhammad Danish Sultan et al.
    Journal: Physica Scripta
    Year: 2023

Images and stability of black hole with cloud of strings and quintessence in EGUP framework

  • Authors: Shahid Chaudhary, Muhammad Danish Sultan et al.
    Journal: Nuclear Physics B
    Year: 2024

Optical Aspects of Born-Infeld BTZ Black Holes in Massive Gravity

  • Authors: Muhammad Danish Sultan, Shahid Chaudhary et al.
    Journal: Physica Scripta
    Year: 2024

Greybody Factor and Accretion Disk Around Regular Black Holes in Verlinde Emergent Gravity

  • Authors: Shahid Chaudhary, Muhammad Danish Sultan et al.
    Journal: High Energy Astrophysics
    Year: 2025

Faustino WAHAIA | Quantum Physics | Best Researcher Award

Dr. Faustino WAHAIA | Quantum Physics | Best Researcher Award

Millennium Institte for Research in Optics (MIRO), Institute of Physics , ANID and PUC | Chile

Dr. Faustino Wahaia is a distinguished researcher and academic professional in the fields of lasers, quantum optics, and terahertz (THz) photonics. He is currently affiliated with the Institute of Physics at Pontificia Universidad Católica de Chile as part of the Millennium Institute for Research in Optics (MIRO). His research has had a significant impact in the realms of biomedical applications, nanomaterials characterization, and advanced laser technologies. Faustino’s multidisciplinary expertise integrates lasers, ultrafast systems, and photonics, contributing to both theoretical and practical advancements.

👨‍🎓Profile

Scopus

ORCID

Early Academic Pursuits 📚

Dr. Wahaia’s academic journey has been remarkable, marked by a robust educational foundation across multiple international institutions. He earned his Ph.D. in Engineering Physics from the University of Porto in Portugal, with his dissertation focusing on spectroscopic and imaging techniques using the terahertz frequency band for biomedical applications. His pursuit of knowledge began with an MSc in Physics Engineering from the University of Lisbon – IST, where he specialized in the diagnostic and control of terawatt laser systems. Faustino’s academic journey expanded further through his research at University of Sofia and the Center for Physical Sciences and Technology in Vilnius, Lithuania. His early academic pursuits laid the groundwork for his cutting-edge research in THz photonics and quantum optics.

Professional Endeavors 🏢

Throughout his career, Dr. Wahaia has held prestigious positions at various research institutes across the globe. He has contributed significantly to the Institute for Nanotechnology and Nano-Sciences in Porto, Portugal, and Center for Physical Sciences and Technology in Vilnius, Lithuania. His work has focused on developing and characterizing ultrashort pulse lasers, THz spectroscopic systems, and biomedical imaging technologies. His role in the Institute for Research and Innovation in Health (i3S) reflects his commitment to applying his scientific expertise to real-world problems in biomedical science, particularly through terahertz techniques for nanomaterials and biomedical studies.

Contributions and Research Focus 🔬

Dr. Wahaia’s research spans several cutting-edge technologies, such as ultrafast lasers, THz communications, and spectroscopic techniques like Raman spectroscopy and ellipsometry. His work in terahertz photonics for biomedical applications, hazardous residue detection, and pharmaceutical quality assessment has had substantial contributions to fields such as materials science, food safety, and security. Additionally, Faustino has delved deeply into quantum optics, advancing the understanding of laser-matter interactions, plasma physics, and spectral selection devices.

Impact and Influence 🌍

Dr. Wahaia’s work has influenced several scientific and industrial domains, notably in biomedical diagnostics, photonics-based security systems, and advanced materials research. His terahertz imaging systems and laser-based technologies have been groundbreaking in medical imaging and nanomaterials characterization. Faustino’s contributions to nanotechnology and THz photonics have significantly shaped the research landscape in these areas. Through his involvement with international organizations and his role in the Millennium Institute for Research in Optics (MIRO), his influence extends globally, positioning him as a key leader in optical and quantum sciences.

Academic Cites 📊

Dr. Wahaia’s research is widely recognized, with numerous citations in highly regarded journals, particularly in optics, quantum photonics, and terahertz science. His peer-reviewed publications in journals such as Frontiers in Physics, Sensors, and MDPI highlight the impact of his contributions to lasers and photonics technologies. Additionally, Faustino has been instrumental in editing influential books such as “Ellipsometry: Principles and Techniques for Materials Characterization” and “Quantum Electronics”, which have further solidified his standing in the scientific community.

Research Skills 💡

Dr. Wahaia possesses a broad range of highly specialized research skills, including:

  • Laser System Design: Expertise in developing terawatt lasers and related technologies.
  • Terahertz Spectroscopy: In-depth experience in terahertz wave generation, detection, and characterization.
  • Biomedical Imaging: Significant contributions to Optical Computed Tomography (OCT) and Raman spectroscopy for medical applications.
  • Materials Characterization: Pioneering work in THz photonics for the study of nanomaterials and pharmaceutical quality control.

His technical expertise spans ultrafast lasers, laser-plasma interactions, pulse amplification techniques, and fiber-coupled terahertz systems.

Teaching Experience 🎓

Dr. Wahaia has made substantial contributions to education through his roles as a doctoral adviser and master’s student mentor. He has supervised cutting-edge research in areas like atomic force microscopy and Raman spectroscopy for biomedical applications. He has taught engineering physics at the University of Maputo and radiological physics at the Higher Institute of Health Sciences of Maputo, contributing significantly to the education and development of future scientists in quantum optics and laser technologies.

Awards and Honors 🏅

Throughout his career, Faustino has been recognized with several prestigious awards and fellowships:

  • Ph.D. Fellowship in Physics Engineering focusing on lasers and quantum optics.
  • MSc Fellowship in diagnostics and wavefront control of terawatt lasers.
  • PostDoc Grant in Ultrafast Lasers and THz Photonics, contributing to biomedical and nanomaterial studies.

These honors reflect his academic excellence and his dedication to advancing the fields of optics, photonics, and terahertz science.

Legacy and Future Contributions 🔮

Dr. Faustino Wahaia’s legacy in laser and THz photonics research is set to continue shaping the future of biomedical imaging, nanomaterials research, and photonics-based technologies. As a mentor, his guidance is ensuring that the next generation of scientists will carry forward his contributions. His future work is poised to further advance applications of terahertz waves in security, agriculture, and pharmaceuticals, and to develop new solutions that address global challenges in healthcare and environmental safety.

Publications Top Notes

Optical properties of millimeter-size metal-organic framework single crystals using THz techniques

  • Authors: Faustino Wahaia, Irmantas Kašalynas, Daniil Pashnev, Gintaras Valušis, Andrzej Urbanowicz, Mindaugas Karaliunas, Dinesh Pratap Singh, Sascha Wallentowitz, Birger Seifert
    Journal: Journal of Molecular Structure
    Year: 2025

Terahertz spectroscopy and imaging for gastric cancer diagnosis

  • Authors: Faustino Wahaia, Irmantas Kašalynas, Linas Minkevičius, Catia Carvalho Silva, Andrzej Urbanowicz, Gintaras Valušis
    Journal: Journal of Spectral Imaging
    Year: 2020

Spectroscopic Terahertz Imaging at Room Temperature Employing Microbolometer Terahertz Sensors and Its Application to the Study of Carcinoma Tissues

  • Authors: Irmantas Kašalynas, Rimvydas Venckevičius, Linas Minkevičius, Aleksander Sešek, Faustino Wahaia, Vincas Tamošiūnas, Bogdan Voisiat, Dalius Seliuta, Gintaras Valušis, Andrej Švigelj, et al.
    Journal: Sensors
    Year: 2016

 

Valeriu Savu | High energy physics | Best Researcher Award

Dr. Valeriu Savu | High energy physics | Best Researcher Award

INOE2000 | Romania

Valeriu Savu is a highly accomplished Technological Development Engineer with an extensive career spanning over 35 years. Currently working at the National Institute of Research and Development for Optoelectronics (INOE2000) in Măgurele, Romania, Savu has demonstrated significant expertise in research and development of electronic modules and optical equipment. His work primarily revolves around lasers, optical fibers, and nanotechnology, and his contributions have been instrumental in advancing applications within telecommunications and military systems.

👨‍🎓Profile

Google scholar

Scopus

ORCID

Early Academic Pursuits 🎓

Savu’s academic journey began at the Polytechnic Institute of Bucharest, where he obtained a Bachelor’s degree in Electronics and Telecommunications in 1986. Later, he pursued a Master’s degree in Nanostructures and Unconventional Engineering Processes at the Polytechnic University of Bucharest (2012-2014). This was followed by the completion of his PhD in Engineering Sciences in 2007-2014 with a thesis on radio pulse selection and processing. His doctoral work focused on cosmic ray detection, emphasizing advanced methodologies for high-precision data processing in complex environments like saline settings.

Professional Endeavors 💼

Savu’s professional career began in 1990 with the Research Design Institute of Electromechanics ICPEM, where he worked on military electronics systems. From 2000 to 2005, he served as an Engineer at Elettra Communications S.A., contributing to the telecommunications sector with an emphasis on testing and verification of military-grade equipment. Since 2005, Savu has been at INOE2000, leading the Department of Engineering Design and Technology, where he focuses on cutting-edge optical devices and laser systems. His experience spans across the creation of advanced lasers, fiber optics, and sensor technologies for both commercial and military applications.

Contributions and Research Focus 🔬

Valeriu Savu has made notable contributions to several fields, including laser technology, optical fibers, and military electronics. He is an expert in the design, testing, and characterization of laser systems, photovoltaics, and nanostructured materials. One of his major research focuses includes Cherenkov radiation detection and the application of nanotechnology for optical sensing. Savu has been involved in the development of innovative sensors, including UV sensors for organic materials and high-voltage power supplies used in medical laser systems.

Impact and Influence 🌍

Savu’s work has significantly advanced the field of optoelectronics and has been applied in medical, military, and telecommunications sectors. He has also patented several devices, including laser protection systems and cosmic radiation detectors for specialized environments like salt mines. His innovative solutions continue to influence scientific research and engineering practices globally.

Academic Cites 📚

Savu’s scholarly work has earned recognition within the academic community, with numerous scientific articles published in prominent journals. His research has appeared in the Romanian Journal of Physics, Romanian Journal of Biophysics, and other prestigious publications. He has contributed to international conferences and his research papers are frequently cited by peers. Notable academic publications include his studies on the Nd:YAG laser for microsurgical ophthalmology and breast tissue investigation using diffuse optical tomography.

Research Skills 🧑‍💻

Valeriu Savu is highly skilled in experimental research, device testing, and the design of optical systems. He has expertise in advanced signal processing, laser characterization, and system integration. Savu’s proficiency with software tools such as OrCAD, FabMaster, NI Multisim, and OriginLab has made him a highly versatile researcher, capable of modeling complex systems and optimizing experimental designs. His experience spans across lab-based investigations, field tests, and cross-disciplinary applications of advanced technologies.

Teaching Experience 🍏

While Savu’s career has been predominantly research-driven, his extensive academic background and technical expertise have made him a valuable contributor to teaching and training in the field of optoelectronics. He has actively mentored students at various stages of their careers, guiding them through engineering problems and sharing his knowledge of cutting-edge technologies. His role as a PhD advisor and involvement in academic projects has contributed to the development of future scientists and engineers in the optoelectronics field.

Awards and Honors 🏆

Throughout his career, Savu has received various certificates and awards recognizing his contributions to both military and civilian applications. His innovative work has been acknowledged by organizations and research institutions, and he has earned several certificates of innovation for his unique designs and systems. Savu’s patents are a testament to his creative and practical contributions to optical technology and laser applications.

Legacy and Future Contributions 🔮

Savu’s extensive body of work leaves a lasting legacy in the field of optoelectronics, particularly in laser applications, telecommunications, and military technology. His ongoing work in cosmic radiation detectors and laser safety will likely influence future technological advancements in various sectors. As he continues to develop new systems and devices, his future contributions are expected to further shape the landscape of optical technology and engineering research.

Patents and Innovations 💡

Valeriu Savu’s patents reflect his ingenuity and forward-thinking approach to technology. Some of his recent applications include systems for automated discharge protection in laser pumps and power supply disconnect systems. His patents focus on enhancing the safety and efficiency of electronic systems, laser devices, and telecommunications infrastructure, with an emphasis on providing innovative solutions for user protection and optimal performance in real-world applications.

Publications Top Notes

Power Dissipation Reduction System for Adjustable Power Supplies
  • Authors: V Savu, MI Rusu, D Savastru, D Manea
    Journal: Energies
    Year: 2025

Analysis of a high-power laser thermal phenomena induced onto a composite made UAV/drone in flight
  • Authors: D Savastru, V Savu, MI Rusu, M Tautan, A Stanciu
    Journal: Journal of Optoelectronics and Advanced Materials
    Year: 2024

Sampling the travel distance of a vehicle through an unconventional method for data acquisition
  • Authors: MI Rusu, V Savu, D Savastru, CH Gandescu, A Stan, DM Cotorobai
    Journal: Journal of Optoelectronics and Advanced Materials
    Year: 2023

Grating Optic Fiber Sensors Detection of Smart Polymer Composite Delamination
  • Authors: D Savastru, D Savastru, MI Rusu, M Tautan, V Savu, II Lancranjan
    Journal: Optics, Photonics and Lasers
    Year: 2023

Ellipsometric characterization of tungsten oxide thin films, before and after He plasma exposure
  • Authors: MI Rusu, Y Addab, C Martin, C Pardanaud, V Savu, II Lancranjan, …
    Journal: Optoelectronics and Advanced Materials-Rapid Communications
    Year: 2023

 

Hector Perez de-Tejada | Particle physics and cosmology | Best Faculty Award

Prof. Hector Perez de-Tejada | Particle physics and cosmology | Best Faculty Award

National University of Mexico | Mexico

Dr. Héctor Pérez-de-Tejada is an esteemed researcher and professor at the Institute of Geophysics, UNAM, Mexico. He holds a Doctorate in Space Sciences from the University of Colorado, Boulder and has been a faculty member at UNAM since 1970. As the first Ph.D. in Space Physics at UNAM, he has played a pioneering role in the development of space science research in Mexico.

👨‍🎓Profile

Scopus

Early Academic Pursuits 🎓

Dr. Pérez-de-Tejada’s academic journey began at the National University of Mexico (UNAM), where he completed his undergraduate studies at the School of Sciences. He furthered his education at the University of Colorado, where he obtained his Doctorate in Space Sciences. His early academic experiences set the foundation for his lifelong passion for planetary science and space physics, leading him to specialize in the interaction of the solar wind with planetary ionospheres.

Professional Endeavors 🌍

Since 1970, Dr. Pérez-de-Tejada has dedicated his career to research and education. He became a faculty member in Space Sciences at UNAM and also contributed to the University of Baja California in Ensenada. Throughout his career, he has been involved in cutting-edge space missions, including working as a guest investigator on NASA’s Pioneer Venus Orbiter and contributing to data analysis from the Venus Express spacecraft of the European Space Agency (ESA). His pioneering work in solar wind momentum transport and plasma dynamics has greatly advanced our understanding of planetary atmospheres.

Contributions and Research Focus 🔬

Dr. Pérez-de-Tejada has made over 100 significant publications, focusing on the interaction of solar wind with planetary ionospheres such as those of Venus, Mars, and comets. His work on the viscous transport of solar wind momentum in the Venus ionosheath and the discovery of plasma vortices in the Venus wake, over 40 years ago, have made a lasting impact in the field. He also proposed the theory of plasma channels over the magnetic poles of Venus, driven by the fluid dynamic Magnus force.

Impact and Influence 🌟

Dr. Pérez-de-Tejada’s work has had a transformative impact on the field of space science, particularly in the study of planetary ionospheres and solar wind interactions. His discoveries, such as the existence of plasma vortices and ionospheric holes on Venus, have influenced both contemporary studies and space mission design. His involvement in NASA and ESA missions reflects the international recognition of his work. He has also been a strong advocate for the development of space science infrastructure in Mexico, enhancing its visibility and global standing.

Academic Cites 📚

Dr. Pérez-de-Tejada’s publications have been widely cited in the field of space physics, with references in over 100 academic articles that build upon his theories of plasma dynamics and solar wind interaction. His work remains foundational for ongoing research on planetary atmospheres, especially with regard to Venus and Mars.

Research Skills 🧑‍🔬

Dr. Pérez-de-Tejada’s research is marked by advanced data analysis and theoretical modeling in space sciences. His extensive experience in using data from spacecraft missions such as the Pioneer Venus Orbiter and Venus Express has refined his ability to interpret complex plasma data. His research into the fluid dynamics and Magnus forces on planetary ionospheres demonstrates a deep understanding of both theoretical physics and practical spacecraft data collection.

Teaching Experience 🏫

A dedicated educator, Dr. Pérez-de-Tejada has mentored 15 students in undergraduate, Master’s, and PhD programs at UNAM and the University of Baja California. His students have gone on to make their own contributions in space science, a testament to his ability to inspire and guide the next generation of scientists and researchers. He has also taught and published two academic books, providing invaluable resources for those studying space sciences.

Awards and Honors 🏅

Dr. Pérez-de-Tejada has received numerous accolades in recognition of his work, including a celebration of his 50th anniversary of academic activities at UNAM and being distinguished at the National Workshop in Astrophysics in Mexico, which was named in his honor. His longstanding commitment to space science has been acknowledged both nationally and internationally, further solidifying his status as a leader in the field.

Legacy and Future Contributions 🌱

Dr. Pérez-de-Tejada’s legacy extends beyond his academic publications and mentorship. He was instrumental in the creation of the first ionospheric sounder in Mexico and the acquisition of a planetarium at UNAM. These contributions have helped raise the profile of space sciences in Mexico and contributed to public engagement with astronomy. His future work will likely continue to inspire young scientists while enhancing our understanding of planetary atmospheres and the broader universe.

Publications Top Notes

Wave-Particle Interactions in Astrophysical Plasmas

  • Authors: H. Pérez-De-Tejada, Héctor
    Journal: Galaxies
    Year: 2024

Measurement of plasma channels in the Venus wake

  • Authors: H. Pérez-De-Tejada, Héctor; R.N. Lundin, Rickard N.; Y. Futaana, Yoshifumi; T. Zhang, Tielong
    Journal: Icarus
    Year: 2019

Pluto’s plasma wake oriented away from the ecliptic plane

  • Authors: H. Pérez-De-Tejada, Héctor; H.J. Durand-Manterola, Héctor Javier; M. Reyes-Ruiz, Mauricio; R.N. Lundin, Rickard N.
    Journal: Icarus
    Year: 2015

A large-scale flow vortex in the Venus plasma tail and its fluid dynamic interpretation

  • Authors: R.N. Lundin, Rickard N.; S.V. Barabash, Stanislav V.; Y. Futaana, Yoshifumi; H. Pérez-De-Tejada, Héctor; J.A. Sauvaud, Jean André
    Journal: Geophysical Research Letters
    Year: 2013

Solar wind-driven plasma fluxes from the Venus ionosphere

  • Authors: H. Pérez-De-Tejada, Héctor; R.N. Lundin, Rickard N.; H.J. Durand-Manterola, Héctor Javier; J.A. Sauvaud, Jean André; M. Reyes-Ruiz, Mauricio
    Journal: Journal of Geophysical Research: Space Physics
    Year: 2013

 

 

 

Emmanuel Adeyefa | Theoretical Physics | Member

Assoc Prof Dr. Emmanuel Adeyefa | Theoretical Physics | Member

PHD at University of Ilorin, Nigeria

Dr. Emmanuel Oluseye Adeyefa is a distinguished mathematician and academic leader from Nigeria. With a Ph.D. in Mathematics from the University of Ilorin, he currently serves as a Reader at the Department of Mathematics, Federal University Oye-Ekiti. His administrative roles include acting as Head of Department and Postgraduate Coordinator. With a passion for teaching, he has instructed various courses and supervised numerous undergraduate and postgraduate projects. A committed scholar, he actively participates in conferences and workshops, contributing to advancements in mathematics and cryptography. Beyond academia, he engages in community service and enjoys activities such as reading, football, and music.

Professional Profiles:

Education

Ph.D. in Mathematics, University of Ilorin, 2014 M.Sc. in Mathematics, University of Ilorin, 2007 B.Sc. in Mathematics, University of Ilorin, 2003 PGD in Education, Obafemi Awolowo University, 2014

Administrative Experience

Acting Head, Department of Mathematics Postgraduate Coordinator University Examination Committee Member Level Adviser/Coordinator Departmental Seminar Coordinator Staff Secretary Various Committee Memberships and Chairmanships. Federal University Wukari, Taraba State Oduduwa University, Osun State Southern Institute of Innovative Technology (SNIIT Polytechnic), Osun State

Teaching Experience

Various courses in Mathematics including Linear Algebra, Mathematical Packages, Vector and Tensor Analysis, Real Analysis, Mathematical Methods, Analytical Dynamics, Fluid Dynamics, and Numerical Analysis.

Awards

Recipient of various awards including Departmental Best Graduating Student and Best Lecturer of the year.

Research Focus:

Dr. Emmanuel Oluseye Adeyefa’s research focus primarily revolves around the development and application of advanced numerical methods for solving various classes of ordinary and partial differential equations. His work spans topics such as direct integration methods, orthogonal basis function formulations, hybrid block methods, and collocation approaches. Additionally, he explores the use of polynomial and orthogonal basis functions, particularly Chebyshev polynomials, in continuous formulations of numerical solvers. Adeyefa’s contributions bridge mathematical theory with practical applications, showcasing his expertise in computational mathematics and algorithm development, with potential applications in cryptography and queueing systems.

Publications

  1. Error estimation of the integral tau method for fourth order overdetermined ODES, Publication: 2023.
  2. Integral tau Method for Certain Over-determined Fourth-Order Ordinary Differential Equations., Publication: 2023.
  3. A Generalized Series Solution of 𝒏𝒕𝒉 Order Ordinary Differential Equations, Publication: 2023.
  4. Improved 2-Point Hybrid Block Model for Direct Integration of Third and Fourth-Order Initial Value Problems, Publication: 2023.
  5. Algebraic characterization of Ifa main divination codes, Publication: 2023.
  6. Ninth-order Multistep Collocation Formulas for Solving Models of PDEs Arising in Fluid Dynamics: Design and Implementation Strategies, Publication: 2023.
  7. Hybrid block methods with constructed orthogonal basis for solution of third-order ordinary differential equations, Publication: 2023.
  8. A continuous five-step implicit block unification method for numerical solution of second-order elliptic partial differential equations, Publication: 2023.
  9. Implicit hybrid block methods for solving second, third and fourth orders ordinary differential equations directly, Publication: 2022.
  10. New developed numerical formula for solution of first and higher order ordinary differential equations, Publication: 2022.
.

Seyyed Abdollahi | High energy physics | Member

Mr. Seyyed Abdollahi | High energy physics | Member

Scholarship at Tabriz University, Iran

I was B.Sc. Student in Mechanical Engineering at Tabriz University and I was among the top 5%, I also received a full scholarship from Tabriz University for the master’s degree, and now I am a master’s student in energy conversion trend at Tabriz University. I was also a Teacher assistant in the Strength of Materials and Design of Machine Elements courses, and I have been working with Dr. Seyyed Faramarz Ranjbar and Dr. Farid Vakili Tahami for 1 year. I am also interested in researching the topics of Power Plants, Thermodynamics, Fluid mechanics, Air conditioning, Energy and Solar energy. Which led to the writing three books I am also interested in working and researching on these topics in the future: 1-Renewable Energy 2-Exergy Analysis 3-Piezoelectric Micropumps 4-Photovoltaics(PV) 5-Nanofluids 6-Energy Analysis 7-Fuel Cells 8-Analysis of Wind Turbin

Professional Profiles:

Education

Master of Mechanical Engineering Branch: Energy Conversion Institute/University: Tabriz University Tabriz , East Azerbaijan, Iran 2022 – Present Bachelor of Mechanical Engineering Institute/University: Tabriz University Tabriz , East Azerbaijan, Iran 2018 – 2022 GPA : 17.90(out of 20)

Work Experience

Internship Tabeiz Thermal Power Station Tabriz , East Azerbaijan, Iran July 2021 – August 2021 Tasks and Achievements Teacher Assistant in the Design of Machine Elements course Tabriz University Tabriz , East Azerbaijan, Iran September 2021 – Present Tasks and Achievements Teacher Assistant in the Power Plants course Tabriz University Tabriz , East Azerbaijan, Iran September 2022 – January 2023 Email: s.a_abdollahi@yahoo.com Mobile: (+98)9380596289 Website: www.linkedin.com/in/seyyed-amirrezaabdollahi-powerplants-renewableenergy Address: Tabriz , East Azerbaijan, Iran DoB: 1998-09-24 Marital Status: Single Military Service: Educational Exemption Seyyed Amirreza Abdollahi Mechanical Engineering Profile Summary Education Work Experience I went to the Tabriz Thermal Power Plant for a training course. There i observed the things that i studied theoretically in the Thermodynamics course. I visited the important parts ofthe power plant such as ControlRoom, Steam Turbines, Boilers, Cooling Towers and the Chemical Department . Results of my research led me to write a book called “Tabriz Thermal Power Plant” As a teacher’s assistant, I solved additional exercises forthe students and supervised their

Research Focus:

The research focus of SA Abdollahi spans across various fields, primarily centered around computational fluid dynamics (CFD), heat transfer, nanofluids, porous media techniques, and numerical analysis. Their work encompasses simulations of heat transfer and fluid flow in microchannel heat sinks, investigation of blood hemodynamics in aneurysms, optimization of chemical processes, and modeling the separation capabilities of membranes. Additionally, they explore topics such as magnetohydrodynamics, biomaterial phase equilibria, and the application of machine learning techniques in estimating biomass properties. Abdollahi’s research demonstrates a broad interest in advancing understanding and optimization across diverse engineering and scientific domains.

Publications

  1. Computer simulation of Cu: AlOOH/water in a microchannel heat sink using a porous media technique and solved by numerical analysis AGM and FEM, cited by: 37, Publication: 2023.
  2. Investigating heat transfer and fluid flow betwixt parallel surfaces under the influence of hybrid nanofluid suction and injection with numerical analytical technique, cited by: 29, Publication: 2023.
  3. Computational study of blood hemodynamic in ICA aneurysm with coiling embolism, cited by: 18, Publication: 2023.
  4. Numerical study of heat transfer of wavy channel supercritical CO2 PCHE with various channel geometries, cited by: 11, Publication: 2023.
  5. Influence of extruded injector nozzle on fuel mixing and mass diffusion of multi fuel jets in the supersonic cross flow: computational study, cited by: 9, Publication: 2023.
  6. Removal of ciprofloxacin and cephalexin antibiotics in water environment by magnetic graphene oxide nanocomposites; optimization using response surface methodology, cited by: 7, Publication: 2023.
  7. Optimizing the amount of concentration and temperature of substances undergoing chemical reaction using response surface methodology, cited by: 7, Publication: 2023
  8. Phase Equilibria Simulation of Biomaterial-Hydrogen Binary Systems Using a Simple Empirical Correlationcited by: 6, Publication: 2023
  9. Modeling the CO2 separation capability of poly(4-methyl-1-pentane) membrane modified with different nanoparticles by artificial neural networks,  cited by: 5, Publication: 2023
  10. Applying feature selection and machine learning techniques to estimate the biomass higher heating valuecited by: 3, Publication: 2023
.

Rabia Saleem | General Relativity | Member

Assist Prof Dr. Rabia Saleem | General Relativity | Member

PHD at University of the Punjab, Pakistan

Dr. Rabia Saleem, an esteemed HEC Approved Ph.D. Supervisor, is a prominent figure in mathematics, specializing in General Relativity. With 59 research papers in ISI impact factor journals and supervision of 17 MS students, her contributions are substantial. She has taught 50 courses at COMSATS University Islamabad, Lahore Campus. Rabia completed her Ph.D. in General Relativity from the University of the Punjab, Lahore, and has received numerous accolades, including the Indigenous Ph.D. Fellowship and a Research Productivity Award. Her administrative roles include organizing international conferences and serving on committees. Rabia’s expertise and leadership make her a vital asset to the academic community.

Professional Profiles:

Education

Ph.D. in General Relativity (2012-2015) University: University of the Punjab, Lahore Supervisor: Prof. Dr. Muhammad Sharif Thesis Title: “Some Inflationary and Cosmic Issues in General Relativity”

Awards, Scholarships, and Honors:

Indigenous Ph.D. Fellowship, Higher Education Commission, Pakistan (2012-2015) Research Productivity Award (2015-2017) Travel grant from PHEC to attend V Italian-Pakistani Workshop on Relativistic Astrophysics, MXP, Italy (2016) Selected as a Young TWAS Affiliate from Pakistan (2021)

Practical Exposure

Assistant Professor, Department of Mathematics, Govt. College University, Lahore (Jan. 2016 to Jan. 2017) Assistant Professor, Department of Mathematics, COMSATS University Islamabad, Lahore Campus (Feb. 2017 to Present)

Administrative and Social Experience

Organizer of International Conference on Relativistic Astrophysics, 2015 Member of Admission Committee in COMSATS University Islamabad, Lahore Campus (2017-Present) Organizer of 2nd International Conference on Recent Advances in Applied Mathematics, COMSATS University Islamabad, Lahore Campus (2019) Member of Lindau Alumni Network (2019) Lindau Alumni Peer Reviewer (2020) Member of International Research Conference Committee (2021)

Research Focus:

The research focus of R. Saleem appears to be primarily centered around various aspects of theoretical cosmology and gravitational physics. Their work encompasses topics such as warm inflationary universe models, exact wormhole solutions, compact stars, dark energy models, and gravitational theories like f(T, T) gravity. They explore diverse phenomena like inflationary dynamics, cosmological gases, anisotropic models, and the effects of viscous pressure on cosmological evolution. Saleem’s research also delves into interdisciplinary areas, including electrochemical properties of nanomaterials for supercapacitors. Overall, their work contributes significantly to understanding the fundamental aspects of the universe and its evolution through theoretical frameworks and observational implications.

Publications 

  1. Interior solutions of compact stars in f (T, T) gravity under Karmarkar condition, cited by: 24, Publication date: 2020.
  2. The optical appearance of charged four-dimensional Gauss–Bonnet black hole with strings cloud and non-commutative geometry surrounded by various accretions profilescited by: 18, Publication date: 2023.
  3. Confronting the warm vector inflation in Rastall theory of gravity with Planck 2018 datacited by: 17, Publication date: 2020.
  4. Physical aspects of anisotropic compact stars in gravity with off diagonal tetradcited by: 12, Publication date: 2021.
  5. Dynamical study of interacting Ricci dark energy model using Chevallier-Polarsky-Lindertype parametrizationcited by: 9, Publication date: 2020.
  6. Anisotropic spherical solutions via EGD using isotropic Durgapal–Fuloria modelcited by: 8, Publication date: 2021.
  7. Cosmological inflation in f (X) gravity theorycited by: 8, Publication date: 2019.
  8. Exact wormholes solutions without exotic matter in  gravitycited by: 34, Publication date: 2019.
  9. Electromagnetic field and dark dynamical scalars for spherical systemscited by: 11, Publication date: 2019.
  10. Synthesis, characterization and electrochemical properties of α-MnO2 nanowires as electrode material for supercapacitorscited by: 32, Publication date: 2018.

 

.