ROHIT YADAV | Computational Particle Physics | Best Researcher Award

Mr. ROHIT YADAV | Computational Particle Physics | Best Researcher Award

Scientific Officer at BHABHA ATOMIC RESEARCH CENTRE | India

Rohit Yadav is a Scientific Officer at the Radiological Physics and Advisory Division of the Bhabha Atomic Research Centre (BARC), India. With a strong foundation in Physics and advanced specialization in radiation dosimetry, he contributes to national radiation safety and simulation-based research using Monte Carlo methods. His work bridges academic rigor with practical impact in radiation protection and cosmic ray shielding.

👨‍🎓Profile

Scopus

ORCID

🎓 Early Academic Pursuits

Rohit began his academic journey with a B.Sc. (Honors) in Physics from the prestigious Hansraj College, University of Delhi, and went on to earn his M.Sc. in Physics from the Indian Institute of Technology (IIT) Roorkee. This elite academic training laid the groundwork for his scientific career in applied radiation physics and simulation technologies.

🧑‍💼 Professional Endeavors

As a Scientific Officer at BARC, Mumbai, Rohit plays a pivotal role in radiological safety, with responsibilities encompassing radiation measurement, dosimetry, and protection standards. His expertise is central to public safety, particularly in scenarios involving space radiation, nuclear facilities, and retrospective environmental dose assessments.

🔬 Contributions and Research Focus

Rohit’s research centers on Monte Carlo simulations (FLUKA, GEANT4), thermoluminescent dosimeters (TLDs), cosmic ray shielding, and dose monitoring. His peer-reviewed work includes TLD response analysis, aluminum shielding effectiveness, beta dose estimation via CWOSL, and personal dose equivalent measurements. These contributions have significantly enhanced applied dosimetric methods and advanced radiation protection techniques, making his work impactful for both theoretical modeling and practical implementation in high-radiation environments.

🌍 Impact and Influence

His work has direct implications for national safety in nuclear and space sectors. By improving simulation techniques and phantom modeling, he enhances dosimetric accuracy, which benefits occupational health, environmental radiation monitoring, and cosmic radiation protectionan essential area for aerospace and defense.

🧪 Research Skills

Rohit demonstrates expertise in Monte Carlo Simulations (FLUKA, GEANT4), dosimetry instrumentation, and radiation transport analysis. He excels in phantom modeling, shielding design, and working with advanced phosphor materials like LiCaAlF₆:Eu,Y. His technical proficiency supports high-precision radiation studies essential for developing effective radiation protection protocols in both terrestrial and space environments. These research skills make him a valuable contributor to the field of computational dosimetry and applied radiation science.

📈 Legacy and Future Contributions

Rohit Yadav is on track to become a leading figure in radiation simulation and protection research in India. His ongoing contributions will likely shape national radiation safety standards, influence dosimetry policies, and expand applications of Monte Carlo methods in medical physics, space missions, and environmental monitoring.

Publications Top Notes

Response of CaSO₄:Dy Teflon embedded thermoluminescent dosimeter badge on different ISO phantoms for photons and beta sources using FLUKA and GEANT4

  • Authors: Rohit Yadav, Madhumita Bhattacharya, A.K. Bakshi, B.K. Sapra
    Journal: Radiation Physics and Chemistry
    Year: 2025

Beta dose rate estimation of soil samples with CW-OSL technique using LiCaAlF₆:Eu,Y phosphor for retrospective dosimetry

  • Authors: S. Kadam, S.N. Menon, P. Rama, R. Yadav, S. Dawn, B. Dhabekar
    Journal: Radiation Physics and Chemistry
    Year: 2024

Simulation-based estimation of dosimetric quantities for different phantom compositions and the effectiveness of aluminum shielding against galactic cosmic rays

  • Authors: Rohit Yadav, Sandipan Dawn, A.K. Bakshi, B.K. Sapra
    Journal: Radiation Protection and Environment
    Year: 2024

Estimation of personal dose equivalent HP(0.07) using CaSO₄:Dy Teflon disc-based extremity dosemeter

  • Authors: M. Bhattacharya, K. Samuel, S. Patil, R. Yadav, A.K. Bakshi, S.K. Singh, B.K. Sapra
    Journal: Radiation Protection Dosimetry
    Year: 2022

 

 

Dieudonné NGA ONGODO | High energy physics | Best Researcher Award

Assist. Prof. Dr. Dieudonné NGA ONGODO | High energy physics | Best Researcher Award

University of Yaoundé I | Cameroon

Dr. Dieudonné NGA ONGODO is a Cameroonian nuclear physicist and Senior Lecturer at the University of Yaoundé I, Faculty of Science, Department of Physics. With over a decade of professional and academic engagement, Dr. Nga Ongodo stands out as a prominent scholar, researcher, and educator, whose work spans nuclear instrumentation, quantum mechanics, and radiation protection. His contributions are firmly rooted in both fundamental physics and applied technologies, making him a vital figure in the African and international scientific communities.

👨‍🎓Profile

Scopus 

ORCID

🎓 Early Academic Pursuits

Dr. Nga Ongodo’s academic foundation was laid with a Baccalaureate in Mathematics and Physics from Lycée d’Obala (2004–2005). He then enrolled at the University of Yaoundé I, completing his Undergraduate studies in Physics (2005–2010), followed by a Master’s Degree in Physics (2011–2013), and later earning a PhD in Nuclear Physics in 2020. His academic trajectory reflects a strong grounding in core and advanced physics disciplines, preparing him for a research-intensive career.

🧑‍🏫 Professional Endeavors

Over more than a decade, Dr. Nga Ongodo has built a distinguished academic career. Since May 2023, he serves as a Senior Lecturer at the University of Yaoundé I, having previously worked as an Assistant Lecturer (2021–2023) and Part-time Teacher (2014–2021) in the same department. Beyond academia, he also lectures at Institut Universitaire la Vision and previously at Institut Universitaire Sup Prépa, further demonstrating his commitment to educational development. Additionally, he plays a pivotal role in public contract regulation as a recognized expert for both the Regulatory Agency of Public Contracts (ARMP) and the Ministry of Public Contracts.

🧪 Contributions and Research Focus

Dr. Nga Ongodo is a dynamic and innovative researcher whose work spans several cutting-edge domains in physics. His expertise includes nuclear instrumentation, FPGA systems, digital signal and pulse processing (DSP, DPP), and radiation dosimetry. He has also contributed to the use of artificial neural networks in analyzing mass spectra, and explores quantum mechanics and SU(3) symmetry through advanced mathematical models. By integrating fractional calculus, Bohr Hamiltonian formalism, and quark models, he provides deep insight into atomic nuclei and particle interactions. His research bridges theory and application, advancing nuclear physics both locally and globally.

🌍 Impact and Influence

Dr. Nga Ongodo’s scientific influence transcends national borders. He has participated in prominent international workshops and seminars, including the African School of Fundamental Physics (Rwanda, 2016) and IAEA-AFRA training sessions across Cameroon and Ethiopia. His groundbreaking publications are featured in top-tier journals such as the European Physical Journal, Modern Physics Letters, and the International Journal of Modern Physics, attesting to the global relevance and visibility of his work.

📈 Academic Citations

With 13 peer-reviewed articles published between 2019 and 2025, Dr. Nga Ongodo’s work has received increasing academic attention. He has co-authored papers on topics including heavy pentaquark masses, Bohr Hamiltonian models, and charmonium resonances using both classical physics and AI techniques. His collaborations with other leading African physicists highlight his role as a central figure in nuclear modeling and quantum structure analysis.

🛠️ Research Skills

Dr. Nga Ongodo’s research expertise is deeply rooted in a diverse and robust technical skill set that empowers both his investigative pursuits and pedagogical approach. He possesses advanced mastery in nuclear and numerical electronics, as well as specialized experience in detector electronics and FPGA (Field Programmable Gate Array) systems, which are vital for real-time data acquisition and signal processing in nuclear experiments. His strong foundation in mathematical modeling, particularly through sophisticated frameworks such as the Nikiforov–Uvarov and Heun methods, allows him to derive analytical solutions for complex quantum systems.

👨‍🏫 Teaching Experience

A passionate and student-centered educator, Dr. Nga Ongodo has taught an extensive range of subjects including Quantum Physics, Electromagnetism, Fluid Mechanics, Thermodynamics, and Radiation Protection. He is well-versed in both theoretical instruction and practical laboratory supervision. His active engagement in pedagogical development seminars, such as the 2022 Competency-Based Teaching Workshop, showcases his dedication to educational innovation and student success.

🏅 Awards and Honors

While formal awards are not explicitly listed, Dr. Nga Ongodo’s appointments and invited participation in elite research events, including those organized by C.E.T.I.C and the IAEA, serve as implicit recognition of his expertise and leadership. His invitation to speak at the 2025 Radiological Protection Workshop in Cameroon underscores his role as a national thought leader in nuclear safety and public health.

🚀 Legacy and Future Contributions

Looking ahead, Dr. Nga Ongodo is set to play an even more significant role in African scientific development, particularly in areas of radiation protection, data-driven nuclear modeling, and sustainable electronics for physics research. His recent work involving Artificial Neural Networks, topological quantum mechanics, and quantum gravity analogues points to a future of interdisciplinary research that bridges AI, quantum systems, and high-energy physics. His legacy will not only be defined by the depth of his research, but also by his transformational impact on Cameroon’s scientific infrastructure, his mentorship of emerging scholars, and his efforts to elevate African research onto the global stage.

Publications Top Notes

Effect of spin-spin interaction and fractional order on heavy pentaquark masses under topological defect space-times

  • Authors: D. Nga Ongodo, A. A. Atangana Likéné, J. M. Ema’a Ema’a, P. Ele Abiama, G. H. Ben-Bolie
    Journal: The European Physical Journal C
    Year: 2025

Hyperbolic tangent form of sextic potential in Bohr Hamiltonian: Analytical approach via extended Nikiforov–Uvarov and Heun equations

  • Authors: D. Nga Ongodo, A. Atangana Likéné, A. Zarma, J. M. Ema’a Ema’a, P. Ele Abiama, G. H. Ben-Bolie
    Journal: International Journal of Modern Physics E
    Year: 2025

Electric quadrupole transitions of triaxial nuclei via the Bohr Hamiltonian within the screened Kratzer–Hellmann potential

  • Authors: D. Nga Ongodo, A. A. Atangana Likéné, A. Zarma, S. Haman Adama, J. M. Ema’a Ema’a, G. H. Ben-Bolie
    Journal: The European Physical Journal Plus
    Year: 2025

Non-compact extra dimensions and flavor dependence of cc̄ and bb̄ mesons masses in a hot QCD medium with lattice, LO and NLO parametrizations of the Debye mass

  • Authors: A. A. Atangana Likéné, L. B. Ungem, D. C. Mbah, D. Nga Ongodo, R. Houzibe, F. B. Djeuyi Ndafeun
    Journal: Modern Physics Letters A
    Year: 2025

Quantum chromodynamics Lagrangian density and SU(3) gauge symmetry: A fractional approach

  • Authors: A. A. Atangana Likéné, D. Nga Ongodo, P. Mah Tsila, A. Atangana, G. H. Ben-Bolie
    Journal: Modern Physics Letters A
    Year: 2024

Shewa Getachew | High energy physics | Editorial Board Member

Mr. Shewa Getachew | High energy physics | Editorial Board Member

Lecturer at Wolkite University | Ethiopia

Shewa Getachew Mamo is a dedicated Physics Lecturer and researcher with a specialized focus on optical properties of nanocomposites, material science, refractive index, and group velocity. Passionate about advancing scientific knowledge, he is committed to both academic excellence and innovative research in the realm of condensed matter physics. His expertise extends to investigating local field enhancements, optical properties of nanostructures, and exploring nanoparticle-based materials and geometries.

👨‍🎓Profile

ORCID

Early Academic Pursuits 🎓

Shewa’s academic journey began at Wolkite University, where he earned his Bachelor’s degree in Physics (2016-2019) and later pursued a Master’s degree in Condensed Matter Physics (2022-2023). Throughout his education, he developed a strong foundation in experimental and theoretical physics, which propelled him into a career of teaching and research in the field.

Professional Endeavors 💼

Currently, Shewa serves as a Physics Teacher at Wolkite University (since December 2023). In this role, he is responsible for preparing and presenting undergraduate and sometimes postgraduate courses in various areas of physics, including mechanics, electromagnetism, thermodynamics, quantum mechanics, and material science. He plays a vital role in designing curricula, developing lesson plans, and selecting relevant textbooks to ensure effective learning outcomes. His academic influence extends to advising students on academic matters and guiding them through research projects.

Contributions and Research Focus 🔬

Shewa’s research focus is primarily on the optical properties of core-shell spherical nanocomposites and local field enhancements. His research aims to explore the interaction between optical fields and nanocomposites, as well as investigating the influence of depolarization on the local field enhancement factor in passive and active composites with pure metal spheroidal nanoinclusions. One of his notable research areas includes optical bistability in nanoparticle composites and the role of tunable dielectric cores in cylindrical core-shell nanocomposites.

Impact and Influence 🌍

Shewa’s research has led to significant contributions to the field of material science and nanotechnology, specifically in understanding the optical properties of nanostructured materials. His findings have been widely discussed in the scientific community, with numerous publications in prominent journals. He is committed to staying updated with the latest advancements in condensed matter physics and nanotechnology, consistently striving to push the boundaries of existing scientific knowledge.

Academic Cites 📚

Shewa’s work has been widely cited, with his contributions being recognized across several prestigious journals. His publications include studies such as:

  • Tsegaye, A., & Getachew, S. (2024). “Investigation Optical Properties of ZnTe@Ag Core-Shell Spherical Nanocomposites Within Varies Dielectric Host Matrices”. Advances in Materials, 13(4), 80-91.
  • Getachew, S. (2024). “Effect of Tunable Dielectric Core on Optical Bistability in Cylindrical Core-Shell Nanocomposites”. Advances in Condensed Matter Physics, 2024(1), 9911970.
  • Getachew, S. (2024). “Investigation of Refractive Index and Group Velocity Metal Coated Dielectric Spherical Nanocomposites”. Iranian Journal of Physics Research, 24(3), 75-87.

His academic citations are a testament to his research impact and scientific contributions.

Research Skills 🔍

Shewa possesses advanced knowledge in condensed matter physics, with strong analytical and problem-solving skills. He is proficient in a range of experimental and theoretical physics techniques. His technical expertise includes programs such as Matlab, Word, Excel, PowerPoint, OpenOffice, and Latex, and he is skilled in computer languages like Python, Fortran, and Gnuplot. He also has experience with Unix systems and software like xmgrace, showcasing his comprehensive research toolset.

Teaching Experience 📘

Shewa’s teaching experience is extensive, having taught various physics courses at the undergraduate and postgraduate levels. He designs engaging lesson plans and works closely with students to help them grasp key concepts in physics. By preparing and grading exams, assignments, and laboratory reports, he ensures students receive constructive feedback for their academic growth. His role as a mentor goes beyond the classroom, advising students on their academic and career paths and supervising their research projects.

Legacy and Future Contributions 🌱

Shewa is committed to leaving a lasting legacy in the fields of nanotechnology, material science, and condensed matter physics. His ongoing research will likely continue to make valuable contributions to the understanding of optical properties and nanocomposite materials. Looking ahead, Shewa is dedicated to mentoring the next generation of scientists and physicists, sharing his knowledge and advancing the boundaries of nanophysics and material science research. Through continuous publication and collaboration, his work is set to influence the scientific community for years to come.

Publications Top Notes

Effect of Tunable Dielectric Function of the Core on Optical Bistability in Small Spherical Metal-Dielectric Composite

  • Authors: Hawi Aboma, Shewa Getachew, Sisay Shewamare
    Journal: Ethiopian Journal of Applied Sciences
    Year: 2025

Investigation Optical Properties of ZnTe@Ag Core-Shell Spherical Nanocomposites Within Varies Dielectric Host Matrices

  • Authors: Tsegaye Atnaf, Shewa Getachew
    Journal: Advances in Materials
    Year: 2024

Investigating the Optical Bistability of Pure Spheroidal Nanoinclusions in Passive and Active Host Matrices

  • Authors: Shewa Getachew, Girma Berga
    Journal: Canadian Journal of Physics
    Year: 2024

Investigation of Refractive Index and Group Velocity Metal Coated Dielectric Spherical Nanocomposites Within Passive and Active Dielectric Cores

  • Authors: Shewa Getachew
    Journal: Iranian Journal of Physics Research (IJPR)
    Year: 2024

Effect of Tunable Dielectric Core on Optical Bistability in Cylindrical Core–Shell Nanocomposites

  • Authors: Shewa Getachew, Junjie Li
    Journal: Advances in Condensed Matter Physics
    Year: 2024