Polosan Silviu | Quantum Computing | Best Researcher Award

Dr. Polosan Silviu | Quantum Computing | Best Researcher Award

NIMP | Romania

E. Poloșan Silviu Pavel is a Senior Researcher I at the National Institute of Materials Physics (NIMP Bucharest-Magurele), with a long-standing career in Condensed Matter Physics, particularly in the fields of optics, spectroscopy, and OLED technology. With over 25 years of experience, his work spans from research assistant to senior researcher, with a notable focus on organometallic compounds and rare-earth ion spectroscopy. His significant contributions in material science and nanotechnology have earned him global recognition.

👨‍🎓Profile

Google scholar

Scopus

Orcid

Early Academic Pursuits 🎓

Pavel’s academic journey began with a Ph.D. in Physics from the prestigious Bucharest University, where he specialized in Optics and Spectroscopy (1995-2002). His foundational education was strengthened during his undergraduate studies, where he earned a Physicist degree from the Faculty of Physics at Bucharest University (1988-1993), focusing on plasma physics, laser spectroscopy, and optics. During his early academic years, he also attended the “Iacob Muresianu” High School in Blaj, excelling in mathematics and physics.

Professional Endeavors 🧑‍🔬

Since 1993, Pavel has been a dedicated part of NIMP Bucharest-Magurele, where he has held various prestigious roles. Starting as a Research Assistant, he grew into a Senior Researcher responsible for crystal growth and scintillating detector studies. Over the years, he has been heavily involved in organometallic compound synthesis, OLED technology, and magneto-optical spectroscopy of rare-earth ions. His ability to lead and manage international collaborations has propelled his career, from coordinating 9 national and international projects to collaborating with high-level research institutes like ENEA Frascati Rome and Universität Roma Tre.

Contributions and Research Focus 🔬

Pavel’s research contributions cover a broad spectrum of materials science and condensed matter physics. He has extensively studied organometallic compounds for OLED applications, magneto-optical properties of rare-earth ions, and ferromagnetic materials. His work on amorphous and polycrystalline Bi4Ge3O12 materials has led to important insights into optical properties, structural changes, and energy absorption dynamics. Additionally, his studies on metallic nanoparticles and nanoclusters in alkali halide crystals have significantly advanced our understanding of nanomaterials.

Impact and Influence 🌍

Pavel’s research has had a notable global impact, as demonstrated by his 67 scientific papers (including 38 as the corresponding author) and 263 citations in leading journals. His contributions have shaped the fields of OLED technology and material characterization. Pavel’s involvement in international collaborations has enhanced the visibility and reach of his work, helping to shape the future of advanced material applications. His role as a supervisor for PhD theses has allowed him to pass on his knowledge, mentoring future leaders in materials science.

Research Skills 🔧

Pavel is a highly skilled researcher in areas such as:

  • Synthesis and characterization of organometallic compounds for OLED applications
  • Spectroscopic analysis of rare-earth doped materials
  • Magneto-optical studies of materials
  • Synthesis of metallic nanoclusters and nanoparticles
  • Crystal growth techniques for scintillating materials
    His deep understanding of these areas enables him to bridge theoretical and experimental approaches, driving innovative solutions in material science.

Teaching Experience 🧑‍🏫

As an academic supervisor, Pavel has guided PhD students on projects ranging from semiconducting organic materials to polymeric nanocomposites. He has imparted knowledge in both material synthesis and optical characterization techniques, contributing to the professional growth of students. His involvement in international research collaborations also allows him to teach students the importance of global scientific cooperation.

Awards and Honors 🏆

Pavel’s scientific achievements have earned him several prestigious awards, including the Academy Prize “Dragomir Hurmuzescu” for Physics in 2000. This award recognized his work on point defects and metallic nanoparticles in KCl crystals. Pavel has also earned recognition from international institutes, having received support for several high-impact research projects, including collaborations with ENEA Frascati and Romanian-Japan projects. His career is a testament to his outstanding contributions to science.

Legacy and Future Contributions 🌱

Pavel’s legacy is firmly established in materials science and condensed matter physics. His work on OLED technologies, organometallic compounds, and advanced spectroscopy continues to inspire future research in these areas. As a supervisor and project leader, he has cultivated a strong foundation for future generations of scientists to build upon. Moving forward, Pavel aims to expand his research into interdisciplinary areas such as nanotechnology and bioengineering, further enhancing the impact of his work on global technological advancements.

Publications Top Notes

  • Phase Transitions in Dimer/Layered Sb-Based Hybrid Halide Perovskites: An In-Depth Analysis of Structural and Spectroscopic Properties

    • Authors: I.C. Ciobotaru, Iulia Corina; C.C. Ciobotaru, Constantin Claudiu; C.M. Bartha, Cristina M.; S. Poloșan, Silviu; C. Beșleagă, Cristina
    • Journal: Advanced Optical Materials
    • Year: 2025
  • Versatile techniques based on the Thermionic Vacuum Arc (TVA) and laser-induced TVA methods for Mg/Mg:X thin films deposition – A review

    • Authors: R. Vlǎdoiu, Rodica; A. Mandeș, Aurelia; V. Dinca, Virginia; C.C. Ciobotaru, Constantin Claudiu; S. Poloșan, Silviu
    • Journal: Journal of Magnesium and Alloys
    • Year: 2024
  • Structural and magneto-optical investigations of citrate sol–gel derived barium hexaferrite nanocrystalline powder

    • Authors: M. Secu, Mihail; C.E. Secu, Corina Elisabeta; E. Matei, Elena; C. Radu, Cristian; S. Poloșan, Silviu
    • Journal: Journal of Alloys and Compounds
    • Year: 2024
  • Microstructural and Morphological Characterization of the Cobalt-Nickel Thin Films Deposited by the Laser-Induced Thermionic Vacuum Arc Method

    • Authors: V. Dinca, Virginia; A. Mandeș, Aurelia; R. Vlǎdoiu, Rodica; V. Ciupinǎ, Victor; S. Poloșan, Silviu
    • Journal: Coatings
    • Year: 2023
  • Organic Light-Emitting Diodes with Electrospun Electrodes for Double-Side Emissions

    • Authors: I.C. Ciobotaru, Iulia Corina; M.M. Enculescu, Monica Maria; S. Poloșan, Silviu; I. Enculescu, Ionuţ; C.C. Ciobotaru, Constantin Claudiu
    • Journal: Micromachines
    • Year: 2023

 

Rohollah Talebitooti | Energy Harvesting | Best Researcher Award

Prof Dr. Rohollah Talebitooti | Energy Harvesting | Best Researcher Award

PHD at Iran University science and technology, Iran

Dr. Roohollah Talebitooti is a Full Professor at the Iran University of Science and Technology, specializing in mechanical engineering with a focus on vibro-acoustics, structural vibration, and noise control. He earned his Ph.D., M.Sc., and B.Sc. from IUST. Dr. Talebitooti’s research includes sound transmission, wave propagation, and energy harvesting from structural vibrations. He has held numerous administrative roles, including Director of Post Graduate Studies and Head of the Aerospace Engineering Group. Recognized in the top 2% of most cited scientists since 2020, he continues to contribute significantly to his field.

Professional Profiles

Education

Ph.D., Iran University of Science and Technology, IRAN (2009) M.Sc., Iran University of Science and Technology, IRAN (2004) B.Sc., Iran University of Science and Technology, IRAN (2002)

Experience

Secretary of the Recruitment Board (2022-present): Iran University of Science and Technology Director of Post Graduate Studies (2021-present): IUST Director of Noise and Control Research Lab (2015-present): School of Mechanical Engineering, IUST Head of Aerospace Engineering Group (2019-2021): School of Mechanical Engineering, IUST Director of Research Affairs (2017-2019): School of Mechanical Engineering, IUST Director of B.Sc. Projects Office (2014-2017): School of Mechanical Engineering, IUST Associate Professor (2013-present): School of Mechanical Engineering, IUSTquantum computing

Honors and Awards:

First Rank Student Award, IUST (1999) Outstanding Student Award, IUST (1999, 2001, 2002, 2004) 3rd Position Award, Young Researcher Club (2002) Named in top 2 percent of the most cited scientists (2020-present)

Research Interests

Vibro-Acoustics of plates and shells Structural vibration and stability of plates and shells Vibration and noise controls Energy harvesting from vibration of structures

Research Focus

Dr. Roohollah Talebitooti’s research focuses on the acoustic and vibrational analysis of advanced materials and structures. His work includes studying the acoustic performance of multilayered cylinders, the effects of external pressures and thermal conditions on aerospace composites, and sound transmission through various materials.

Publications

  1. CNT-woven glass fiber laminated composite for folded plate application: 2D-GDQ and Experimental study, Publication date: 2024.
  2. Hygrothermal vibro-buckling of FG ceramic-steel porous consolidated conical-conical shells, Publication date: 2024.
  3. A comparative study on vibration suppression and energy harvesting via mono-, bi-, and tri-stable piezoelectric nonlinear energy sinks, Publication date: 2024.
  4. Improving soundproof characteristics of an FG-CNT–reinforced composite structure by adding a coating magneto-electro-elastic layerPublication date: 2024.
  5. On the frequency characteristics of rotating combined conical-conical shells made of FG-CNTRC composite materials under thermal environments, Publication date: 2024.
  6. The exact characteristic equation of frequency and mode shape for transverse vibrations of non-uniform and non-homogeneous Euler Bernoulli beam with general non-classical, Publication date: 2023.
  7. On size-dependent nonlinear forced dynamics of MRE-cored sandwich micro-pipes in presence of moving flow and harmonic excitation, Publication date: 2023.
  8. A unique and comprehensive approach to investigate the transverse free vibration of non-uniform and functionally graded Euler–Bernoulli beams, Publication date: 2023.
  9. Applying a 3D Re-Entrant Auxetic Cellular Core to a Graphene Nanoplatelet–Reinforced Doubly Curved Structure: A Sound Transmission Loss Study, Publication date: 2023.
  10. Acoustic insulation characteristics improvement of a thick CNT-reinforced doubly-curved shell by using GPLRC and MEE composite layers, Publication date: 2023.
.

Markus Kröll | Quantum Computing | Excellence in Innovation

Dr. Markus Kröll | Quantum Computing | Excellence in Innovation

Senior Vice President of Engineering at Eisenmann Anlagenbau GmbH & Co. kg, Germany

Dr. Markus Kröll, Head of Sustainable Production and Quality Management at Fraunhofer IPA, is a distinguished expert with over 25 years of experience in mechanical engineering, technology, and innovation management. He holds a Dr.-Ing. degree and has pioneered climate-neutral production methods and sustainable value chain management. Previously, he served as Senior Vice President of Engineering at Eisenmann Anlagenbau GmbH & Co. KG and held significant roles at Daimler AG and DaimlerChrysler AG. Dr. Kröll is renowned for his contributions to research and development, particularly in leveraging digital technologies and quantum computing to enhance resource efficiency and sustainability.

Professional Profiles

Education

Dr. Kröll’s academic credentials include a degree in mechanical engineering and a part-time doctorate in innovation management. He holds extensive qualifications in business and quality management as well as IT applications, which contribute to his outstanding leadership and professional competence in the industry. quantum computing

Experience

Before his current role, Dr. Kröll served as Senior Vice President of Engineering at Eisenmann Anlagenbau GmbH & Co. KG, overseeing over 250 employees and leading the Paint & Assembly Systems division. His previous positions at Daimler AG and DaimlerChrysler AG underscore his extensive experience in project management and electronics integration.

Academic Achievements

With over two decades of experience in industrial production and quality assurance, Dr. Markus Kröll has demonstrated significant expertise in strategic management, team development, and the implementation of sustainable production concepts. As the Head of Sustainable Production and Quality Management at the Fraunhofer Institute for Manufacturing Engineering and Automation (Fraunhofer IPA), he has pioneered and successfully implemented innovative strategies for climate-neutral production, focusing on sustainable value chain management. quantum computing

Awards and Recognitions

Best Researcher Award,Best Innovation Award,Excellence in Innovation,Excellence in Research,Excellence Award (Any Scientific Field),Best Research/Innovation Extension Award

Research Interests

Mechanical engineering, technology and innovation management, sustainability

Research Focus

Dr. Markus Kröll’s research focuses on pioneering innovative solutions for sustainable production and technology management. His work spans diverse areas, including digital retrofitting for sustainable production, prospective innovation assurance for automotive electronics, and the transfer of logistics optimizations to material flow resource optimizations using quantum computing. With a keen emphasis on result-oriented technology management, Dr. Kröll’s expertise lies in driving efficiency and sustainability in industrial processes. Through his contributions, he continues to shape the future of manufacturing by integrating cutting-edge technologies and sustainable practices to optimize production processes and enhance resource utilization. quantum computing

Publications

  1. Transfer of Logistics Optimizations to Material Flow Resource Optimizations using Quantum Computing, Publication date: 2024.
  2. Implementation Model for Digital Retrofit for Sustainable ProductionPublication date: 2023.
.

Quantum Technologies

 

Introduction to Quantum Technologies:

Quantum technologies represent a groundbreaking frontier in the world of science and engineering. These technologies harness the strange and powerful properties of quantum mechanics to revolutionize fields such as computing, communication, sensing, and materials science.

Quantum Computing:

Explore the development of quantum computers that leverage qubits, the fundamental units of quantum information, to perform computations at speeds unattainable by classical computers. Quantum computing has the potential to revolutionize cryptography, optimization, and drug discovery.

Quantum Communication:

Investigate quantum communication protocols and quantum key distribution (QKD) methods that ensure ultra-secure and unhackable transmission of information, paving the way for the future of secure global communication.

Quantum Sensing and Metrology:

Delve into the world of quantum sensors and metrology, where quantum technologies enable precision measurements with applications ranging from improved GPS accuracy to medical diagnostics.

Quantum Materials and Devices:

Focus on the discovery and utilization of novel quantum materials and devices, including superconductors and quantum sensors, which are at the heart of various quantum technology applications and quantum information processing.

Quantum Algorithms and Software:

Examine the development of quantum algorithms and software tools that make quantum computers accessible to researchers and industries, facilitating programming and optimization for a wide array of applications.

 

  Introduction of Chiral spinors and helicity amplitudes Chiral spinors and helicity amplitudes are fundamental concepts in the realm of quantum field theory and particle physics    They play a
  Introduction to Chiral Symmetry Breaking: Chiral symmetry breaking is a pivotal phenomenon in the realm of theoretical physics, particularly within the framework of quantum chromodynamics (QCD) and the study
  Introduction to Effective Field Theory and Renormalization: Effective field theory (EFT) and renormalization are foundational concepts in theoretical physics, particularly in the realm of quantum field theory. They provide
  Introduction to Experimental Methods: Experimental methods are the backbone of scientific investigation, enabling researchers to empirically explore and validate hypotheses, theories, and concepts. These techniques encompass a wide array
  Introduction to Free Particle Wave Equations: Free particle wave equations are fundamental concepts in quantum mechanics, describing the behavior of particles that are not subject to external forces. These
  Introduction to High Energy Physics: High-energy physics, also known as particle physics, is a branch of science dedicated to the study of the most fundamental building blocks of the
  Introduction to Interactions and Fields: Interactions and fields form the foundation of modern physics, providing the framework for understanding how particles and objects interact with one another and the
  Introduction to Invariance Principles and Conservation Laws: Invariance principles and conservation laws are fundamental concepts in physics that play a pivotal role in understanding the behavior of the physical
  Introduction to Lepton and Quark Scattering and Conservation Laws: Lepton and quark scattering processes are fundamental phenomena in particle physics, allowing us to probe the structure and interactions of
  Introduction to Particle Physics and Cosmology: Particle physics and cosmology are two closely intertwined fields of scientific inquiry that seek to unravel the mysteries of the universe at both