Lilia Tightiz | Quantum Computing | Best Researcher Award

Assist. Prof. Dr. Lilia Tightiz | Quantum Computing | Best Researcher Award

Assistant Professor at Gachon University, South Korea

Dr. Lilia Tightiz is an accomplished Assistant Professor at Gachon University, Korea, specializing in Computer Science and Engineering. She earned her Ph.D. in Computer Science and Engineering from Sejong University, Korea, in February 2022. With over 15 years of experience in the Electric Power Distribution Industry, Dr. Tightiz has made significant contributions in the design, utilization, and maintenance of electricity distribution grids. She has received numerous accolades, including world-class prizes for her inventions and contributions to the power distribution sector. Dr. Tightiz’s research interests span microgrid energy management, smart grid communication, and quantum machine learning, with a focus on deep reinforcement learning applications in power systems.

Profile🎓

Early Academic Pursuits 🎓

Lilia Tightiz began her academic journey in the field of Computer Science and Engineering, receiving her Ph.D. degree from Sejong University, Korea, in February 2022. Her early academic pursuits were driven by a passion for technological advancements in the electric power distribution sector, which laid the foundation for her future research in microgrid energy management systems and smart grids. Her doctoral research focused on deep, specialized topics within power systems and energy management, helping her build a strong foundation in renewable energy integration and smart grid technologies. With a solid academic background in engineering and computer science, Dr. Tightiz combines practical and theoretical insights to approach modern energy challenges.

Professional Endeavors ⚡

Dr. Tightiz has accumulated over 15 years of professional experience in the Electric Power Distribution Industry. As a Power Distribution Engineer, she contributed to the design, utilization, and maintenance of electricity distribution grids, working on several impactful projects. Her expertise in the sector is demonstrated through her numerous patents and recognition in prestigious forums such as the International Trade Fair for Ideas, Inventions, New Products in Nuremberg, Germany, and the Korean International Women Invention event. These accolades highlight her global influence and her role in transforming the power distribution industry. Dr. Tightiz has also contributed significantly to energy technology exhibitions, such as the Bitgaram International Exposition of Electric Power Technology and the International Invention Fair.

Contributions and Research Focus 🔬

Dr. Tightiz’s research is centered around microgrid energy management, smart grid communication structures, and deep reinforcement learning applications in power systems. She has delved into the intersection of electric vehicles (EVs), charging/discharging scheduling, and quantum machine learning, which are emerging areas in the modern energy landscape. Her work also explores the integration of IEC 61850 and IEC 62439 standards into smart grid systems, ensuring seamless communication and improved system resilience. Dr. Tightiz is particularly focused on optimizing energy efficiency and enhancing grid stability, leveraging cutting-edge technologies like deep reinforcement learning to offer innovative solutions for energy management systems in microgrids.

Impact and Influence 🌍

Dr. Tightiz has had a significant impact on both industry practices and academic research in the power distribution and energy management sectors. Her participation in international trade fairs and expos, along with her patents and world-class prizes, underscores her influence on global energy systems. As an associate editor for the e-Prime (Elsevier) Journal, she has contributed to advancing knowledge and fostering innovation in her field. Her work has been pivotal in bridging the gap between traditional power systems and emerging smart grid technologies, and her contributions are shaping the future of sustainable energy.

Academic Cites 📚

Dr. Tightiz’s research has garnered significant attention, with her work being widely cited in top-tier journals and conferences. Her academic contributions, particularly in deep reinforcement learning and smart grid communication, have positioned her as a leading expert in the field of power systems and energy management. Her efforts to integrate quantum machine learning with power distribution have been recognized as cutting-edge, with increasing citations and collaborations from leading institutions and industry stakeholders.

Technical Skills 🛠️

Dr. Tightiz’s technical expertise spans a wide array of skills and knowledge areas that are critical for modern power systems. She is proficient in deep reinforcement learning algorithms, smart grid communication protocols (IEC 61850, IEC 62439), and the development of microgrid energy management systems. Additionally, she is well-versed in energy optimization techniques, power system modeling, and quantum computing applications in power grids. Her multi-disciplinary skill set makes her a versatile researcher and educator in both engineering and computer science.

Teaching Experience 👩‍🏫

Dr. Tightiz currently serves as an assistant professor at Gachon University, Korea, where she began her academic career in April 2022. Her teaching focuses on cutting-edge topics such as smart grids, power systems, machine learning, and quantum computing in energy applications. Her strong professional background allows her to bring real-world experiences into the classroom, making her lectures highly relevant to current energy challenges. Dr. Tightiz fosters an interactive learning environment, encouraging her students to engage with modern technologies like microgrids and reinforcement learning algorithms to solve pressing energy issues.

Legacy and Future Contributions 🌟

Dr. Tightiz’s legacy is already being shaped by her innovative contributions to the power distribution industry and her leading-edge research in smart grid technologies. Looking forward, she aims to further advance the integration of quantum machine learning in power system optimization and continue her work on microgrids. Her future research will explore sustainable energy solutions and contribute to the global transition towards renewable energy. Dr. Tightiz is also focused on training the next generation of energy scientists and engineers, with a focus on developing innovative technologies that will drive energy sustainability and grid stability.

Top Noted Publications📖

Metaverse-driven smart grid architecture
    • Authors: Lilia Tightiz, L. Minh Dang, Sanjeevikumar Padmanaban, Kyeon Hur
    • Journal: Energy Reports
    • Year: 2024
Enhancing data security and privacy in energy applications: Integrating IoT and blockchain technologies
    • Authors: Hari Mohan Rai, Kaustubh Kumar Shukla, Lilia Tightiz, Sanjeevikumar Padmanaban
    • Journal: Heliyon
    • Year: 2024
Quantum-Fuzzy Expert Timeframe Predictor for Post-TAVR Monitoring
    • Authors: Lilia Tightiz, Joon Yoo
    • Journal: Mathematics
    • Year: 2024
Providing an Intelligent Frequency Control Method in a Microgrid Network in the Presence of Electric Vehicles
    • Authors: Mousa Alizadeh, Lilia Tightiz, Morteza Azimi Nasab
    • Journal: World Electric Vehicle Journal
    • Year: 2024
Implementing AI Solutions for Advanced Cyber‐Attack Detection in Smart Grid
    • Authors: Lilia Tightiz, Rashid Nasimov, Morteza Azimi Nasab, Mohamed Louzazni
    • Journal: International Journal of Energy Research
    • Year: 2024
A cluster-based trusted routing method using fire hawk optimizer (FHO) in wireless sensor networks (WSNs)
    • Authors: Mehdi Hosseinzadeh, Joon Yoo, Saqib Ali, Jan Lansky, Stanislava Mildeova, Mohammad Sadegh Yousefpoor, Omed Hassan Ahmed, Amir Masoud Rahmani, Lilia Tightiz
    • Journal: Scientific Reports
    • Year: 2023
A secure routing approach based on league championship algorithm for wireless body sensor networks in healthcare
    • Authors: Mehdi Hosseinzadeh, Adil Hussein Mohammed, Amir Masoud Rahmani, Farhan A. Alenizi, Seid Miad Zandavi, Efat Yousefpoor, Omed Hassan Ahmed, Mazhar Hussain Malik, Lilia Tightiz
    • Journal: PLOS ONE
    • Year: 2023

 

 

 

 

Rohollah Talebitooti | Energy Harvesting | Best Researcher Award

Prof Dr. Rohollah Talebitooti | Energy Harvesting | Best Researcher Award

PHD at Iran University science and technology, Iran

Dr. Roohollah Talebitooti is a Full Professor at the Iran University of Science and Technology, specializing in mechanical engineering with a focus on vibro-acoustics, structural vibration, and noise control. He earned his Ph.D., M.Sc., and B.Sc. from IUST. Dr. Talebitooti’s research includes sound transmission, wave propagation, and energy harvesting from structural vibrations. He has held numerous administrative roles, including Director of Post Graduate Studies and Head of the Aerospace Engineering Group. Recognized in the top 2% of most cited scientists since 2020, he continues to contribute significantly to his field.

Professional Profiles

Education

Ph.D., Iran University of Science and Technology, IRAN (2009) M.Sc., Iran University of Science and Technology, IRAN (2004) B.Sc., Iran University of Science and Technology, IRAN (2002)

Experience

Secretary of the Recruitment Board (2022-present): Iran University of Science and Technology Director of Post Graduate Studies (2021-present): IUST Director of Noise and Control Research Lab (2015-present): School of Mechanical Engineering, IUST Head of Aerospace Engineering Group (2019-2021): School of Mechanical Engineering, IUST Director of Research Affairs (2017-2019): School of Mechanical Engineering, IUST Director of B.Sc. Projects Office (2014-2017): School of Mechanical Engineering, IUST Associate Professor (2013-present): School of Mechanical Engineering, IUSTquantum computing

Honors and Awards:

First Rank Student Award, IUST (1999) Outstanding Student Award, IUST (1999, 2001, 2002, 2004) 3rd Position Award, Young Researcher Club (2002) Named in top 2 percent of the most cited scientists (2020-present)

Research Interests

Vibro-Acoustics of plates and shells Structural vibration and stability of plates and shells Vibration and noise controls Energy harvesting from vibration of structures

Research Focus

Dr. Roohollah Talebitooti’s research focuses on the acoustic and vibrational analysis of advanced materials and structures. His work includes studying the acoustic performance of multilayered cylinders, the effects of external pressures and thermal conditions on aerospace composites, and sound transmission through various materials.

Publications

  1. CNT-woven glass fiber laminated composite for folded plate application: 2D-GDQ and Experimental study, Publication date: 2024.
  2. Hygrothermal vibro-buckling of FG ceramic-steel porous consolidated conical-conical shells, Publication date: 2024.
  3. A comparative study on vibration suppression and energy harvesting via mono-, bi-, and tri-stable piezoelectric nonlinear energy sinks, Publication date: 2024.
  4. Improving soundproof characteristics of an FG-CNT–reinforced composite structure by adding a coating magneto-electro-elastic layerPublication date: 2024.
  5. On the frequency characteristics of rotating combined conical-conical shells made of FG-CNTRC composite materials under thermal environments, Publication date: 2024.
  6. The exact characteristic equation of frequency and mode shape for transverse vibrations of non-uniform and non-homogeneous Euler Bernoulli beam with general non-classical, Publication date: 2023.
  7. On size-dependent nonlinear forced dynamics of MRE-cored sandwich micro-pipes in presence of moving flow and harmonic excitation, Publication date: 2023.
  8. A unique and comprehensive approach to investigate the transverse free vibration of non-uniform and functionally graded Euler–Bernoulli beams, Publication date: 2023.
  9. Applying a 3D Re-Entrant Auxetic Cellular Core to a Graphene Nanoplatelet–Reinforced Doubly Curved Structure: A Sound Transmission Loss Study, Publication date: 2023.
  10. Acoustic insulation characteristics improvement of a thick CNT-reinforced doubly-curved shell by using GPLRC and MEE composite layers, Publication date: 2023.
.

Markus Kröll | Quantum Computing | Excellence in Innovation

Dr. Markus Kröll | Quantum Computing | Excellence in Innovation

Senior Vice President of Engineering at Eisenmann Anlagenbau GmbH & Co. kg, Germany

Dr. Markus Kröll, Head of Sustainable Production and Quality Management at Fraunhofer IPA, is a distinguished expert with over 25 years of experience in mechanical engineering, technology, and innovation management. He holds a Dr.-Ing. degree and has pioneered climate-neutral production methods and sustainable value chain management. Previously, he served as Senior Vice President of Engineering at Eisenmann Anlagenbau GmbH & Co. KG and held significant roles at Daimler AG and DaimlerChrysler AG. Dr. Kröll is renowned for his contributions to research and development, particularly in leveraging digital technologies and quantum computing to enhance resource efficiency and sustainability.

Professional Profiles

Education

Dr. Kröll’s academic credentials include a degree in mechanical engineering and a part-time doctorate in innovation management. He holds extensive qualifications in business and quality management as well as IT applications, which contribute to his outstanding leadership and professional competence in the industry. quantum computing

Experience

Before his current role, Dr. Kröll served as Senior Vice President of Engineering at Eisenmann Anlagenbau GmbH & Co. KG, overseeing over 250 employees and leading the Paint & Assembly Systems division. His previous positions at Daimler AG and DaimlerChrysler AG underscore his extensive experience in project management and electronics integration.

Academic Achievements

With over two decades of experience in industrial production and quality assurance, Dr. Markus Kröll has demonstrated significant expertise in strategic management, team development, and the implementation of sustainable production concepts. As the Head of Sustainable Production and Quality Management at the Fraunhofer Institute for Manufacturing Engineering and Automation (Fraunhofer IPA), he has pioneered and successfully implemented innovative strategies for climate-neutral production, focusing on sustainable value chain management. quantum computing

Awards and Recognitions

Best Researcher Award,Best Innovation Award,Excellence in Innovation,Excellence in Research,Excellence Award (Any Scientific Field),Best Research/Innovation Extension Award

Research Interests

Mechanical engineering, technology and innovation management, sustainability

Research Focus

Dr. Markus Kröll’s research focuses on pioneering innovative solutions for sustainable production and technology management. His work spans diverse areas, including digital retrofitting for sustainable production, prospective innovation assurance for automotive electronics, and the transfer of logistics optimizations to material flow resource optimizations using quantum computing. With a keen emphasis on result-oriented technology management, Dr. Kröll’s expertise lies in driving efficiency and sustainability in industrial processes. Through his contributions, he continues to shape the future of manufacturing by integrating cutting-edge technologies and sustainable practices to optimize production processes and enhance resource utilization. quantum computing

Publications

  1. Transfer of Logistics Optimizations to Material Flow Resource Optimizations using Quantum Computing, Publication date: 2024.
  2. Implementation Model for Digital Retrofit for Sustainable ProductionPublication date: 2023.
.