Soumia CHQONDI | Interactions and fields | Best Researcher Award

Prof. Soumia CHQONDI | Interactions and fields | Best Researcher Award

Chouab Doukkali University | Morocco

Prof. Soumia CHQONDI is a Moroccan physicist and Assistant Professor at the Faculty of Sciences, El Jadida, affiliated with the Université Chouaib Doukkali. She is also an active member of the Laboratoire d’Innovation en Sciences, Technologies et Modélisation (ISTM). With a Doctorate in Physics obtained through a cotutelle program between Université Moulay Ismail (Morocco) and Université Pierre et Marie Curie (France), she has dedicated her academic journey to theoretical and computational studies of quantum systems. Her work on laser-atom interactions has earned her recognition through international publications, conference presentations, and collaborations across the physics community.

Profile

Scopus

Early Academic Pursuits

Soumia began her academic career with a Baccalauréat in Mathematical Sciences, followed by a DEUG in Physics and Chemistry at Université Moulay Ismail, Meknès. She pursued a Licence in Fundamental Physics (Electronics) and a Master in Applied Physics, specializing in Laser & Nanophysics. Her academic excellence led her to a doctoral program in cotutelle between two prestigious institutions in Morocco and France, where she explored quantum systems in intense laser fields. These early stages shaped her scientific rigor, developed her analytical thinking, and laid the foundation for a promising career in theoretical physics and simulation.

Professional Endeavors

Since October 2020, Prof. Chqondi serves as an Assistant Professor at the Faculty of Sciences of El Jadida, where she teaches and supervises research. From 2016 to 2020, she was a scientific researcher at the Laboratoire de Physique du Rayonnement et des Interactions Laser-Matière in Meknès, where she conducted numerical simulations of time-dependent atomic systems. Her career began in secondary education, teaching computer science from 2006 to 2019. Her multidisciplinary expertise, spanning informatics, applied physics, and quantum simulations, reflects a commitment to both pedagogical innovation and scientific advancement within and beyond the university environment.

Contributions and Research Focus

Prof. Chqondi’s research focuses on theoretical atomic physics, particularly laser-matter interactions, quantum ionization dynamics, and photoelectron angular distributions in atoms exposed to two-color and high-frequency laser fields. She has co-authored 8+ peer-reviewed articles, contributed to international book chapters, and presented at numerous conferences. Her work bridges fundamental quantum mechanics with advanced numerical modeling, offering insights into ultrafast electronic processes and photoionization phenomena. Using TDSE (time-dependent Schrödinger equation) and Floquet theory, she investigates non-linear laser interactions, essential for the development of next-generation optical technologies and quantum-based innovations.

Impact and Influence

Prof. Chqondi’s research has contributed to a deeper understanding of quantum systems in strong laser fields, impacting both theoretical frameworks and simulation techniques in laser physics. Her work has been featured in indexed journals such as Atoms, Modern Physics Letters A, and Turkish Journal of Physics. She collaborates with national and international scholars, notably Prof. Abdelkader Makhoute, enhancing scientific diplomacy between Moroccan and European institutions. Through her roles in teaching, publication, and mentoring, she inspires emerging researchers, helping bridge the gap between classical education and cutting-edge physics research in the Arab and African academic communities.

Academic Citations

Prof. Chqondi’s scientific publications are cited in peer-reviewed international journals, reflecting her contribution to specialized fields such as photoionization, laser-assisted electron dynamics, and numerical physics simulations. While exact citation metrics (e.g., h-index) are not provided, her consistent presence in indexed and impact-factor journals, including Nonlinear Dynamics and Systems Theory, underscores her academic credibility. Her co-authored articles are frequently referenced in studies exploring quantum dynamics, laser spectroscopy, and semi-classical theories. As her work gains further recognition and is integrated into broader research, its citation count and visibility are likely to grow substantially.

Research Skills

Prof. Chqondi demonstrates strong computational and theoretical skills. She is proficient in Fortran, Maple, LaTeX, and OriginPro, vital tools in quantum simulation and data analysis. Her research involves solving TDSE, modeling photoelectron spectra, and applying Floquet theory to atomic systems. She is skilled in Microsoft Office, Linux/Windows, and has experience with statistical analysis using Excel. Her scientific rigor is matched with literature review expertise, scientific writing, and effective use of academic databases. She also incorporates modern tools like Urkund for plagiarism detection, ensuring academic integrity in research and publishing.

Teaching Experience

Prof. Chqondi has over 15 years of experience in education, from secondary teaching in computer science to university-level physics instruction. Since 2020, she has taught undergraduate and graduate courses at Université Chouaib Doukkali, focusing on quantum physics, simulation techniques, and scientific computing. She also contributes to the mentorship of research students, supporting project development and thesis supervision. Her approach combines foundational theory with modern simulation practices, bridging gaps between classroom learning and applied physics research. She also integrates digital tools and interactive learning environments to enhance student engagement and scientific curiosity.

Awards and Honors

Although specific awards or fellowships are not listed, Prof. Chqondi’s selection for a cotutelle Ph.D. program between Morocco and France indicates early recognition of her potential. Her invited participation in prestigious international conferences and summer schools, such as in Paris and Tangier, highlights her academic merit. Her paper presentations at major events like SPIn2022 and Moroccan ADM 2023 also underline her standing in the field. Her contributions have earned her respect among scientific peers, and she remains a strong candidate for academic distinctions such as the Best Researcher Award, based on her consistent output and specialization.

Legacy and Future Contributions

Prof. Chqondi is poised to become a leading voice in theoretical physics and computational laser-matter interaction studies in Morocco and the MENA region. With a foundation in quantum dynamics and a commitment to scientific integrity, she continues to mentor students, publish impactful research, and build interdisciplinary collaborations. Her future work may extend into quantum control systems, ultrafast optics, or machine learning in physics simulations. As an educator and researcher, she is contributing to a new generation of Moroccan physicists, and her legacy will likely include pioneering simulation techniques and advancing quantum education in developing contexts.

Publications Top Notes

Controlling the Ionization Dynamics of Argon Induced by Intense Laser Fields: From the Infrared Regime to the Two-Color Configuration

  • Authors: Soumia Chqondi, Souhaila Chaddou, Ahmad Laghdas, Abdelkader Makhoute
    Journal: Atoms
    Year: 2025

Photoelectron angular distributions for photoionization of argon by two-color fields

  • Authors: Soumia Chqondi, Souhaila Chaddou, Abdelkader Makhoute
    Journal: Modern Physics Letters A
    Year: 2024

A New Feedback Control for Exponential and Strong Stability of Semi-Linear Systems with General Decay Estimates

  • Authors: M. Chqondi, S. Chqondi, K. Tigma, Y. Akdim
    Journal: Nonlinear Dynamics and Systems Theory
    Year: 2024

Theoretical description of the two-color photoelectron spectra process of hydrogen: comparison between TDSE calculation and Kroll and Watson approach

  • Authors: Souhaila Chaddou, Soumia Chqondi, Abdelmalek Taoutioui, Abdelkader Makhoute
    Journal: Turkish Journal of Physics
    Year: 2019

Numerical simulation of photoionization processes of the atomic hydrogen by a Ti: Saphir laser

  • Authors: S. Chaddou, S. Chqondi, A. Makhoute
    Journal: International Journal of Photonics and Optical Technology
    Year: 2017

 

 

Abdulaziz Alhaidari | Quantum Field Theory | Outstanding Contribution Award

Prof. Abdulaziz Alhaidari | Quantum Field Theory | Outstanding Contribution Award

Senior Researcher at Saudi Center for Theoretical Physics , Saudi Arabia

Dr. Abdulaziz D. Alhaidari is a renowned theoretical physicist, educator, and national science advisor from Saudi Arabia. With dual BS degrees in Physics and Electrical Engineering, and a PhD in Physics from UCLA, his career spans academia, research, government advisory roles, and science diplomacy. He has authored over 130 peer-reviewed publications, edited multiple scientific volumes, and is the founder of the Saudi Center for Theoretical Physics. His academic rigor, policy influence, and commitment to advancing science have earned him national awards and international recognition. He continues to be an influential figure in mathematical physics and beyond.

👨‍🎓Profile

Google scholar

ORCID

📚 Early Academic Pursuits

Dr. Alhaidari’s academic journey began at the University of Petroleum and Minerals (UPM) in Dhahran, where he earned dual BS degrees in Physics and Electrical Engineering. His passion for fundamental physics led him to pursue advanced studies at the University of California, Los Angeles (UCLA), where he obtained his MS and PhD under the guidance of the eminent physicist C. Fronsdal. His doctoral dissertation, “Conformal Invariance in Quantum Field Theory”, laid the foundation for a distinguished research career in relativistic quantum theory and mathematical physics.

💼 Professional Endeavors

Dr. Alhaidari’s professional roles span academia, scientific advising, and national policy-making. He began as a Teaching and Graduate Assistant at UPM and briefly lectured at UCLA before returning to Saudi Arabia to join KFUPM as an Assistant Professor. He later became Associate Professor and Chair of the Physics Department. From 1990 to 2011, he served as Executive Scientific Advisor to the Crown Prince and Minister of Defense, and later as a Scientific Advisor at the Ministry of Defense. He also contributed as a member of the Shura Council in various committees.

🔬 Contributions and Research Focus

Dr. Alhaidari has made foundational contributions to scattering theory, relativistic quantum mechanics, and mathematical physics. His research explores the structure of wave equations, potential theory, and orthogonal polynomials in quantum systems. With over 130 peer-reviewed publications, he is recognized for producing analytical solutions to complex physical systems and advancing theoretical frameworks in particle and field theory. His dual focus on pure and applied physics ensures broad scientific relevance. As the founder of the Saudi Center for Theoretical Physics, he has promoted regional research capacity and fostered collaboration within the global physics community.

🌍 Impact and Influence

Dr. Alhaidari’s work has had a significant impact on scientific thought and national science development. His theories have contributed to the global understanding of quantum field phenomena, and his advisory roles influenced defense science policy and R&D strategy in Saudi Arabia. His presence in APS, IOP, SIAM, and AAPT reflects his global integration into the scientific community. Through mentoring students, editing journals, and invited talks, he has shaped generations of scientists and strengthened the Middle East’s role in international physics. His founding of institutions has left a legacy of institutional and intellectual infrastructure.

📖 Academic Cites

Dr. Alhaidari’s publications are widely cited in journals of physics and mathematics, reflecting deep influence in specialized areas like orthogonal polynomials, relativistic scattering, and Dirac equations. While exact citation metrics are not provided, the volume and consistency of his research since the 1980s, along with his editorial contributions, signify strong academic visibility. He has published in high-impact journals and co-authored works that have served as references in graduate theses, conference proceedings, and theoretical modeling. His contributions form part of the academic scaffolding in several advanced subfields of physics.

🧠 Research Skills

Dr. Alhaidari possesses highly specialized analytical and theoretical skills, particularly in solving differential equations in quantum systems, constructing exactly solvable models, and applying group theory and conformal symmetry in field theory. His ability to bridge mathematics and physics enables him to tackle deep conceptual problems and contribute original formulations. He is adept at working across multi-disciplinary domains, including mathematical physics, elementary particles, and quantum field theory. His expertise in scattering matrices, orthogonal polynomials, and special functions demonstrates both depth and versatility, essential for frontier theoretical physics.

🧑‍🏫 Teaching Experience

With a teaching career spanning more than three decades, Dr. Alhaidari has taught a wide range of undergraduate and graduate courses at KFUPM, including General Physics, Mechanics, Electrodynamics, and more advanced topics in theoretical physics. He has supervised MS and PhD theses in both physics and mathematics, mentoring students of all genders and contributing to the academic pipeline in Saudi Arabia. His dedication to academic excellence, combined with his research experience, has provided students with a rich, theory-informed education. His teaching is informed by both textbook knowledge and cutting-edge research.

🏆 Awards and Honors

Dr. Alhaidari has been recognized with several prestigious awards, including the KFUPM Excellence in Research Award (2004) and the Al-Marai Distinguished Scientist Award (2007). These honors celebrate both the quality and impact of his research. His appointment as Executive Scientific Advisor to high-level government officials further illustrates his national importance. He is also a trusted editor and reviewer for major journals and a frequent invited speaker, reflecting a career marked by peer esteem and thought leadership across disciplines.

🔮 Legacy and Future Contributions

Dr. Alhaidari’s legacy lies in his dual impact on scientific knowledge and national scientific infrastructure. His founding of the Saudi Center for Theoretical Physics and leadership in research policy have created lasting platforms for future scientists. He continues to contribute through publications, mentorship, and advisory roles. Looking forward, his insights can be pivotal in emerging fields like quantum technologies, applied mathematics, and science diplomacy. As a role model for aspiring physicists, his work embodies a commitment to scientific excellence, institution building, and international engagement.

Publications Top Notes

Nonlinear extension of the J-matrix method of scattering: a toy model

  • Authors: A. D. Alhaidari, T. J. Taiwo
    Journal: Arabian Journal of Mathematics
    Year: 2025

Finite Algebraic Quantum Field Theory

  • Authors: Abdulaziz D. Alhaidari
    Journal: Preprint (preprints.org)
    Year: 2025

Orthogonal polynomials associated with the scattering states of the Kratzer potential

  • Authors: A. D. Alhaidari, Yu-Tian Li
    Journal: Arabian Journal of Mathematics
    Year: 2025

Solutions of the scattering problem in a complete set of Bessel functions with a discrete index

  • Authors: A. D. Alhaidari, M. E. H. Ismail
    Journal: Journal of Mathematical Physics
    Year: 2023

A Novel Algebraic System in Quantum Field Theory

  • Authors: Abdulaziz D. Alhaidari, Abdallah Laradji
    Journal: AppliedMath
    Year: 2023

 

Bibhushan Shakya | High energy physics | Best Researcher Award

Dr. Bibhushan Shakya | High energy physics | Best Researcher Award

Staff Scientist at DESY | Germany

Dr. Bibhushan Shakya is a theoretical physicist specializing in particle physics and cosmology, currently serving as a Junior Staff Scientist at DESY, Hamburg. His research spans dark matter, gravitational waves, and early universe phenomena. With a Ph.D. from Cornell University, and professional stints at CERN, University of Michigan, and UCSC, he has emerged as a globally respected researcher. He has co-authored over 40 publications, supervised multiple graduate theses, and served in advisory and organizational roles within major international physics communities, including Snowmass and BCVSPIN. A native of Nepal, he actively contributes to science outreach across South Asia.

👨‍🎓Profile

Google scholar

Scopus

🎓 Early Academic Pursuits

Dr. Shakya’s academic journey began at Stanford University, where he earned three undergraduate degrees with distinction in Physics (Theoretical Concentration), Mathematics, and Philosophy. His passion for the fundamentals of the universe led him to Cornell University for doctoral studies under the mentorship of Prof. Maxim Perelstein. There, he specialized in theoretical particle physics, completing a Ph.D. thesis on dark matter phenomenology during a transformative period in experimental cosmology. His early academic years reflect a rare combination of depth in theoretical physics and breadth in interdisciplinary thought, laying the groundwork for his future contributions to cosmology and high-energy physics.

🧪 Professional Endeavors

Dr. Shakya has held prestigious research positions globally. After completing his Ph.D., he undertook postdoctoral fellowships at the University of Michigan, University of Cincinnati, and UC Santa Cruz, forming collaborative bridges across top U.S. institutions. He served as a Senior Fellow at CERN, Geneva, contributing to LISA cosmology initiatives, before joining DESY in 2021. His roles involve not just research but strategic leadership, including organizing seminars, leading selection committees, and mentoring Ph.D. students. He is recognized as a scientific community builder, contributing to international collaboration platforms like Snowmass 2022 and BCVSPIN in South Asia.

🔬 Contributions and Research Focus

Dr. Shakya’s research focuses on early-universe cosmology, dark matter, and gravitational wave signals from first-order phase transitions. His work addresses phenomena at the intersection of cosmology and high-energy physics, often exploring nonthermal origins of dark matter, tachyonic fields, and leptogenesis via bubble collisions. His publications in JCAP, JHEP, PRD, and PRL underscore both depth and originality. Notably, he collaborates with prominent physicists like Giudice, Kamionkowski, and Pomarol, positioning him at the forefront of phenomenological cosmology. His recent work with student co-authors further highlights his commitment to mentored discovery and academic development.

🌍 Impact and Influence

Dr. Shakya’s impact is global and multi-dimensional. Through publications, student mentorship, and international collaborations, he has significantly advanced the understanding of the early universe. As Chair of BCVSPIN, he champions particle physics in developing South Asian regions, fostering access to frontier research. His leadership role in the Snowmass 2022 Cosmic Frontier initiative helped shape the U.S. particle physics strategic roadmap. He regularly reviews for top-tier journals and major funding bodies like ERC and NSERC, reinforcing his influence on scientific standards. His lectures and outreach efforts have inspired young researchers and the general public across continents.

📚 Academic Cites and Publications

Dr. Shakya has authored over 40 peer-reviewed publications on arXiv, InspireHEP, and in leading journals like JCAP, JHEP, PRD, and PLB. His work is widely cited, with growing influence in cosmological phase transition physics, gravitational wave phenomenology, and non-thermal dark matter scenarios. Many of his papers involve cross-disciplinary ideas at the intersection of particle physics and cosmology, often co-authored with international experts and students. Some of his highly recognized works include those on dark photon production from cosmic strings, leptogenesis, and bubble collision dynamics. His research citations reflect a strong and growing academic footprint.

🧠 Research Skills and Expertise

Dr. Shakya exhibits exceptional analytical skills in quantum field theory, early-universe modeling, and beyond Standard Model physics. His ability to translate highly technical theory into observable cosmological predictions demonstrates deep understanding and creativity. He is proficient in phenomenological modeling, analytical methods, and scientific computation, making his work relevant to experimental data from CMB, LISA, and gravitational wave observatories. His collaborations across theory and experiment exemplify a rare blend of vision and rigor. He is also known for clear scientific communication, essential for both mentoring and outreach. These skills position him as a leading contributor to modern theoretical physics.

🧑‍🏫 Teaching and Mentorship

Dr. Shakya has contributed extensively to teaching and mentoring, both formally and informally. At University of Hamburg, he delivered guest lectures on supersymmetry and collider physics. He regularly teaches at international summer and winter schools (e.g., BCVSPIN, Hamburg Summer School) on topics like dark matter phenomenology and gravitational waves. He has supervised multiple Bachelor’s, Master’s, and Ph.D. students, many of whom have co-authored papers and moved on to prestigious research positions. His mentorship style encourages intellectual independence and scientific curiosity, making him an asset to any academic institution committed to excellence and training the next generation.

🏅 Awards and Honors

While Dr. Shakya has not yet been publicly recognized with individual awards, his appointment as Junior Staff Scientist at DESY, one of the world’s premier particle physics labs, underscores institutional recognition of his excellence. He has served as a referee for elite physics journals, a grant reviewer for the ERC and NSERC, and a strategic leader in international collaborations all clear acknowledgments of his scientific standing. His inclusion in roles like Snowmass 2022 liaison and chairing BCVSPIN reflects peer trust and leadership. These achievements serve as strong indicators of his eligibility for Best Researcher Award recognition.

🔮 Legacy and Future Contributions

Dr. Shakya’s legacy is already taking shape through his publications, mentorship, outreach, and scientific leadership in South Asia. In the future, he is well-positioned to become a principal investigator, lead independent grant-funded projects, and shape the field through interdisciplinary research. His ongoing involvement in gravitational wave cosmology, especially related to LISA, aligns with the next frontier in observational physics. By continuing to connect young scientists, global institutions, and frontier physics, he will play a pivotal role in both advancing science and making it more inclusive. His long-term influence will be felt across academia, policy, and outreach.

Publications Top Notes

📄 Particle Production from Phase Transition Bubbles
  • Authors: Henda Mansour, Bibhushan Shakya

  • Journal: Physical Review D

  • Year: 2025

📄 Aspects of Particle Production from Bubble Dynamics at a First Order Phase Transition
  • Author: Bibhushan Shakya

  • Journal: Physical Review D

  • Year: 2025

📄 Nonthermal Heavy Dark Matter from a First-Order Phase Transition
  • Authors: G. Giudice, H.M. Lee, A. Pomarol, B. Shakya

  • Journal: Journal of High Energy Physics (JHEP)

  • Year: 2024

📄 White Paper on Light Sterile Neutrino Searches and Related Phenomenology
  • Authors: Multiple authors (including Bibhushan Shakya)

  • Journal: Journal of Physics G: Nuclear and Particle Physics

  • Year: 2024

📄 Bouncing Dark Matter
  • Authors: L. Puetter, J.T. Ruderman, E. Salvioni, B. Shakya

  • Journal: Physical Review D

  • Year: 2024

 

Seyed Mohammad Ali Radmanesh | Interactions and fields | Best Researcher Award

Prof. Seyed Mohammad Ali Radmanesh | Interactions and fields | Best Researcher Award

Professor of Physics at University of New Orleans, United States

Dr. Seyed Mohammad Ali Radmanesh is a distinguished application scientist and experimental physicist with over 5 years of hands-on research experience in cryotronics, high-field magneto-transport measurements, and quantum materials. With a robust interdisciplinary background in materials science, applied physics, and engineering, Dr. Radmanesh has contributed to several high-impact studies, including publications in Nature-branded journals. He is recognized for his deep technical knowledge, data analysis capabilities, and experimental instrumentation expertise in low-temperature physics, making him a valuable contributor to cutting-edge material research.

👨‍🎓Profile

Google scholar

Scopus

🎓 Early Academic Pursuits

Dr. Radmanesh’s academic journey began with a B.Sc. in Materials Science and Engineering from Chamran University of Ahvaz, where he explored mechanical properties and heat treatment of metals. He deepened his expertise through an M.Sc. in Materials Science and Engineering at the University of Tehran, focusing on magnetic nanocomposites. His passion for condensed matter physics drove him to pursue an M.Sc. and Ph.D. in Applied Physics and Engineering at the University of New Orleans, where he became proficient in quantum materials research, developing strong foundations in low-temperature instrumentation and magneto-transport techniques.

🧪 Professional Endeavors

Professionally, Dr. Radmanesh has served as a researcher, application scientist, and visiting scholar at institutions like the National High Magnetic Field Laboratory (NHMFL). He led and collaborated on experiments investigating Dirac and Weyl semimetals, utilizing state-of-the-art systems such as Dilution Refrigerators, PPMS, SQUID, and VSM Cryostats. His role has involved device fabrication, data acquisition, and LabVIEW automation. He has also contributed to projects funded by NSF EPSCoR and has worked with various global experts on topics like topological superconductivity and London penetration depth, enhancing the experimental understanding of quantum electronic states.

📚 Contributions and Research Focus

Dr. Radmanesh’s research has focused extensively on quantum materials, particularly topological insulators, Dirac/Weyl semimetals, and unconventional superconductors. He has played a central role in uncovering nontrivial topological states, π Berry phases, and electron coherence mechanisms under extreme cryogenic and magnetic conditions. His Ph.D. work on correlated materials and collaborative studies on half-Heusler compounds have significantly advanced the understanding of exotic superconducting states. Through his expertise in low-temperature transport measurements, Dr. Radmanesh continues to shape the landscape of experimental condensed matter physics with highly cited contributions.

🌍 Impact and Influence

Dr. Radmanesh’s work has had a global scientific impact, with publications in prestigious journals such as Nature Materials, Nature Communications, and Nature Physics. His findings on Dirac fermions, zero Landau levels, and spin-orbit coupling have informed theoretical and applied research in quantum computing, magnetoelectronics, and next-gen materials development. He has collaborated with leading research labs and scientists in the U.S. and internationally. His work continues to influence experimental techniques in cryotronics and quantum device engineering, while mentoring younger scientists and fostering interdisciplinary collaboration in academia and industry.

📖 Academic Citations

Dr. Radmanesh has authored or co-authored 11 peer-reviewed papers, with 5 published in Nature-branded journals and others in Physical Review B, Scientific Reports, and Journal of Magnetism and Magnetic Materials. His research has been cited in high-impact studies, reflecting the relevance and scientific rigor of his contributions. Particularly, papers on topological semimetals (SrMnSb₂, TaP) and superconductivity in half-Heuslers have received considerable academic attention. His 2020 article on nontrivial paired states remains an essential reference for researchers exploring novel quantum phases and low-dimensional superconductors.

🛠️ Research Skills

Dr. Radmanesh possesses cutting-edge technical skills in cryogenic and magnetic instrumentation, including operation and troubleshooting of Dilution Refrigerators, PPMS, VSM, EPR, and LabVIEW-controlled systems. He is experienced in TDO-based London penetration depth measurements, Hall and resistivity measurements, and device prototyping using LPKF circuit board plotters. His command over data analysis tools (Origin, Maple, MATLAB) and software for experiment control has made him a reliable lead for complex experimental setups. He also applies vacuum systems and magnetic resonance tools to evaluate electronic, magnetic, and topological features in novel materials.

👨‍🏫 Teaching Experience 

While his primary focus has been research, Dr. Radmanesh has supported academic environments through graduate-level mentoring, poster presentations, and technical workshops. He has helped undergraduate and master’s students with experimental setup, data interpretation, and instrument handling. During his time at the University of Tehran, he worked as a Computer Center expert, assisting peers with network systems and academic computing. Additionally, he has been an active presenter at APS and IEEE conferences, where he disseminated knowledge, discussed methodology, and contributed to collaborative learning, establishing himself as a knowledge facilitator in the scientific community.

🏆 Awards and Honors

Dr. Radmanesh has received multiple NSF EPSCoR Research Infrastructure Improvement (RII) Awards, recognizing his contribution to high-impact scientific projects. He has consistently earned top spots in poster competitions and has been inducted into Omicron Delta Kappa, the National Leadership Honor Society. A member of the IEEE and a reviewer for Materials Letters, he actively contributes to the scientific peer review process. These honors reflect his academic excellence, leadership, and professional integrity, distinguishing him as a prominent early-career researcher with a well-rounded scholarly and service profile.

🌟 Legacy and Future Contributions

Dr. Radmanesh is poised to become a leading innovator in quantum materials research and experimental cryogenic science. His future goals include developing next-generation instrumentation for quantum state detection, mentoring new researchers, and contributing to quantum device engineering applicable in computing and energy. His legacy will be built on combining deep theoretical insight with technical precision, advancing both academic understanding and practical application of novel materials. With plans to continue collaborative research and lead high-impact projects, Dr. Radmanesh is set to make lasting contributions that will shape the future of materials science and applied physics.

Publications Top Notes

Superconductivity in Layered Dichalcogenide Pt₀.₀₂TaSe₂ Single Crystals

  • Authors: S.M.A. Radmanesh, R. Ghanbari, A. Diaconu
    Journal: Solid State Communications
    Year: 2025

The Synthesis and Characterization of Hard-Soft Mn₅₂Al₄₅.₇C₂.₃–α-Fe Nanocomposite Magnets

  • Authors: S.N. Attyabi, S.M.A. Radmanesh, S.A.S. Ebrahimi, H. Dehghan
    Journal: Journal of Superconductivity and Novel Magnetism, Vol. 35 (5), pp. 1229–1240
    Year: 2022

Stress-Induced Grain Refinement in Hard Magnetic Mn₅₂Al₄₅.₇C₂.₃ Fabricated Using the Ball-Milling Method

  • Authors: S.N. Attyabi, S.M.A. Radmanesh, S.A. Seyyed Ebrahimi, H. Dehghan, …
    Journal: Materials, Vol. 15 (22), Article 7919
    Year: 2022

Effect of the Heat Treatment on the Electrical Resistivity and Magnetization Reversal Behavior of MnAl Alloys

  • Authors: M. Shakouri, S.M.A. Radmanesh, S.A.S. Ebrahimi, H. Dehghan
    Journal: Materials Science and Engineering: B, Vol. 274, Article 115486
    Year: 2021

Nontrivial Paired States in Novel Topological Superconductors

  • Authors: S.M.A. Radmanesh, S.A.S. Ebrahimi, A. Diaconu, J.Y. Liu
    Journal: Journal of Alloys and Compounds, Vol. 848, Article 156498
    Year: 2020

 

 

 

Yueling Yang | High energy physics | Best Researcher Award

Prof. Yueling Yang | High energy physics | Best Researcher Award

Professor at Henan Normal University | China

Yueling Yang is a Professor of Physics at Henan Normal University, specializing in theoretical particle physics. With extensive expertise in weak decays, quantum chromodynamics (QCD), and the phenomenology of B mesons, she has established herself as a prominent researcher in the field. Over the years, she has progressed from an Assistant Professor to a Professor, teaching and conducting research at one of China’s leading institutions in the realm of theoretical physics.

👨‍🎓Profile

Scopus

ORCID

📚Early Academic Pursuits

Yueling Yang’s academic journey began at Yanbei Normal University, where she obtained her Bachelor of Science in Physics (2000). She pursued her Master of Science in Theoretical Physics and later earned her Ph.D. in Theoretical Physics from Henan Normal University in 2014. Her graduate education laid a solid foundation for her future research endeavors, shaping her interests in particle physics and QCD phenomena.

👩‍🏫Professional Endeavors

Yang’s professional career spans over two decades, with extensive experience at Henan Normal University since 2003. After serving as an Assistant Professor at Yuncheng University, she returned to Henan Normal University in 2006. Over time, she was promoted to Lecturer, then Associate Professor, and finally, Professor. She currently holds the position of Professor of Physics at the Institute of Particle and Nuclear Physics, making her a key figure in academic leadership and research excellence.

🔬Contributions and Research Focus

Yueling Yang’s research primarily focuses on theoretical particle physics, specifically the study of weak decays of B mesons and heavy-flavored mesons. She has contributed to the understanding of nonfactorizable corrections in weak decays and the application of QCD factorization methods to nonleptonic decays. Her contributions also extend to the phenomenology of particle decays, an area central to understanding the standard model and searching for new physics beyond it.

🌍Impact and Influence

Yueling Yang’s work has had a substantial impact on the field of theoretical physics. Her research not only advances fundamental theoretical concepts but also bridges the gap between theoretical predictions and experimental possibilities, helping lay the groundwork for potential future experimental investigations in particle physics. Her publications, including 61 refereed journal articles, demonstrate her ongoing contribution to the academic community, and her work is often cited by leading researchers in the field.

📚 Academic Cites

Yueling Yang’s research has been widely cited in academic journals such as Eur. Phys. J. C, Phys. Rev. D, and Chin. Phys. C, demonstrating the scholarly reach and relevance of his contributions. His recent work on QED corrections and factorization approaches continues to gain traction among peers in the theoretical physics community.

🧪 Research Skills

Prof. Yang excels in theoretical modeling, perturbative QCD, and computational analysis for particle physics processes. His methodical approach to applying QCD factorization and examining nonperturbative effects enables nuanced predictions of weak decay channels. These skills have been critical in acquiring competitive funding from agencies like the National Natural Science Foundation of China.

📖Teaching Experience

As a renowned educator, Yueling Yang has played a crucial role in shaping the academic development of many students. She has received multiple teaching awards, including the “Top 10 Distinguished Teachers” and the “Outstanding Teachers” awards from Henan Normal University. Her commitment to excellence in teaching is also reflected in her work as an Excellent Master’s Thesis Supervisor, an honor she will continue to hold into 2024.

🏅 Awards and Honors

Prof. Yang has received 6 major honorary titles, including:

  • 🏆 Excellent Master’s Thesis Supervisor of Henan Province (2024)

  • 🥈 Second Class Prize of the Henan Natural Science Award (2023)

  • 🌟 Outstanding Teacher and Example Lesson recognitions from Henan Normal University (2018, 2021)

  • 🎓 Top 10 Distinguished Teachers (2015)

These accolades reflect his all-around excellence in both education and research.

🧬 Legacy and Future Contributions

Looking ahead, Prof. Yueling Yang continues to expand his research on new physics effects in heavy meson decays and aims to bridge theory with upcoming experimental data from international particle collider facilities. His legacy is being shaped not only through his scientific contributions but also by the next generation of physicists he mentors. With new research grants and international collaborations underway, Prof. Yang is poised to make even deeper contributions to the understanding of fundamental particles and forces.

Publications Top Notes

The QED nonfactorizable correction to the semileptonic charmed three-body B decays

  • Authors: Yueling Yang, Liting Wang, Jiazhi Li, Qin Chang, Junfeng Sun
    Journal: European Physical Journal C
    Year: 2024

CEPC Technical Design Report: Accelerator

  • Authors: Waleed Abdallah, Tiago Carlos Adorno de Freitas, Konstantin G. Afanaciev, Tianlu Chen, Wei Chen
    Journal: Radiation Detection Technology and Methods
    Year: 2024

STCF conceptual design report (Volume 1): Physics & detector

  • Authors: M. N. Achasov, X. C. Ai, L. P. An, Baolin Hou, T. J. Hou
    Journal: Frontiers of Physics
    Year: 2024

Possibility of experimental study on nonleptonic weak decays

  • Authors: Yueling Yang, Liting Wang, Jinshu Huang, Qin Chang, Junfeng Sun
    Journal: Chinese Physics C
    Year: 2023

Feasibility of searching for the Cabibbo-favored D∗ → K ¯ π+, K ¯ ∗π+, K ¯ ρ+ decays

  • Authors: Yueling Yang, Kang Li, Zhenglin Li, Qin Chang, Junfeng Sun
    Journal: Physical Review D
    Year: 2022

 

Xiong Zhang | Computational Particle Physics | Best Researcher Award

Mr. Xiong Zhang | Computational Particle Physics | Best Researcher Award

Yan’an University | China

Xiong Zhang is a Lab Technician at the College of Physics and Electronic Information, Yan’an University. Born in Suide, Shaanxi, in September 1990, he has emerged as an innovative researcher in the field of electronic communications . Zhang is currently a PhD Candidate with a strong academic background and a focus on photocatalysis, MEMS systems, and smart technologies. His work spans research, teaching, and practical innovations, making him a significant contributor to both academia and industry.

👨‍🎓Profile

Scopus

Early Academic Pursuits 🎓

Xiong Zhang began his academic journey with a deep interest in electronic communications. After completing his undergraduate studies, he pursued advanced degrees and became a PhD candidate, dedicating his time to research in electronic systems and nanotechnology. His passion for innovative solutions in environmental applications began early, setting the foundation for his current work in photocatalysis and energy solutions.

Professional Endeavors 🔬

Throughout his career, Zhang has led and contributed to several cutting-edge research projects. These include the development of Beidou navigation systems, MEMS inertial navigation, and smart technologies like smart mountaineering clothes and dynamic wireless charging systems for electric vehicles 🚗🔋. As the principal investigator in several projects, he has showcased his leadership and commitment to technological advancement in both theoretical and practical applications.

Contributions and Research Focus 🧪

Zhang’s research is focused primarily on photocatalysis and environmental sustainability. His publications in SCI-3 and SCI-4 journals highlight his expertise in photocatalytic degradation and the design of advanced materials like g-C₃N₄BiVO₄ heterojunctions and Cr₂O₃ embedded g-C₃N₄ composites. His work seeks to improve the efficiency of photocatalytic systems for applications in environmental remediation and renewable energy production 🌱. In addition, Zhang’s research also delves into theoretical investigations of water splitting and metal-doped nanostructures for sustainable energy.

Impact and Influence 🌍

Xiong Zhang’s research has a direct impact on sustainable technologies, with a focus on green energy and environmental protection. By developing innovative photocatalytic systems, he contributes significantly to solving real-world challenges in pollution control and energy efficiency. His work has also influenced the development of smart wearable technologies, contributing to advanced health monitoring systems. Through these contributions, Zhang plays a vital role in environmental sustainability and energy innovation.

Academic Cites 📚

Zhang’s publications have gained considerable recognition in the academic community. His work in photocatalysis has led to citations from peers in related fields, indicating the relevance and application of his research. Being a first author on several influential papers, he has paved the way for further studies in energy materials, smart technologies, and sustainable development. His research is referenced by scientists and engineers working on similar projects, making him an influential figure in his field.

Research Skills 🔍

Xiong Zhang demonstrates exceptional research skills in both experimental and theoretical investigations. He is highly skilled in material synthesis, characterization techniques, and theoretical modeling. His expertise in designing and optimizing photocatalytic systems and MEMS-based technologies has positioned him as an expert in advanced materials and nanotechnology. Additionally, his experience in leading research projects and managing interdisciplinary teams showcases his leadership and collaborative abilities.

Teaching Experience 🧑‍🏫

Since 2018, Zhang has been actively involved in experimental teaching and laboratory management at Yan’an University. He teaches a range of courses in electronic communications, including “Analog Electronic Technology”, “Digital Electronic Technology Experiments”, and Electrical Engineering Experiments. He also provides valuable hands-on training to students, preparing them for real-world applications of electronic technologies. Starting in 2024, he will take on a more prominent teaching role in “Microcontroller Principles and Applications”, further contributing to the academic development of his students 💡.

Awards and Honors 🏆

Xiong Zhang’s dedication to academic excellence and student mentorship has been recognized with numerous awards:

  • University Student Electronic Design Competitions: Multiple awards, including First, Second, and Third Prizes, in the Shaanxi Division 🏅.
  • Yan’an University Teaching Achievement Award (2021): Second Prize, highlighting his teaching excellence 🏆.
  • Shaanxi Higher Education Scientific Research Achievement Award (2024): Third Prize, recognizing his contributions to scientific research 🎖️.

These awards reflect his commitment to academic excellence and his positive influence on both students and the broader research community.

Legacy and Future Contributions 🔮

Xiong Zhang’s work continues to evolve as he explores new areas in sustainable technologies and energy solutions. With his ongoing research projects, particularly in the field of synergistic photocatalytic mechanisms and metal-doped nanostructures, Zhang is poised to make even greater contributions to renewable energy and environmental sustainability. His legacy will likely be built on transformative advancements in clean technologies, smart systems, and energy innovation, helping shape the future of green energy and sustainable development 🌍.

Publications Top Notes

  • Enhanced the Efficiency of Photocatalytic Degradation of Methylene Blue by Construction of Z-Scheme g-C₃N₄BiVO₄ Heterojunction
    Authors: Xiong Zhang (First Author)
    Year: 2021

  • Facile Synthesis of Cr₂O₃ Embedded g-C₃N₄ Composites with Excellent Visible-Light Photocatalytic
    Authors: Xiong Zhang (First Author)
    Year: 2022

  • Theoretical Insight into Water Splitting Mechanism of B Doped Tri-s-Triazine-Based g-C₃N₄m-BiVO₄(001) Heterojunction Photocatalyst
    Authors: Xiong Zhang (First Author)
    Year: 2023

  • Theoretical Investigation of the sm-BiVO₄ of Different Surfaces for Photocatalytic Properties
    Authors: Xiong Zhang (First Author + Corresponding Author)
    Year: 2024

  • Basic Experiment Tutorial for Circuits and Electronic Technology
    Authors: Xiong Zhang (Associate Editor)
    Year: 2021