Mohammed salah Abd El minem | High energy physics | Physics Excellence in Industry Award

Dr. Mohammed salah Abd El minem | High energy physics | Physics Excellence in Industry Award

Assistant Professor at Physics Department, Faculty of Science, Al-Azhar University, Egypt

Mohamed Salah Abdel-Moneim Youssef is an Assistant Lecturer at the Department of Physics at Al-Azhar University, Assiut, Egypt. He holds a Bachelor’s degree in Physics (2012) and a Master’s degree from Al-Azhar University with a focus on optical properties of BiI3 thin films. He has been actively involved in teaching, research, and scientific activities, contributing significantly to the field of material science and optoelectronics.

👨‍🎓Profile

Google scholar

ORCID

Early Academic Pursuits 🎓

Mohamed began his academic journey at Al-Azhar University, where he earned his Bachelor’s degree in Physics in 2012. His academic prowess and commitment to the field were recognized when he was appointed as a Demonstrator in the Department of Physics in 2018. This early appointment demonstrated his passion for physics and his readiness to contribute to the academic community.

Professional Endeavors 🏢

Since 2018, Mohamed has worked as an Assistant Lecturer at Al-Azhar University, where he teaches both undergraduate and preparatory dental students. His teaching responsibilities include specialized courses such as Solid-State Physics, Electronics, Semiconductors, Nuclear Physics, and Modern Physics. His teaching experience reflects his broad knowledge of physics and his ability to simplify complex concepts for diverse student groups.

Contributions and Research Focus 🔬

Mohamed’s primary research focuses on material science and optoelectronics, particularly the structural and optical properties of thin films. His Master’s thesis was centered around the impact of gamma-irradiation on BiI3 thin films, aiming to improve optoelectronic devices. Two notable publications emerged from this research, contributing to the understanding of optical parameters in photovoltaic and nonlinear applications.

His PhD research continued to explore materials science, specifically the substitution of BaTiO3 in lead borosilicate glass for ultrasonic applications, published in the Journal of Materials Science: Materials in Electronics.

Impact and Influence 🌍

Through his research and academic contributions, Mohamed has played a key role in advancing the study of materials for optoelectronic applications. His work on BiI3 thin films and BaTiO3-substituted borosilicate glass has the potential to impact industries related to photovoltaics, optoelectronics, and ultrasonic technologies. By focusing on improving material properties, his research has practical applications that can enhance the performance and efficiency of various technologies.

Academic Cites 📚

Mohamed’s research has garnered recognition in prominent scientific journals. His paper on BaTiO3 substitution in borosilicate glass was published in the Journal of Materials Science: Materials in Electronics (35 (22), 1534). Additionally, his Master’s research resulted in two significant papers that have been well-received in the field of optoelectronics. These publications contribute to the growing body of knowledge in the field of materials science and physics.

Research Skills 🔍

Mohamed is proficient in a variety of research methodologies, including material characterization techniques such as ball milling, gamma-irradiation, and thin film deposition. He has hands-on experience in structural and optical characterization of materials, specifically in the context of optoelectronic applications. His analytical skills and ability to synthesize complex data enable him to draw meaningful conclusions that enhance our understanding of material properties.

Teaching Experience 🎓

In addition to his research activities, Mohamed has been actively involved in teaching physics since 2018. He has taught a variety of courses, including both general physics and specialized courses in solid-state physics, semiconductors, and nuclear physics. His ability to communicate complex ideas clearly and his commitment to educating the next generation of scientists demonstrate his dedication to academic excellence.

Legacy and Future Contributions 🚀

Looking forward, Mohamed is poised to continue making significant contributions to materials science and optoelectronics. His ongoing research, particularly in optical and ultrasonic technologies, holds immense potential for future industrial applications. As he continues to expand his research, collaborate with other researchers, and enhance his teaching, Mohamed will likely leave a lasting impact on both the academic and industrial communities.

Publications Top Notes

Structural and optical investigations of multi-component lead-borosilicate glasses containing PbO, BaO, and TiO2

  • Authors: M. Salah, El Sayed Moustafa, A.A. Showahy
    Journal: Optical Materials
    Year: 2025

Influence of BaTiO3 substitution on structural and thermal response of lead borosilicate glass for ultrasonic applications

  • Authors: M. Salah, El Sayed Moustafa, A.A. Showahy
    Journal: Journal of Materials Science: Materials in Electronics
    Year: 2024

Influence of γ-irradiation dose on the structure, linear and nonlinear optical properties of BiI3 thick films for optoelectronics

  • Authors: AM Abdelnaeim, M Salah, E Massoud, A EL-Taher, ER Shaaban
    Journal: Digest Journal of Nanomaterials & Biostructures (DJNB)
    Year: 2022

Optical parameters of various thickness of bismuth (III) iodide thin films for photovoltaic and nonlinear applications

  • Authors: M Salah, A Abdelnaeim, S Makhlolf, A El-Taher, ER Shaaban
    Journal: International Journal of Thin Film Science & Technology
    Year: 2022

A new one-parameter lifetime distribution and its regression model with applications

  • Authors: MS Eliwa, E Altun, ZA Alhussain, EA Ahmed, MM Salah, HH Ahmed, …
    Journal: PLOS ONE
    Year: 2021

 

Ngangkham Nimai Singh | High energy physics | Distinguished Scientist Award

Prof. Dr. Ngangkham Nimai Singh | High energy physics | Distinguished Scientist Award

Professor at Manipur University | India

Dr. Ngangkham Nimai Singh is a distinguished Theoretical Physicist and the current Director of the Research Institute of Science and Technology (RIST) in Manipur. With an academic career spanning over 30 years, Dr. Singh has made remarkable contributions to High Energy Physics (HEP) and is an influential figure in scientific research and education. His expertise in Grand Unified Theories (GUTs), Neutrino Physics, and QCD-oriented hadronic models makes him a globally recognized scientist.

👨‍🎓Profile

Google scholar

Scopus

Early Academic Pursuits 🎓

Dr. Singh’s educational journey began in Manipur, where he completed his early schooling before moving to Delhi University. There, he earned a B.Sc. in Physics (Hons.) in 1979, followed by an M.Sc. in Physics in 1981. His pursuit of higher knowledge led to an M.Phil. (1984) and a Ph.D. in Physics (1989), both from Delhi University, under the mentorship of the esteemed Prof. A. N. Mitra. Dr. Singh’s early academic training laid the foundation for his later contributions to theoretical physics.

Professional Endeavors 🌍

Dr. Singh’s professional career includes over 22 years of service at Gauhati University, where he held the positions of Lecturer, Reader, and eventually Professor. As Head of the Department of Physics (2010–2013), he played a crucial role in the department’s development. From 2013–2014, he served as a Professor and Head at Manipur University. Additionally, Dr. Singh has held various important positions such as Controller of Examination (I/C) at Manipur University and a PAC Member for International Cooperation/Physics at DST, New Delhi. His leadership extends to scientific bodies like PANE, NEAS, and MAPS.

Contributions and Research Focus 🔬

Dr. Singh’s research has had a transformational impact in the field of Theoretical High Energy Physics (HEP). His research interests include:

  • Grand Unified Theories (GUTs) such as SU(5) and SO(10), exploring the unification of the fundamental forces of nature.

  • Neutrino Physics, focusing on the origin of neutrino masses and mixings.

  • Baryogenesis through Leptogenesis, aiming to understand the matter-antimatter asymmetry in the universe.

  • Higgs Physics and Proton Decay, investigating the fundamental particles and forces.

  • Relativistic Few-Quark Dynamics and Quark Confinement, including QCD-oriented hadronic models and Bethe Salpeter Dynamics.

His research has contributed significantly to the understanding of the standard model of particle physics and beyond, particularly in the areas of neutrino masses, Higgs boson properties, and proton decay.

Impact and Influence 🌐

Dr. Singh’s impact extends far beyond his research. His role as a founding member of numerous scientific organizations, including the North East Academy of Sciences (NEAS), Physics Academy of North East (PANE), and Manipur Centre of Scientific Culture, highlights his dedication to the promotion of science in the northeastern region of India. Dr. Singh has also served as a visiting associate at prestigious institutions like PRL Ahmedabad and ICTP Trieste, fostering global collaborations. As President of PANE, he has worked tirelessly to advance scientific education and promote collaboration among physicists in the region, shaping the future of Physics in Northeast India.

Academic Cites 📚

Dr. Singh’s work has been cited in numerous academic papers and has contributed to the development of Grand Unified Theories (GUTs) and Neutrino Physics. His research on quark dynamics and light-cone physics has helped refine QCD models and deepen the scientific understanding of hadronic structures. His findings in Higgs physics, Baryogenesis, and Proton Decay continue to be foundational for researchers in particle physics worldwide.

Research Skills 🔍

Dr. Singh is highly skilled in theoretical modeling and quantitative analysis, focusing on complex phenomena in high-energy physics. His ability to formulate and solve problems in quantum chromodynamics (QCD), neutrino mass models, and baryogenesis is unmatched. Furthermore, his interdisciplinary approach, combining elements of quantum mechanics, relativistic dynamics, and cosmology, sets him apart as a pioneering researcher in his field.

Teaching Experience 🍎

With three decades of experience in academia, Dr. Singh has mentored and guided numerous graduate and postgraduate students. His role as a Professor and Head of the Department of Physics at Gauhati University and Manipur University allowed him to impart valuable knowledge on high-energy physics, theoretical models, and advanced quantum mechanics. He is also a respected research supervisor, helping students push the boundaries of particle physics.

Awards and Honors 🏅

Dr. Singh’s contributions have been widely recognized throughout his career:

  • Commonwealth Fellowship (1999-2000) at Southampton University, UK.

  • Visiting Associate at the Physical Research Laboratory (PRL), Ahmedabad.

  • Regular Associate at the ICTP, Trieste.

  • Member of the All India Theoretical Physics Seminar Circuit (2004-2005).

These accolades, along with his research collaborations and leadership in scientific societies, underscore his global recognition and influence in the scientific community.

Legacy and Future Contributions 🌱

Dr. Singh’s legacy is defined by his dedication to scientific progress and his mentorship of future generations of physicists. His involvement in founding scientific organizations in the Northeast has created lasting structures for the promotion of physics in the region. In the future, Dr. Singh’s research on neutrino physics, proton decay, and quark confinement is likely to continue influencing the field of high-energy physics. As a leader, educator, and researcher, he will undoubtedly leave an enduring mark on the scientific community, especially in advancing particle physics and cosmological theories.

Publications Top Notes

A5 symmetry and deviation from golden ratio mixing with charged lepton flavor violation

  • Authors: V. Puyam, Ngangkham Nimai Singh
    Journal: Nuclear Physics, Section B
    Year: 2025

Perturbation to μ -τ symmetry using type I and type II seesaw mechanisms under SU(2)L × Δ (27) × Z2 flavor symmetry

  • Authors: P. Wilina, Ngangkham Nimai Singh
    Journal: Modern Physics Letters A
    Year: 2025

Modular A4 symmetry in 3 + 1 active-sterile neutrino masses and mixings

  • Authors: Mayengbam Kishan Singh, Soram Robertson Singh, Ngangkham Nimai Singh
    Journal: International Journal of Modern Physics A
    Year: 2024

A randomly generated Majorana neutrino mass matrix using adaptive Monte Carlo method

  • Authors: Yuvraj Monitar Singh, Mayengbam Kishan Singh, Ngangkham Nimai Singh
    Journal: International Journal of Modern Physics A
    Year: 2024

Comparative analysis on the validity of golden ratio, tri-bimaximal, hexagonal and bimaximal neutrino mixing patterns under the radiative corrections

  • Authors: Yuvraj Monitar Singh, Moirangthem Shubhakanta Singh, Ngangkham Nimai Singh
    Journal: Physica Scripta
    Year: 2024