SHARJEEL AHMED | Particle Experiments | Best Researcher Award

Dr. SHARJEEL AHMED | Particle Experiments | Best Researcher Award

PhD Researcher at University of Science and Technology China (USTC), Chinese Academy of Science,Institute of Metal Research (CAS, IMR) | China

Dr. Sharjeel Ahmed is a PhD Researcher at the University of Science and Technology China (USTC), Chinese Academy of Science, Institute of Metal Research (CAS, IMR), China. He completed his master’s degree from Donghua University (DHU), China, and earned his PhD from USTC. His research specializes in photoresponsive nanomaterials and smart fluorescence coatings, focusing on oxygen-deficient nanomaterials for photocolorswitching properties and early-stage corrosion detection.

👨‍🎓Profile

Scopus

ORCID

Early Academic Pursuits 🎓

Dr. Ahmed’s academic journey began at Donghua University (DHU), where he obtained his master’s degree. Building on this foundation, he continued his research at USTC, a leading institution in nanotechnology and materials science. His early academic work laid the groundwork for his specialization in nanomaterials and coating technologies that can respond to environmental triggers like light, opening new avenues in corrosion detection and smart materials.

Professional Endeavors 🏢

Throughout his professional career, Dr. Ahmed has collaborated with eminent scholars, such as Prof. Liu Fuchun from Northwestern Polytechnical University, and has contributed significantly to research projects focused on the preparation technology of micro-nano structures and self-repair mechanisms for coatings. His work bridges academic research and industry applications, ensuring his contributions are impactful both in laboratories and in practical solutions.

Contributions and Research Focus 🔬

Dr. Ahmed’s main research interests lie in photoresponsive nanomaterials, particularly in smart fluorescence coatings and early-stage corrosion detection. He has developed oxygen-deficient nanomaterials for photocolorswitching properties, which react to light stimuli to produce fluorescent signals when exposed to corrosive environments. These innovations have been pivotal in solving the limitations of traditional coatings, which lack intelligent early-warning systems.

He has authored 21 research articles in high-impact journals, including top publications like Chemical Engineering Journal, Nanoscale, and Colloids and Surfaces A. Additionally, he holds a patent (CN111394094-A; CN111394094-B) for a dual-band light-responsive reversible color solution, showcasing his innovative contributions to smart materials.

Impact and Influence 🌍

Dr. Ahmed’s research has had a substantial impact on materials science, especially in the development of smart coatings for corrosion detection. His fluorescent smart coatings are expected to revolutionize industries such as aerospace, automotive, and marine engineering, where early detection of corrosion can prevent extensive damage and improve material longevity. His work has been widely cited and continues to influence both academic research and practical applications in coatings technology.

Academic Cites 📚

With 422 citations and an h-index of 10, Dr. Ahmed has garnered recognition for his influential contributions to the field of nanomaterials and coatings technology. His papers, particularly as the first author, in journals such as Materials Chemistry and Physics and Journal of Materials Science and Technology, reflect the significant impact of his work within the scientific community.

Research Skills 🛠️

Dr. Ahmed has mastered several advanced techniques in nanomaterials preparation, including synthesis of oxygen-deficient materials, fluorescence analysis, and computational modeling. His research is not only grounded in experimental work but also utilizes computational science to predict the behavior of materials under various environmental conditions. His ability to combine both experimental and computational approaches gives his work a robust scientific foundation.

Teaching Experience 👨‍🏫

Though primarily a researcher, Dr. Ahmed’s teaching experience is an integral part of his professional journey. At USTC, he has contributed to educating the next generation of materials scientists, particularly in the area of nanomaterials and smart coatings. He mentors students and provides them with invaluable guidance on research methodology and cutting-edge technologies in nanotechnology.

Awards and Honors 🏅

Dr. Ahmed’s excellence in research has earned him recognition in the form of publications in top-tier journals and inclusion in major collaborative projects. Although specific awards are not listed, his patent and high citation index suggest that his work is highly respected within the scientific community. His ongoing research and contributions place him in a strong position to receive further academic and professional accolades.

Legacy and Future Contributions 🔮

Dr. Sharjeel Ahmed is paving the way for future innovations in smart materials, particularly in nanomaterials that are both responsive and intelligent. As his work continues to evolve, it will likely contribute to environmentally sustainable and cost-effective solutions for industries ranging from coatings and corrosion detection to advanced textiles. His future endeavors may include expanding his patent portfolio, collaborating with industries, and broadening his research into emerging areas such as energy storage materials or biodegradable coatings.

Publications Top Notes

  • A review of advancement in fluorescence-based corrosion detection for metals and future prospects
    Authors: Sharjeel Ahmed, Hongwei Shi, Mustehsin Ali, Imran Ali, Fuchun Liu, En-Hou Han
    Journal: Journal of Materials Science & Technology
    Year: 2025

  • Epoxy coating containing CoMOF@MBT metal-organic framework for active protection of aluminum alloy
    Authors: Nwokolo, Izuchukwu K.; Shi, Hongwei; Ikeuba, Alexander I.; Liu, Fuchun; Ahmed, Sharjeel; Zhang, Wanyu
    Journal: Surface and Coatings Technology
    Year: 2024

  • Modified Graphene Micropillar Array Superhydrophobic Coating with Strong Anti-Icing Properties and Corrosion Resistance
    Authors: Zhang, Wanyu; Liu, Fuchun; Li, Yushan; Chen, Tao; Nwokolo, Izuchukwu Kenneth; Ahmed, Sharjeel; Han, En-Hou
    Journal: Coatings
    Year: 2024

  • UV light-triggered fluorescence corrosion sensing coatings for AA2024-T3 based on 8-hydroxyquinline loaded vanadium oxide nanorods
    Authors: Sharjeel Ahmed
    Journal: Colloids and Surfaces A: Physicochemical and Engineering Aspects
    Year: 2024

  • Catalytic degradability and anti-permeability of peelable coating based on organophosphate nerve agent simulants
    Authors: Gao, Ningjie; Ahmed, Sharjeel; Zhang, Wanyu; Li, Jiwen; Liu, Fuchun
    Journal: Colloids and Surfaces A: Physicochemical and Engineering Aspects
    Year: 2023

 

Particle Experiments

 

Introduction to Particle Experiments:

Particle experiments are at the forefront of scientific discovery, offering unique insights into the fundamental properties of matter, the universe's structure, and the behavior of subatomic particles. These experiments use advanced detectors, accelerators, and observation techniques to probe the fundamental forces and particles that make up the cosmos. Particle physicists and researchers conduct these experiments to unlock the mysteries of the universe and test the predictions of theoretical models.

Large Hadron Collider (LHC) Experiments:

Explore the experiments conducted at the LHC, one of the world's most powerful particle accelerators, including ATLAS and CMS, which have played a crucial role in the discovery of the Higgs boson and other high-energy phenomena.

Neutrino Experiments:

Investigate experiments designed to study neutrinos, elusive particles with extremely weak interactions, such as the Super-Kamiokande and IceCube experiments, which have contributed to our understanding of neutrino oscillations and astrophysical neutrinos.

Dark Matter Detection:

Delve into experiments aimed at detecting and characterizing dark matter, a mysterious substance that makes up a significant portion of the universe's mass, including experiments like DAMA/LIBRA and XENON.

Cosmic Ray Observations:

Focus on cosmic ray experiments that observe high-energy particles from space, like the Pierre Auger Observatory, which provides insights into the origin and nature of cosmic rays.

Precision Electroweak Measurements:

Examine experiments dedicated to making precise measurements of fundamental parameters in the electroweak sector, such as the LEP experiments and atomic parity violation studies.

 

 

 

  Introduction of Chiral spinors and helicity amplitudes Chiral spinors and helicity amplitudes are fundamental concepts in the realm of quantum field theory and particle physics    They play a
  Introduction to Chiral Symmetry Breaking: Chiral symmetry breaking is a pivotal phenomenon in the realm of theoretical physics, particularly within the framework of quantum chromodynamics (QCD) and the study
  Introduction to Effective Field Theory and Renormalization: Effective field theory (EFT) and renormalization are foundational concepts in theoretical physics, particularly in the realm of quantum field theory. They provide
  Introduction to Experimental Methods: Experimental methods are the backbone of scientific investigation, enabling researchers to empirically explore and validate hypotheses, theories, and concepts. These techniques encompass a wide array
  Introduction to Free Particle Wave Equations: Free particle wave equations are fundamental concepts in quantum mechanics, describing the behavior of particles that are not subject to external forces. These
  Introduction to High Energy Physics: High-energy physics, also known as particle physics, is a branch of science dedicated to the study of the most fundamental building blocks of the
  Introduction to Interactions and Fields: Interactions and fields form the foundation of modern physics, providing the framework for understanding how particles and objects interact with one another and the
  Introduction to Invariance Principles and Conservation Laws: Invariance principles and conservation laws are fundamental concepts in physics that play a pivotal role in understanding the behavior of the physical
  Introduction to Lepton and Quark Scattering and Conservation Laws: Lepton and quark scattering processes are fundamental phenomena in particle physics, allowing us to probe the structure and interactions of
  Introduction to Particle Physics and Cosmology: Particle physics and cosmology are two closely intertwined fields of scientific inquiry that seek to unravel the mysteries of the universe at both