Bei Chen | High energy physics | Best Researcher Award

Ms. Bei Chen | High energy physics | Best Researcher Award

Tianjin University of Technology | China

Chen Bei is a dynamic Photoelectric Chip Engineer specializing in Condensed Matter Physics with a focus on inorganic semiconductor materials and devices. With solid academic roots and research training from prestigious institutions like Tianjin University of Technology and National University of Defense Technology, Chen Bei is known for his hands-on expertise in photoelectric device fabrication, characterization, and broadband photodetectors. His works contribute to both civilian innovations and defense technologies, demonstrating a rare blend of academic excellence and applied engineering acumen.

👨‍🎓Profile

Scopus

🎓 Early Academic Pursuits

Chen Bei began his academic journey in Physics at Inner Mongolia University for Nationalities, where he ranked Top 3 of 50 students and held a leadership role as Vice Minister in the student organization department. His undergraduate studies emphasized quantum mechanics, solid-state physics, and electrodynamics, laying the groundwork for a career in advanced material science. His academic excellence continued with a Master’s in Condensed Matter Physics at Tianjin University of Technology, where he consistently ranked in the top 5 and received competitive scholarships and teaching responsibilities.

💼 Professional Endeavors

Currently serving as a Photoelectric Chip Engineer at the Jiangtian Research Group (National University of Defense Technology), Chen Bei’s role includes testing photoelectric chip packaging, bare die analysis, and optical path construction. This position builds on his experience in device fabrication, gained through years of semiconductor research. His ongoing work explores integration strategies for military-grade silicon-based photonic systems, marking a critical step in real-world technological deployment. His engineering contributions are aligned with national priorities and show potential for both academic and industrial breakthroughs.

🔬 Contributions and Research Focus

Chen Bei’s research spans self-powered broadband photodetectors, artificial retina simulation, optically controlled logic, and device integration for defense. Notable among these is his published work in ACS Applied Materials & Interfaces, where he developed a CuInS₂/SnO₂-based detector for encrypted optical communication. His focus on interfacial engineering using TiO₂ layers and metal ion doping shows deep engagement with optimizing device sensitivity and functionality across UV–Vis–NIR bands. These contributions are not only novel but also have tangible technological applications.

🌐 Impact and Influence

Chen Bei’s research has already gained peer recognition, with publications in high-impact journals and ongoing projects that promise cross-disciplinary relevance in biophotonics, optoelectronics, and secure communications. His work on retina-inspired photodetectors and photoelectric logic systems can significantly influence medical imaging, wearable sensors, and neuromorphic computing. Within his research institutions, he is recognized as a bridge between theory and application, contributing meaningfully to team outcomes while enhancing national R&D capabilities in semiconductor optics.

📚 Academic Citations

Chen Bei’s primary publication in ACS Applied Materials & Interfaces has received early attention in the material sciences and applied physics community. His upcoming article in Materials Today Energy a high-impact journal will further solidify his standing in energy-sensitive optoelectronic applications. With growing citation potential and interdisciplinary value, his publications are expected to form reference points for future research in low-power photoelectronic systems and bio-inspired photonic devices.

🧪 Research Skills

Chen Bei possesses strong experimental proficiency, including semiconductor material synthesis (spin-coating, hydrothermal, chemical bath deposition) and advanced characterization (SEM, TRPL, XRD, UV-Vis spectroscopy). His fluency with electronic instrumentation like Keithley source meters, vector network analyzers, and electrochemical workstations enables accurate and nuanced analysis of device behavior. He also designs and fabricates devices independently skills that mark him as a complete researcher from concept to validation. His strong grip on Origin, JADE, and Layout software also facilitates precise data interpretation and device simulation.

👨‍🏫 Teaching Experience

As a graduate teaching assistant at Tianjin University of Technology, Chen Bei supported students in both practical laboratory sessions and coursework in advanced physics topics. His ability to explain complex concepts like semiconductor devices, photonic behavior, and materials characterization reflects his aptitude for mentorship. He played a pivotal role in connecting theoretical learning with lab-based exploration an experience that underlines his capacity to contribute in academic or training-focused environments.

🏅 Awards and Honors

Chen Bei has consistently ranked among the top students, earning Second-Class Scholarships during both his bachelor’s and master’s studies. His selection as Vice Minister of the student organization department reflects strong leadership and organizational abilities. Recognition as a graduate assistant also attests to his teaching competence and trust within the academic community. These accolades, coupled with peer-reviewed publications, position him as a rising talent in applied physics and engineering.

🌟 Legacy and Future Contributions

Chen Bei is positioned to become a thought leader in optoelectronic integration and semiconductor device engineering. His work has the potential to impact military-grade communication, biomimetic sensors, and self-powered IoT technologies. With growing experience in multidisciplinary collaborations, and exposure to real-world implementation scenarios, he is set to define the next wave of photoelectric innovation. As he continues to evolve, his blend of scientific insight, engineering rigor, and innovation-minded focus will be instrumental in shaping future technologies.

Publications Top Notes

UV-Vis-NIR Broad-Band Self-Powered CuInS₂/SnO₂ Photodetectors and the Application in Encrypted Optical Communication
  • Authors: Chen Be
    Journal: ACS Applied Materials & Interfaces
    Year: 2024

Insertion Layer of TiO₂ to Improve the UV−Vis−NIR Photoresponse Characteristics of CuInS₂/SnO₂ Self-Powered Photodetectors and Its Application in Artificial Retinas
  • Authors: Chen Bei
    Journal: Materials Today Energy
    Year: 2024

 

Xiangling Tian | High energy physics | Best Researcher Award

Assoc. Prof. Dr. Xiangling Tian | High energy physics | Best Researcher Award

University of Electronic Science and Technology of China | Yangtze Delta Region Institute (Quzhou) | China

Dr. Xiangling Tian is an accomplished Associate Researcher at the University of Electronic Science and Technology of China and the Yangtze Delta Region Institute (Quzhou). With a Ph.D. in Materials Science, his research focuses on optoelectronic devices, nanowire-based scintillators, and nonlinear optics. He has held research positions at prestigious institutions, including Zhejiang Laboratory and Nanyang Technological University in Singapore. His expertise lies in advanced photonic materials, smart medical imaging technologies, and optical properties of low-dimensional semiconductors. A dynamic and emerging figure in material sciences, Dr. Tian has made substantial contributions through high-impact research, international collaborations, and innovative technologies.

👨‍🎓Profile

Scopus 

ORCID

🎓 Early Academic Pursuits

Dr. Tian’s academic journey began with a B.Sc. in Physics from Qufu Normal University, where he laid a solid foundation in theoretical and experimental physics. He earned his M.Sc. in Condensed Matter Physics at Zhejiang Normal University, focusing on mechanoluminescence. His academic ascent culminated in a Ph.D. in Materials Science from South China University of Technology (2015–2018), under Prof. Jianrong Qiu, with a dissertation on optical nonlinearity in transition metal chalcogenides and bismuth oxyselenide. These formative years shaped his deep interest in photonic materials and advanced optical phenomena.

💼 Professional Endeavors

Dr. Tian has undertaken several impactful research roles. At Nanyang Technological University, he explored multidimensional perovskites for high-performance light-emitting devices. As an Associate Researcher at Zhejiang Laboratory, he contributed to near-infrared materials and smart fibers. Since 2022, he has held a leading role at UESTC, where he conducts research, mentors young talent, and advances technology transfer initiatives. His professional work demonstrates a balance of scientific leadership, project execution, and collaborative innovation across interdisciplinary domains, particularly in optoelectronics, nanomaterials, and biomedical imaging.

🔬 Contributions and Research Focus

Dr. Tian’s research centers on smart medical imaging devices, high-resolution scintillators, and nonlinear optical materials. He is the Principal Investigator (PI) of several key national and regional projects, including those on DBR lasers, nanowire waveguides, and perovskite quantum dots. His interdisciplinary work connects materials science, photonics, and device engineering, with applications ranging from X-ray imaging to NIR spectroscopy. He is also advancing flexible scintillators and artificial muscle fibers, reflecting his interest in next-generation wearable and biomedical technologies. His research not only expands scientific knowledge but also drives real-world innovations.

🌍 Impact and Influence

Dr. Tian’s work has made significant academic and societal impacts. His research outcomes have enhanced the performance of medical imaging systems, contributed to green optoelectronics, and led to highly cited publications in journals like Advanced Optical Materials and ACS Applied Materials & Interfaces. He actively contributes as a peer reviewer for top journals and has helped organize international conferences, demonstrating his influence in the global scientific community. His innovations in nonlinear optics and nanowire-based scintillators are gaining attention across photonics and materials science sectors, showcasing his growing influence as a thought leader.

📚 Academic Cites

Dr. Tian has published over 15 journal articles, including first-author and corresponding-author papers in SCI-indexed journals such as Nanoscale, Ceramics International, and Journal of Materials Chemistry C. His works are increasingly cited by peers in fields spanning photonics, optics, materials science, and biomedical engineering. He has also co-authored a Springer book and contributed to book chapters, further expanding his academic footprint. With multiple ongoing projects funded by NSFC, his publications continue to influence emerging research on scintillation, laser technologies, and nonlinear optical phenomena.

🛠️ Research Skills

Dr. Tian possesses strong interdisciplinary and technical proficiencies. His laboratory expertise includes TEM, SEM, AFM, XRD, and FTIR, while his computational toolkit covers MATLAB, Python, and data analysis for photonic simulations. He excels in nanomaterial synthesis, glass ceramics, and quantum dot engineering, particularly for light emission and imaging applications. His hands-on ability in fabrication and characterization supports the development of cutting-edge optical devices. With excellent project management and proposal writing experience, he is a complete researcher bridging lab-based innovation and practical device application.

👩‍🏫 Teaching Experience

While primarily research-focused, Dr. Tian is actively involved in talent cultivation through mentorship and research supervision. At UESTC, he engages with graduate students and junior researchers, providing guidance on project design, experimentation, and publication. His academic mentoring is supported by his international exposure and practical lab skills. Though formal teaching roles are less emphasized in his profile, his impact on training future scientists through hands-on instruction and project leadership is evident, especially in high-tech fields like nanophotonics and bioimaging materials.

🏆 Awards and Honors

Dr. Tian’s excellence has been recognized through several prestigious awards. He won the Zhejiang Provincial Natural Science Award (Second Prize) for his work on low-dimensional semiconductors and photonic applications. He was a Finalist in the Yuanchuang Cup Innovation Competition for designing a bionic compound eye system. Additionally, he received the Outstanding Ph.D. Dissertation Award and was named an Outstanding Graduate Student in Guangdong. These honors underscore his scientific creativity, innovation, and leadership within the academic and applied research communities.

🚀 Legacy and Future Contributions

Looking ahead, Dr. Tian aims to drive advancements in high-performance biomedical imaging, flexible photonic devices, and quantum optoelectronics. His legacy will likely include bridging fundamental research with translational technologies, impacting healthcare, defense, and energy sectors. By mentoring young scientists and leading collaborative research efforts, he is shaping a sustainable and inclusive scientific culture. With his robust publication record, research funding success, and international outlook, Dr. Tian is poised to make lasting contributions as a visionary leader in materials science and photonics innovation.

Top Noted Publications

High-temperature X-ray Time-lapse Imaging Based on the Improved Scintillating Performance of Na₅Lu₉F₃₂:Tb³⁺ Glass Ceramics

  • Authors: Rongfei Wei*, Ying Chen, Li Wang, Junwei Pan, Xiangling Tian*, Fangfang Hu, and Hai Guo*

  • Journal: Advanced Optical Materials

  • Year: 2025

Improved broadband luminescence in Gd₂GaSb₁₋ₓTaₓO₇:Cr³⁺,Yb³⁺ pyrochlore phosphors: Near-infrared spectroscopic applications and dual-mode optical thermometry

  • Authors: Ligan Ma, Rongfei Wei*, Qingqing Yu, Peican Dai, Xiangling Tian⁎⁎, Fangfang Hu, Hai Guo***

  • Journal: Materials Today Chemistry

  • Year: 2024

Enhanced scintillating performance in Tb³⁺ doped oxyfluoride glass for high-resolution X-ray imaging

  • Authors: Lanjiao Li, Rongfei Wei*, Li Wang, Xiangling Tian⁎⁎, Xiaoman Li, Fangfang Hu, Hai Guo***

  • Journal: Ceramics International

  • Year: 2024

Achieving an Improved NIR Performance of Ca₄₋ₓSc₂ₓZr₁₋ₓGe₃O₁₂:Cr³⁺ via [Sc³⁺-Sc³⁺] → [Ca²⁺-Zr⁴⁺]

  • Authors: Ying Chen, Rongfei Wei*, Lanjiao Li, Xiangling Tian*, Fangfang Hu, and Hai Guo*

  • Journal: Inorganic Chemistry

  • Year: 2024

Enhanced thermal stability of broadband NIR phosphors Ca₃.₃Mg₀.₇ZrGe₃O₁₂:Cr³⁺ for pc-LEDs

  • Authors: Lanjiao Li, Ying Chen, Rongfei Wei*, Siyu Guo, Xiangling Tian*, Fangfang Hu, Hai Guo*

  • Journal: Journal of Alloys and Compounds

  • Year: 2025

 

 

 

Ravishankar Ambi | High energy physics | Best Researcher Award

Assist. Prof. Dr. Ravishankar Ambi | High energy physics | Best Researcher Award

Assistant Professor at Jaysingpur College, Jaysingpur | India

Dr. Ravishankar Ramesh Ambi is a dedicated physicist specializing in material science and thin film gas sensor technology. Awarded a Ph.D. in Physics from Shivaji University, Kolhapur in July 2024, he has established himself as an emerging researcher focusing on advanced nanomaterials for energy conversion and storage devices. His academic journey reflects a consistent pursuit of knowledge, culminating in innovative research outputs and contributions to both science and education.

👨‍🎓Profile

Scopus

🎓 Early Academic Pursuits

Dr. Ambi’s educational foundation is rooted in physics, starting with a Bachelor of Science (B.Sc.) from Jaysingpur College, followed by a Master of Science (M.Sc.) from Shivaji University, where he secured First Class with a percentage of 55.21%. His academic diligence from the early stages set the stage for his advanced research, culminating in a Ph.D. thesis on “Studies on Metal Oxide NiO coated ZnO thin films for gas sensing application,” showcasing his growing expertise in nanomaterial sciences.

💼 Professional Endeavors

Since July 2024, Dr. Ambi has been contributing as a faculty member in the Department of Physics at Jaysingpur College, engaging in both teaching and research. Alongside his academic duties, he has taken on roles such as Theory Exam Junior Supervisor and Practical Lab Expert, reflecting his commitment to academic integrity and student development. His participation in workshops and seminars further demonstrates his proactive engagement with the evolving educational landscape.

🔬 Contributions and Research Focus

Dr. Ambi’s primary research areas include material science, thin film gas sensors, and energy conversion and storage devices. His significant research work has led to the publication of several papers in reputable international journals, including those with high impact factors (up to 4.1). He holds a patent for vertically aligned ZnO nanorod films aimed at highly sensitive and selective NO2 gas detection, highlighting his contribution to applied science and sensor technology innovation.

🌟 Impact and Influence

Through his research on metal oxide coated ZnO thin films and gas sensors, Dr. Ambi addresses critical challenges in environmental monitoring and energy technologies. His work on NiO nanosheets and hierarchical heterostructures has enhanced the sensitivity and selectivity of gas sensors, contributing to improved air quality detection methods. His active participation in international conferences and national workshops amplifies his influence in the scientific community.

📚 Academic Cites and Publications

Dr. Ambi has published at least five significant research papers, including contributions in Applied Physics A, Materials Science & Engineering B, and Sensors and Actuators A: Physical, journals recognized for their academic rigor and impact. His papers focus on novel nanostructures for gas sensing, reflecting both theoretical insight and practical applications. These publications contribute to his growing academic reputation and serve as references for ongoing research in the field.

🧰 Research Skills

Dr. Ambi exhibits strong competencies in thin film deposition techniques, chemical synthesis of nanomaterials, and characterization methods such as spectroscopy and microscopy. His expertise extends to fabricating nanostructured sensors with enhanced performance, and he has experience managing funded research projects, including a notable project with IIT Bombay’s Centre of Excellence in Nano-electronics. These skills position him as a valuable asset for both academic and applied research.

👨‍🏫 Teaching Experience

Since his appointment in July 2024, Dr. Ambi has actively contributed to the academic growth of physics students at Jaysingpur College. He has taught undergraduate courses aligned with the new NEP-2020 curriculum, participated in curriculum workshops, and overseen laboratory practicals. His role extends beyond teaching, including organizing examinations and serving on committees, showcasing a holistic approach to education.

🏆 Awards and Honors

Dr. Ambi’s notable achievement includes the award of his Ph.D. in 2024 and securing research grants for projects on ZnO thin films. His published patent further emphasizes his innovative capabilities. Though early in his career, his consistent research output and academic contributions position him well for future awards and recognitions.

🌱 Legacy and Future Contributions

With a strong foundation in nanomaterials and sensor technology, Dr. Ambi is poised to make significant contributions to environmental monitoring and sustainable energy solutions. His dedication to research, combined with his active teaching role, suggests a promising future as both a scientist and educator. Continuing to expand his research network and international collaborations will further enhance his impact and legacy in the scientific community.

Top Noted Publications

NiO nanosheet-assembled chemiresistive for NO2 detection

  • Authors: R. R. Ambi, R. A. Mali, A. B. Pawar, M. G. Mulla, R. K. Pittala
    Journal: Applied Physics A (Appl. Phys A)
    Year: 2025

Highly porous hierarchical NiO coated ZnO p-n heterostructure for NO2 detection

  • Authors: R. R. Ambi, A. A. Mane, V. B. Patil, R. D. Mane
    Journal: Materials Science & Engineering B
    Year: 2024

Highly porous NiO microstructure for NO2 detection

  • Authors: R. R. Ambi, A. A. Mane, R. D. Tasgaonkar, R. D. Mane
    Journal: Physica B: Condensed Matter
    Year: 2024

NO2 Sensing properties of chemically deposited vertically aligned flowerlike hexagonal ZnO nanorods

  • Authors: R. R. Ambi, M. G. Mulla, R. J. Pittala
    Journal: Sensors and Actuators A: Physical (Sens. Actuators: A Phys.)
    Year: 2024

Synthesis and Characterization of CdO Thin Films by Spray Pyrolysis Method

  • Authors: R. D. Mane, A. B. Patil, R. R. Ambi, U.E. Mote, R. D. Tasgaonkar
    Journal: Research Journal of Life Science, Bioinformatics, Pharmaceutical and Chemical Science
    Year: 2022

 

Mohammed salah Abd El minem | High energy physics | Physics Excellence in Industry Award

Dr. Mohammed salah Abd El minem | High energy physics | Physics Excellence in Industry Award

Assistant Professor at Physics Department, Faculty of Science, Al-Azhar University, Egypt

Mohamed Salah Abdel-Moneim Youssef is an Assistant Lecturer at the Department of Physics at Al-Azhar University, Assiut, Egypt. He holds a Bachelor’s degree in Physics (2012) and a Master’s degree from Al-Azhar University with a focus on optical properties of BiI3 thin films. He has been actively involved in teaching, research, and scientific activities, contributing significantly to the field of material science and optoelectronics.

👨‍🎓Profile

Google scholar

ORCID

Early Academic Pursuits 🎓

Mohamed began his academic journey at Al-Azhar University, where he earned his Bachelor’s degree in Physics in 2012. His academic prowess and commitment to the field were recognized when he was appointed as a Demonstrator in the Department of Physics in 2018. This early appointment demonstrated his passion for physics and his readiness to contribute to the academic community.

Professional Endeavors 🏢

Since 2018, Mohamed has worked as an Assistant Lecturer at Al-Azhar University, where he teaches both undergraduate and preparatory dental students. His teaching responsibilities include specialized courses such as Solid-State Physics, Electronics, Semiconductors, Nuclear Physics, and Modern Physics. His teaching experience reflects his broad knowledge of physics and his ability to simplify complex concepts for diverse student groups.

Contributions and Research Focus 🔬

Mohamed’s primary research focuses on material science and optoelectronics, particularly the structural and optical properties of thin films. His Master’s thesis was centered around the impact of gamma-irradiation on BiI3 thin films, aiming to improve optoelectronic devices. Two notable publications emerged from this research, contributing to the understanding of optical parameters in photovoltaic and nonlinear applications.

His PhD research continued to explore materials science, specifically the substitution of BaTiO3 in lead borosilicate glass for ultrasonic applications, published in the Journal of Materials Science: Materials in Electronics.

Impact and Influence 🌍

Through his research and academic contributions, Mohamed has played a key role in advancing the study of materials for optoelectronic applications. His work on BiI3 thin films and BaTiO3-substituted borosilicate glass has the potential to impact industries related to photovoltaics, optoelectronics, and ultrasonic technologies. By focusing on improving material properties, his research has practical applications that can enhance the performance and efficiency of various technologies.

Academic Cites 📚

Mohamed’s research has garnered recognition in prominent scientific journals. His paper on BaTiO3 substitution in borosilicate glass was published in the Journal of Materials Science: Materials in Electronics (35 (22), 1534). Additionally, his Master’s research resulted in two significant papers that have been well-received in the field of optoelectronics. These publications contribute to the growing body of knowledge in the field of materials science and physics.

Research Skills 🔍

Mohamed is proficient in a variety of research methodologies, including material characterization techniques such as ball milling, gamma-irradiation, and thin film deposition. He has hands-on experience in structural and optical characterization of materials, specifically in the context of optoelectronic applications. His analytical skills and ability to synthesize complex data enable him to draw meaningful conclusions that enhance our understanding of material properties.

Teaching Experience 🎓

In addition to his research activities, Mohamed has been actively involved in teaching physics since 2018. He has taught a variety of courses, including both general physics and specialized courses in solid-state physics, semiconductors, and nuclear physics. His ability to communicate complex ideas clearly and his commitment to educating the next generation of scientists demonstrate his dedication to academic excellence.

Legacy and Future Contributions 🚀

Looking forward, Mohamed is poised to continue making significant contributions to materials science and optoelectronics. His ongoing research, particularly in optical and ultrasonic technologies, holds immense potential for future industrial applications. As he continues to expand his research, collaborate with other researchers, and enhance his teaching, Mohamed will likely leave a lasting impact on both the academic and industrial communities.

Publications Top Notes

Structural and optical investigations of multi-component lead-borosilicate glasses containing PbO, BaO, and TiO2

  • Authors: M. Salah, El Sayed Moustafa, A.A. Showahy
    Journal: Optical Materials
    Year: 2025

Influence of BaTiO3 substitution on structural and thermal response of lead borosilicate glass for ultrasonic applications

  • Authors: M. Salah, El Sayed Moustafa, A.A. Showahy
    Journal: Journal of Materials Science: Materials in Electronics
    Year: 2024

Influence of γ-irradiation dose on the structure, linear and nonlinear optical properties of BiI3 thick films for optoelectronics

  • Authors: AM Abdelnaeim, M Salah, E Massoud, A EL-Taher, ER Shaaban
    Journal: Digest Journal of Nanomaterials & Biostructures (DJNB)
    Year: 2022

Optical parameters of various thickness of bismuth (III) iodide thin films for photovoltaic and nonlinear applications

  • Authors: M Salah, A Abdelnaeim, S Makhlolf, A El-Taher, ER Shaaban
    Journal: International Journal of Thin Film Science & Technology
    Year: 2022

A new one-parameter lifetime distribution and its regression model with applications

  • Authors: MS Eliwa, E Altun, ZA Alhussain, EA Ahmed, MM Salah, HH Ahmed, …
    Journal: PLOS ONE
    Year: 2021

 

Gayatri Ghosh | Neutrino Physics | Member

Prof. Gayatri Ghosh | Neutrino Physics | Member

PHD at Indian Institute of Science, Bangalore, India

Dr. Gayatri Ghosh, an accomplished physicist, holds a PhD and multiple qualifications including GATE, SLET, and UGC NET. Specializing in high-energy physics, her research focuses on Neutrino Physics, Supersymmetry, and Beyond Standard Model Physics. With teaching experience at prestigious institutions like PDUAM and Barak Valley Engineering College, she has also served as a visiting researcher at Indian Institute of Science and Indian Institute of Technology. Dr. Ghosh’s academic excellence is evident through her numerous awards, including top positions in both B.Sc and M.Sc Physics, highlighting her dedication to advancing scientific knowledge.

Professional Profiles:

Teaching and Research Experience

Assistant Professor, Department of Physics, PDUAM, Eraligool (from 02/03/2020 to present) Assistant Professor (Contractual), Department of Physics, Barak Valley Engineering College, Karimganj (from 01/04/2017 to 01/03/2020) Guest Faculty, Department of Physics, Assam University, Silchar (from 01/03/2015 to 30/04/2015) Guest Faculty, Department of Physics, Gurucharan College, Silchar (from 14/07/2016 to 05/10/2016) Junior and Senior High Energy Physics Research Fellow (RFSMS), UGC BSR Fellowship, Gauhati University, Guwahati (from 15/03/2012 to 12/03/2017) Visiting PhD Student, Centre of High Energy Physics, Indian Institute of Science, Bangalore (April 2014 to May 2014) Visiting PhD Student, Indian Institute of Technology, Guwahati (March 2016 to April 2016)

Area of Interest

Neutrino Physics, Supersymmetry, Beyond Standard Model Physics, Flavor & Higgs Physics

Awards and Honours

First Class First Position in Merit List in B.Sc Honours in Physics by Assam University, Silchar, 2008. First Class Second Position in Merit List in M.Sc Physics by Gauhati University, Gauhati, 2011. Merit Prize awarded for securing First Class Second position in M.Sc Physics by Physical Society GU in 2011. Awarded Bisharath in Kathak Dance by Lucknow University in 2008. Received second prize in inter-state Kathak Dance Competition in 2006. Selected as Assistant Professor in the department of Physics by the governing body and interview committee of PDUAM Eraligool in advertisement number DHE/PDUAM/ERA/53/2017/pt/14.

Research Focus:

Dr. Gayatri Ghosh’s research spans various aspects of theoretical particle physics, focusing primarily on neutrino physics, flavor symmetries, and extensions beyond the Standard Model. Her work delves into topics such as Majorana neutrinos, leptonic decay processes, and the implications of broken symmetries on phenomena like neutrino oscillations and flavor violation. With a particular interest in A4 flavor symmetry, her investigations contribute to understanding fundamental properties of particles and their interactions. Ghosh’s studies offer insights into phenomena such as the gμ-2 discrepancy, proton stability, and the potential role of neutralino cold dark matter in flipped SU(5)×U(1)χ models derived from F theory.

Publications

  1. Non-zero θ13 and δCP phase with A4 flavor symmetry and deviations to tri-bi-maximal mixing via Z2 × Z2 invariant perturbations in the neutrino sector, Publication: 2022.
  2. FCNCs, Proton Stability, $ g_{\mu}-2$ Discrepancy, Neutralino cold Dark Matter in Flipped $SU(5) \times U(1)_{\chi}$ from $F$ Theory based on $ A_{4} $ Symmetry, Publication: 2023.
  3. Majorana Neutrinos and Clockworked Yukawa Couplings contribution to non-observation of the rare leptonic decay li→ljγ, Clockwork Photon and Clockwork Graviton, Publication: 2022.
  4. Significance of broken μ−τ Symmetry in correlating δCP, θ13, Lightest neutrino Mass and neutrinoless double beta decay 0νββ, Publication: 2021.
  5. Effects of Leptonic Nonunitarity on Lepton Flavor Violation, Neutrino Oscillation, Leptogenesis, and Lightest Neutrino Mass, Publication: 2018.
  6. Effects of Leptonic Nonunitarity on Lepton Flavor Violation, Neutrino Oscillation, Leptogenesis, and Lightest Neutrino MassPublication: 2018.
  7. Octant Degeneracy and Quadrant of Leptonic CPV Phase at Long Baseline Experiments and Baryogenesis, Publication: 2018.
  8. Resolving Entanglement of CPV Phase with Octant of � 23 θ 23 ​ , and Leptogenesis, Publication: 2016.
  9. Charged Lepton Flavor Violation μ→eγ in μ−τ Symmetric SUSY SO(10) mSUGRA, NUHM, NUGM, and NUSM theories and LHC, Publication: 2015.
  10. Neutrino masses and mixings using updated values of running quark and lepton massesPublication: 2014.

 

.