Sathish Panneer Selvam | Theoretical Advances | Best Scholar Award

Dr. Sathish Panneer Selvam | Theoretical Advances | Best Scholar Award

Assistant Professor at Gachon university | South Korea

Dr. Sathish Panneer Selvam is a dynamic Assistant Professor at Gachon University, South Korea, specializing in electrochemical biosensors, nanomaterials, and density functional theory (DFT). With a strong foundation in experimental chemistry and computational modeling, Dr. Selvam’s interdisciplinary research bridges the gap between biomedical diagnostics and renewable energy catalysis, contributing significantly to next-generation sensor technologies.

👨‍🎓Profile

Google scholar 

Scopus

ORCID

🎓 Early Academic Pursuits

Dr. Selvam began his academic journey with a Master’s degree in Electrochemical Sensing and Water Splitting under Prof. Kyusik Yun, where he focused on DNA-based nanomaterials and self-assembled sensors. He pursued his PhD (2020–2024) under Prof. Sungbo Cho, contributing to sensor development for disease diagnostics and reaction mechanism analysis via DFT. This formative period laid the groundwork for his future breakthroughs in smart diagnostics.

💼 Professional Endeavors

Starting as a Quality Control Executive at Biocon Biopharmaceutical Ltd., Dr. Selvam transitioned seamlessly into academia. His current role as an Assistant Professor (2024–2025) at Gachon University involves leading advanced biosensing projects, such as cancer diagnostics, enzyme activity detection, and nanocomposite development. His hands-on expertise spans fabrication, characterization, and computational modeling.

🔬 Contributions and Research Focus

Dr. Selvam’s research is distinguished by its interdisciplinary depth and real-world relevance. He has designed single-atom catalyst biosensors for detecting pancreatic and breast cancer. Additionally, he has explored molecularly imprinted polymers for biomarker detection and utilized DFT and molecular dynamics to simulate reaction pathways. His development of triboelectric nanogenerators for self-powered bacterial detection reflects his ability to address critical challenges in medical diagnostics, environmental monitoring, and energy applications.

🌍 Impact and Influence

Dr. Selvam has authored 16+ peer-reviewed publications, many in high-impact journals such as Chemical Engineering Journal, Small Methods, and Biosensors and Bioelectronics, with impact factors ranging from 8 to 23. His contributions to cancer biosensing, H2 evolution, and COVID-19 detection have attracted international collaborations with researchers from UK, France, and India, solidifying his global influence.

📊 Academic Cites & Recognition

Dr. Selvam’s work is increasingly cited by peers in the fields of biosensors, nanotechnology, and theoretical chemistry. With several publications already gaining traction in the academic community, he is on track for significant citation growth and thought leadership in applied quantum chemistry and nanomedicine.

🧪 Research Skills

Dr. Selvam demonstrates a robust technical skill set that seamlessly bridges experimental techniques with computational modeling. He excels in electrochemical characterization using systems like Iviumstat, Biologics, and PARSTAT. His expertise in structural analysis includes SEM, TEM, XRD, EXAFS, and Raman spectroscopy. Additionally, he is proficient in High-Performance Liquid Chromatography (HPLC) and a variety of spectroscopic tools. On the theoretical side, he utilizes DFT simulations, molecular docking, and molecular dynamics, allowing for deep insights into complex reaction mechanisms.

🎓 Teaching Experience

As an Assistant Professor, Dr. Selvam is engaged in mentoring undergraduate and graduate students. He fosters a research-driven learning environment that encourages critical thinking, scientific writing, and interdisciplinary collaboration, essential for shaping future scientists.

🌟Patents

Dr. Selvam holds several patents, including the Chalcogenide Loaded Cobalt MOF for Patulin Mycotoxin Detection (KR Patent 10-2437215), an Electrochemical Biosensing Platform for Rheumatoid Arthritis Biomarker detection (KR Patent 10-2381031), and a Nanocomposite modified electrode for Etidronic acid detection (KR Patent 10-2475238), co-authored with Sungbo Cho and Kyusik Yun. These innovations demonstrate his expertise in biosensing, electrochemical platforms, and biomarker detection.

📘 Legacy and Future Contributions

Dr. Selvam has a strong portfolio of patents, a growing reputation in academic publishing, and a unique ability to synthesize experimental and computational insights. As a thought leader in smart biosensing and energy catalysis, his future contributions are expected to include the development of scalable diagnostic tools for global health, AI-integrated sensor platforms, and further exploration of quantum chemistry for bio-interfaces. His work promises significant advances in both healthcare and energy solutions.

Publications Top Notes

EXAFS and spectroscopic insights into Mn, Tc, and Re-doped phthalocyanines: A multifaceted DFT study of electronic and optical properties

  • Authors: Sathish Panneer Selvam, Zeeshan, Sungbo Cho
    Journal: Surfaces and Interfaces
    Year: 2025

Cerium single atom anchored silver selenide: A high-performance catalyst for hydrogen evolution reaction with ultra-low activation energy and enhanced stability

  • Authors: Sathish Panneer Selvam, Sungbo Cho
    Journal: Surfaces and Interfaces
    Year: 2024

Experimental insights and DFT analysis of metal-free DNA nanocatalyst with enhanced hydrogen evolution via phosphate-mediated proton acceptance

  • Authors: Sathish Panneer Selvam, Shanmugasundaram Kamalakannan, K. Rudharachari Maiyelvaganan, Muthuramalingam Prakash, Sivalingam Gopi, Hansa Mahajan, Kyusik Yun, Sungbo Cho
    Journal: International Journal of Hydrogen Energy
    Year: 2024

Highly Synergistic Co3+ and Pyridinic‐N‐Rich Bifunctional Electrocatalyst for Ultra‐Low Energy-Driven Effective Hydrogen Production and Urea Oxidation

  • Authors: Sathish Panneer Selvam, Sungbo Cho
    Journal: Advanced Sustainable Systems
    Year: 2022

Novel SeS2-loaded Co MOF with Au@PANI comprised electroanalytical molecularly imprinted polymer-based disposable sensor for patulin mycotoxin

  • Authors: Sathish Panneer Selvam
    Journal: Biosensors and Bioelectronics
    Year: 2021

 

Christen Tharwat | Experimental methods | Best Researcher Award

Dr. Christen Tharwat | Experimental methods | Best Researcher Award

Researcher at National Research Centre | Egypt

Christen Tharwat is a Postdoctoral Researcher specializing in plasmonic gas sensors, graphene-based sensors, and nanotechnology for biomedical applications. With a strong academic foundation from Cairo University, he has made notable contributions in nanoparticle synthesis and environmental applications. He is recognized for his work on magnetic nanoparticles and their uses in areas such as wastewater treatment and biomedical applications. Tharwat is also actively involved in academic writing, proofreading, and manuscript submissions, further enhancing his impact in the scientific community.

👨‍🎓Profile

Google scholar

Scopus

ORCID

Early Academic Pursuits 🎓

Christen Tharwat’s academic journey began at Cairo University, where he obtained a Bachelor’s degree in Physics & Chemistry in 2010, followed by a Master of Science in Physics in 2014. His master’s research was centered on laser treatment of Ti-Ni alloys coated with hydroxyapatite/silver nanoparticles for biomedical applications. Tharwat then pursued a PhD in Physics at the National Institute of Laser Enhanced Sciences, Cairo University, focusing on the construction of optical sensors for environmental applications. His early academic work laid the groundwork for his extensive research in nanotechnology.

Professional Endeavors 💼

Tharwat’s professional career spans both research and teaching. As a Postdoctoral Fellow, he is engaged in cutting-edge work on plasmic gas sensors and graphene-based sensors, contributing significantly to the sensor technology field. His research at the National Research Centre, Egypt, and the American University in Cairo has equipped him with diverse expertise in nanomaterial synthesis and their industrial applications. Furthermore, his freelance academic writing and proofreading have helped him hone his skills in articulating complex scientific ideas for academic audiences.

Contributions and Research Focus 🔬

Tharwat’s research has been pivotal in advancing nanotechnology across various domains. His work on magnetic nanoparticles and their size dependence for biomedical applications has practical implications for drug delivery and bioimaging. Additionally, his work on nanoparticles for wastewater treatment demonstrates his commitment to environmental sustainability. His laser treatment techniques for biomedical alloys further underscore his contributions to improving healthcare technologies. Tharwat’s focus on graphene and plasmic gas sensors indicates his strong involvement in future-oriented research that addresses environmental and industrial challenges.

Impact and Influence 🌍

Tharwat has had a substantial impact on both the academic and industrial sectors. His work on magnetic nano-crystals for bioimaging has expanded the potential for more effective medical diagnostics, while his contributions to wastewater treatment provide practical solutions to environmental pollution. The development of optical sensors for environmental monitoring has contributed to better understanding and control of environmental hazards. Furthermore, his international collaborations with institutions like the Université de Picardie Jules Verne, France, have enhanced the global applicability of his research.

Academic Citations and Research Skills 📚

Tharwat has authored numerous peer-reviewed journal papers and presented his findings at international conferences. His publications include studies on magnetic nanoparticles, nanoflowers for dye removal, and silicon-based nanostructures. His research in nanomaterials and nanostructures has been cited across multiple disciplines, highlighting the versatility and impact of his work. Additionally, his proficiency in synthesizing nanoparticles, sensor fabrication, and surface modifications speaks to his technical expertise and innovation in experimental methods.

Teaching Experience 🧑‍🏫

Tharwat’s academic career also includes a strong teaching role, where he has trained and mentored undergraduate students in Solid State Physics at institutions like the American University in Cairo. His work in academic mentoring and research assistance has influenced the next generation of scientists, guiding students through complex lab equipment and research techniques. Tharwat’s ability to explain cutting-edge concepts in nanotechnology and sensor development makes him a valuable educator.

Awards and Honors 🏅

Tharwat has received recognition for his work in both academic research and innovation. He is the co-holder of international patents in nanotechnology, including one for nanoalloys for wastewater treatment and another for coated magnetic nano-crystals for bioimaging. His contributions to the field of nanomaterials have led to multiple conference papers and journal publications, earning him a prominent place among young researchers in nanotechnology and material science.

Legacy and Future Contributions 🔮

Christen Tharwat’s research legacy will likely be marked by his advancements in sensor technologies and his contributions to environmental sustainability and biomedical applications. As his work in graphene-based sensors and nanomaterial synthesis continues to evolve, he is well-positioned to shape future research in these critical areas. Moving forward, his ongoing postdoctoral work will likely focus on next-generation sensor devices and environmental monitoring systems, ensuring that his research continues to have a lasting impact on both scientific and industrial landscapes. His vision for the future includes collaborative research that bridges nanotechnology with environmental and healthcare solutions.

Publications Top Notes

Photo-degradation of water and food pathogens using cheap handheld laser

  • Authors: S Mohamed, C Tharwat, A Khalifa, Y Elbagoury, H Refaat, SF Ahmed, …
    Journal: High-Power Laser Materials Processing: Applications, Diagnostics, and …
    Year: 2025

Single step MACE for SiNWs fabrication with (Au & Ag) metals

  • Authors: A Khalifa, AAM Ahmed, C Tharwat, M El Koddosy, MA Swillam
    Journal: Nanoscale and Quantum Materials: From Synthesis and Laser Processing to …
    Year: 2025

Effect of ZnO/EAF slag doping on removal of methyl red dye (MR) from industrial waste water

  • Authors: C Tharwat, D. A. Wissa, Nadia F. Youssef
    Journal: Scientific Reports
    Year: 2024

Fabrication of crystalline silicon nanowires coated with graphene from graphene oxide on amorphous silicon substrate using excimer laser

  • Authors: MAS C Aziz, MA Othman, A Amer, ARM Ghanim
    Journal: Heliyon
    Year: 2024

CW laser beam-based reduction of graphene oxide films for gas sensing applications

  • Authors: C Tharwat, Y Badr, SM Ahmed, IK Bishay, MA Swillam
    Journal: Optical and Quantum Electronics
    Year: 2024

 

 

Muhammad Yar Khan | Computational Methods | Best Researcher Award

Assoc. Prof. Dr. Muhammad Yar Khan | Computational Methods | Best Researcher Award

Associate Professor at Qilu institute of Technology | China

Dr. Hafiz Muhammad Yar Khan is an accomplished Materials Scientist and Associate Professor in Physics, with an extensive background in Density Functional Theory (DFT) Materials Modeling. He completed his Ph.D. in Materials Science Engineering at Zhejiang University, China (2023), which is ranked 41st in the QS World University Rankings (2022). His research is focused on novel 2D materials, energy storage materials, and the optical and magnetic properties of advanced materials, with significant contributions to the fields of spintronics, energy storage, and 2D magnetic materials.

👨‍🎓Profile

Google scholar

Scopus

ORCID

Early Academic Pursuits 🎓

Dr. Khan’s academic journey began with a Master of Science in Physics (M. Phil) from Hazara University Mansehra, Pakistan, in 2011, where he developed his passion for solid-state physics and computational material science. His dissertation focused on the first-principles study of perovskite-type oxides, laying the foundation for his later work in computational materials research. His focus on quantum mechanics, electrodynamics, and applied research techniques during his M.S. equipped him with a solid theoretical and experimental base.

Professional Endeavors 💼

Dr. Khan has held various teaching and administrative roles across prominent institutions in both Pakistan and China. His career includes serving as Lecturer in Physics at Kohat University of Science and Technology and The University of Haripur, Pakistan. His current position as Associate Professor at Qilu Institute of Technology, China, reflects his rising prominence in academia. Dr. Khan has also contributed to academic committees, such as being a member of the Academic Council at Kohat University and organizing events like sports day and international cultural day, showing his leadership in academic and extracurricular spheres.

Contributions and Research Focus 🔬

Dr. Khan’s research spans several cutting-edge areas in materials science. His Ph.D. dissertation on “First-Principles Study of Tuning Magnetic and Optical Properties of Novel 2D-Materials” focuses on materials such as transition metal carbon trichalcogenides and 2D magnetic materials. He has also explored energy storage technologies, such as Na and Li-ion batteries, providing insights into anode and cathode materials. His work also delves into optoelectronics and spintronics devices, underscoring his interdisciplinary approach.

Notable research topics include:

  • Magnetic and optical properties of 2D materials.

  • Energy storage materials (batteries, cathodes, and anodes).

  • Spintronics and optoelectronics for device applications.

Impact and Influence 🌍

Dr. Khan’s research has had significant implications in both academia and industry, especially in 2D materials and energy storage technologies. His publications in prestigious journals like Journal of Superconductivity and Novel Magnetism, Physics Letter A, and Nanoscale demonstrate his ability to contribute to high-impact research. His work is highly regarded in the scientific community, and he has collaborated with leading universities and institutions such as the New Jersey Institute of Technology (NJIT), Quaid-i-Azam University, University of Ulsan, and King Saud University.

His influence extends beyond materials science into academic collaboration, where he serves as a bridge between global research hubs in Pakistan, China, South Korea, and Saudi Arabia.

Research Skills 🧠

Dr. Khan is proficient in various computational software critical to materials science research, including:

  • WIEN2K

  • VASP

  • FLAPW

His ability to independently formulate research questions, conduct empirical research, and analyze data systematically has been key to his success. His first-principles approach has made him a leading figure in DFT-based materials modeling and theoretical materials science.

Teaching Experience 🍎

Dr. Khan has taught a variety of physics courses at undergraduate and postgraduate levels. He has mentored students in subjects such as Quantum Mechanics, Solid-State Physics, and Electrodynamics. He has also demonstrated his administrative skills in his role as Assistant Manager ORIC and member of the departmental admission committee, helping shape the academic landscape at institutions like Kohat University of Science and Technology and The University of Haripur. His teaching philosophy emphasizes the importance of research-driven education, encouraging students to engage with cutting-edge topics in material science and computational physics.

Awards and Honors 🏅

Dr. Khan has been recognized for his academic achievements with prestigious scholarships and fellowships, including:

  • Chinese Government Scholarship for his Ph.D. studies.

  • Brain Korea 21 (BK21) Fellowship by the Korean Government.

  • Pioneer Research Center Program through the National Research Foundation of Korea.

These awards underscore his commitment to academic excellence and his ability to secure competitive funding for his research endeavors.

Legacy and Future Contributions 🌟

Dr. Khan’s legacy is built on a solid foundation of innovative research, interdisciplinary collaborations, and a commitment to teaching. His future contributions are poised to make an impact not only in materials science but also in the energy sector, with further exploration into battery technologies, spintronics, and 2D materials. His ongoing work on defect-engineered materials and multiferroic hetero-structures is expected to push the boundaries of materials science in the coming years.

Publications Top Notes

“Computational insights into optoelectronic and magnetic properties of V(III)-doped GaN”

  • Authors: Muhammad Sheraz Khan, Muhammad Ikram, Li-Jie Shi, Bingsuo Zou, Hamid Ullah, Muhammad Yar Khan
    Journal: Journal of Solid-State Chemistry
    Year: 2021

“A highly selective nickel-aluminum layered double hydroxide nanostructures based electrochemical sensor for detection of pentachlorophenol”

  • Authors: Khan, Mir Mehran, Huma Shaikh, Abdullah Al Souwaileh, Muhammad Yar Khan, Madeeha Batool, Saima Q. Memon, and Amber R. Solangi
    Journal: Arabian Journal of Chemistry
    Year: 2024

“Exploring the structural stability of 1T-PdO2 and the Interface Properties of 1T-PdO2/Graphene Heterojunction”

  • Authors: Muhammad Yar Khan, Arzoo Hassan, Xiao-Qing Kelvin Tian, Abdus Samad
    Journal: ACS OMEGA
    Year: 2024

“Experimental Investigation of the Structural, Electrical, and Magnetic Properties of AgNbO3 Silver Nanobytes”

  • Authors: Junaid Khan, Shah Khalid, Pagunda3, Farhan Ahmad, Abdul Jabbar5, Rabah Khenata, Muhammad Yar Khan, and Heba G. Mohamed
    Journal: Journal of Materials Science

“Fabrication of nanofiltration membrane with enhanced water permeability and dyes removal efficiency using tetramethyl thiourea-doped reduced graphene oxide”

  • Authors: Sehrish Qazi, Huma Shaikh, Amber R. Solangi, Madeeha Batool, Muhammad Yar Khan, Nawal D. Alqarni, Sarah Alharthi, and Nora Hamad Al-Shaalan
    Journal: Journal of Materials Science

Ugur Yahsi | Experimental methods | Best Researcher Award

Prof. Ugur Yahsi | Experimental methods | Best Researcher Award

Head of the General Physics Department | Marmara University | Turkey

Prof. Dr. Uğur Yahşi is a Full Professor in the Physics Department at Marmara University, Istanbul, Turkey. With an academic background spanning Physics at institutions such as Istanbul University (BSc), University of Wisconsin (MSc), and Case Western Reserve University (PhD), he has made notable contributions to the scientific community in both research and education.

👨‍🎓Profile

Google scholar

Scopus

ORCID

Early Academic Pursuits 📚

Prof. Dr. Yahşi’s academic journey began with a BSc in Physics from Istanbul University in 1983. He pursued an MSc at the University of Wisconsin from 1987-1988, followed by a PhD at Case Western Reserve University, completing his studies in 1994. His early research laid the foundation for his future work in material science and applied physics.

Professional Endeavors 💼

Prof. Yahşi’s professional career has been extensive, with a continuous academic presence at Marmara University, where he has held positions from Assistant Professor to Full Professor since 1996. Additionally, he has served as a Visiting Scientist at the University of Missouri-Kansas City and contributed significantly to various administrative roles within the university, such as Senator and Director of the Institute of Pure and Applied Sciences.

Contributions and Research Focus 🔬

Prof. Dr. Yahşi’s research is at the forefront of material science, particularly in nanomaterials, macromolecular physics, and defect structures. His research spans across multiple topics, including vacancy structures, dendrimers, polymer-ion interactions, and nanometric defects in materials. He is a leading figure in applying positron annihilation spectroscopy and other advanced techniques to study the electronic properties of materials, advancing nanotechnology and material engineering.

Impact and Influence 🌍

Prof. Yahşi’s impact extends beyond his research, as he has shaped the academic environment at Marmara University. He has mentored numerous students through undergraduate, master’s, and doctoral research projects. His leadership roles have fostered growth in the Physics Department and research programs, contributing to collaborations with other institutions and research organizations globally.

Academic Cites 📑

Prof. Dr. Yahşi has been extensively cited in scientific journals for his work on positron annihilation and material defect structures. His influence can be seen in the academic advancements in polymer science, nanotechnology, and material characterization techniques. The funding from projects such as TÜBİTAK and Marmara University underscores the significance of his work in advancing scientific discovery.

Research Skills 🔧

Prof. Yahşi possesses a diverse set of research skills, including expertise in positron annihilation spectroscopy, experimental physics, and materials characterization. He is skilled in various computational tools such as Fortran, Mathematica, and MatLab, enabling him to model complex physical systems and conduct numerical simulations in support of his theoretical work.

Teaching Experience 🎓

Prof. Yahşi’s teaching spans over decades, with experience in courses ranging from Advanced Classical Mechanics to Computer Programming in Fortran. His commitment to student development is evident through his role in shaping curriculum and teaching courses in Technical English, Solid-State Physics, and Numerical Methods. He has also contributed significantly to the translation and localization of key texts in Physics, ensuring that students have access to high-quality educational resources.

Awards and Honors 🏆

Prof. Yahşi has been the recipient of numerous fellowships and awards, such as the Turkish Educational Ministry Fellowship for his graduate studies. His work has earned research grants from prominent Turkish organizations like TÜBİTAK, demonstrating his recognized contributions to scientific progress. He continues to receive support for innovative projects, including the BİDEB Mentorship Support Program and various Marmara University projects.

Legacy and Future Contributions 🌱

Prof. Dr. Uğur Yahşi’s legacy lies in his commitment to advancing physics education and research, particularly in material science and nanotechnology. His ongoing projects, such as the investigation of flash sintering in doped ZnO structures and polymer materials, are paving the way for future breakthroughs. With continued administrative roles and research leadership, Prof. Yahşi is poised to make lasting contributions to both academic knowledge and scientific innovation.

Publications Top Notes

Free volume impact on ionic conductivity of PVdF/GO/PVP solid polymer electrolytes via positron annihilation approach

  • Authors: M. Yilmazoğlu, H. Okkay, U. Abacı, C. Tav, U. Yahşi
    Journal: Radiation Physics and Chemistry, 2025

The Influence of Defects on the Structural, Optical, and Antibacterial Properties of Cr/Cu Co-Doped ZnO Nanoparticles

  • Authors: L. Arda, Z. Ra’ad, S. Veziroğlu, C. Tav, U. Yahşi
    Journal: Journal of Molecular Structure, 2025

Correlation of proton conductivity and free volume in sulfonated polyether ether ketone electrolytes: A positron annihilation lifetime spectroscopy study

  • Authors: M. Lahmuni, M. Yilmazoğlu, U. Abacı, C. Tav, U. Yahşi
    Journal: Radiation Physics and Chemistry, 2025

A novel approach for the atomic scale characterization of Li-ion battery components probed by positron annihilation lifetime spectroscopy

  • Authors: R. Bakar, S. Koç, A. Yumak Yahşi, C. Tav, U. Yahşi
    Journal: Materials Research Bulletin, 2024

Free-volume analysis of the structural and dielectric properties of PMMA/TeO2 composites via positron annihilation lifetime spectroscopy

  • Authors: S. Kuzeci, E. Özcan, A.U. Kaya, R. Bakar, C. Tav, U. Yahşi, K. Esmer
    Journal: Journal of Alloys and Compounds, 2024

 

Aleksandr Sipatov | Experimental methods | Best Researcher Award

Prof. Aleksandr Sipatov | Experimental methods | Best Researcher Award

Professor at National Technical Univercity “Kharkiv Polytechnic Institute” | Ukraine

Dr. Alexander Yurievich Sipatov is a distinguished Professor in the Metal and Semiconductor Physics Department at the National Technical University “Kharkov Polytechnic Institute” (KPI), Ukraine. Born on March 21, 1957, in Nizhny Novgorod, Russia, Dr. Sipatov has had a long and illustrious career spanning over several decades in the field of semiconductor physics and nanostructures. His work has made notable contributions to the development of quantum effects and the exploration of superconductivity and thermoelectric properties in semiconductor multilayer nanostructures.

👨‍🎓Profile

Google scholar 

Scopus

ORCID

Early Academic Pursuits 🎓

Dr. Sipatov’s academic journey began at the National Technical University “Kharkov Polytechnic Institute” (KPI), where he earned his Engineer-Physicist degree in 1980. He pursued postgraduate studies at KPI, completing his Ph.D. in 1986 and later achieving the title of Doctor of Science in 2007. Between 1995 and 1998, Dr. Sipatov was awarded a Postdoctoral stipend to further hone his expertise and research skills. His academic achievements laid the foundation for a highly successful career in semiconductor physics.

Professional Endeavors 💼

Dr. Sipatov’s professional career at KPI began in 1980 as an Engineer, and his role rapidly evolved over the years. He served as a Junior Researcher from 1983 to 1990, a Researcher from 1990 to 1992, and as a Senior Researcher from 1992 to 1995 and 1998 to 2007. His increasing responsibilities and leadership roles included becoming a Leading Researcher from 2007 to 2012 and the Head of the Technical Cryophysics Department at KPI from 2012 to 2020. Since 2020, he has held the position of Professor at KPI, where he continues to contribute significantly to both teaching and research.

Contributions and Research Focus 🔬

Dr. Sipatov’s research focuses on the growth, structure, and electronic, optic, magnetic, and thermoelectric properties of semiconductor multilayer nanostructures, particularly chalcogenides of elements such as lead (Pb), tin (Sn), bismuth (Bi), europium (Eu), and ytterbium (Yb). His studies have led to several groundbreaking discoveries, including:

  1. Energy Spectrum Quantization in thin films, notably in PbS films and PbS-EuS superlattices, identified by shifts in the photoluminescence edge.
  2. Resonant Tunneling phenomena observed through negative differential resistance in PbS-EuS double barrier tunneling structures.
  3. The discovery of superconductivity in IV-VI superlattices, with Tc values between 3-6 K.

Currently, Dr. Sipatov is investigating the thermoelectric and magnetic properties of semiconductor thin films and nanostructures, which have important applications in energy efficiency and advanced electronics.

Impact and Influence 🌍

Dr. Sipatov’s work has had a profound impact on quantum physics and the field of nanostructures. His findings have broadened the understanding of quantum effects in semiconductors, contributing to advances in quantum technologies and low-temperature physics. Furthermore, his contributions to superconductivity have opened up new avenues for research in quantum computing and energy-efficient technologies. The interdisciplinary nature of his work positions him as a key figure in nanoscience, with direct implications for industries ranging from electronics to energy storage.

Academic Cites 📚

Dr. Sipatov is a highly published researcher with more than 60 publications in peer-reviewed journals, showcasing his dedication to advancing scientific knowledge. His work is indexed in Scopus (ID: 7004596183), highlighting his significant influence and recognition in the scientific community. His research continues to be cited by scholars worldwide, cementing his reputation as a thought leader in semiconductor physics and nanotechnology.

Research Skills 🔧

Dr. Sipatov possesses a broad range of specialized research skills, including:

  • Material Synthesis and Growth of semiconductor multilayer nanostructures.
  • Expertise in quantum effects such as energy spectrum quantization and resonant tunneling.
  • Advanced techniques for studying superconductivity and the magnetic properties of semiconductor materials.
  • Deep understanding of thermoelectric phenomena and their practical applications.

His expertise in low-temperature physics and nanoelectronics places him at the cutting edge of research in these fields.

Teaching Experience 📖

As a Professor at KPI, Dr. Sipatov has dedicated a significant portion of his career to teaching and mentoring the next generation of scientists and engineers. His leadership as the Head of the Technical Cryophysics Department between 2012 and 2020 provided an invaluable platform for the development of young researchers in the field of semiconductor physics. Through his courses and research supervision, Dr. Sipatov has influenced countless students, shaping the future of material science and nanotechnology.

Legacy and Future Contributions 🔮

Dr. Sipatov’s research legacy lies in his innovative contributions to the understanding of quantum effects in semiconductor nanostructures and superconductivity. His work on thermoelectric and magnetic properties holds the potential to revolutionize energy-efficient technologies and next-generation electronics. Moving forward, his future contributions are likely to focus on advanced materials for quantum computing and renewable energy solutions, continuing to drive progress in sustainable technologies and nanoscience.

Publications Top Notes

Interdiffusion in chalcogenide semiconductor superlattice nanostructures
  • Authors: A.Y. Sipatov, L.E. Konotopsky, E. Moroz, V.V. Volobuev
    Journal: Solid State Communications
    Year: 2025

Quantum interference phenomena and electron – electron interaction in topological insulator Bi2Se3 thin polycrystalline films
  • Authors: O.I. Rogachova, O. Pavlosiuk, A.V. Meriuts, K.V. Novak, D. Kaczorowski
    Journal: Thin Solid Films
    Year: 2022

Growth mechanism, structure and thermoelectric properties of thermally evaporated Bi2(Te0.9 Se01)3 thin films
  • Authors: O.I. Rogachova, S. Kryvonohov, A.G. Fedorov, O.N. Nashchekina, K.V. Novak
    Journal: Functional Materials
    Year: 2022

Effect of aging on thermoelectric properties of the Bi2Te3 polycrystals and thin films
  • Authors: O.I. Rogachova, K.V. Novak, A.N. Doroshenko, T.I. Khramova, S.A. Saenko
    Journal: Functional Materials
    Year: 2021

Size effects and thermoelectric properties of Bi0.98Sb0.02 thin films
  • Authors: O.I. Rogachova, K.V. Novak, D.S. Orlova, O.N. Nashchekina, G.V. Lisachuk
    Journal: Journal of Thermoelectricity
    Year: 2020

 

Faisal faiz | Experimental methods | Physics Industry Leadership Award

Dr. Faisal faiz | Experimental methods | Physics Industry Leadership Award

Assistant Professor at Shenzhen university | China

Dr. Faisal Faiz is a dedicated nanotechnologist and Research Fellow at the College of Electronics and Information Engineering, Shenzhen University, Guangdong, China. With a robust academic background, he holds a Ph.D. in Analytical Chemistry from Nanjing University, China. His thesis focused on the synthesis of nanomagnetic materials for speciation analysis of heavy toxic metals in environmental water. His work, especially in functionalized nanomaterials for environmental applications, has positioned him as a key contributor to the nanotechnology and environmental science fields.

👨‍🎓Profile

Google scholar

Scopus 

ORCID

Early Academic Pursuits 📚

Dr. Faiz’s academic journey began with a Bachelor’s degree in Chemistry, Physics, and Mathematics from Bahauddin Zakariya University, Pakistan, followed by a Master’s in Applied Chemistry from the University of Engineering and Technology, Lahore. His keen interest in research led him to pursue an M.Phil. in Applied Chemistry at Bahauddin Zakariya University. These foundational studies laid the groundwork for his doctoral work at Nanjing University, where he explored innovative approaches in nanomaterial synthesis and heavy metal pollutant detection.

Professional Endeavors 🧑‍🔬

Dr. Faiz has had a diverse career spanning several research institutions and teaching roles. His professional journey includes a Postdoctoral Research Scholar position at Shenzhen University, where he continues his pioneering research on nanomaterials and environmental sustainability. Prior to this, he worked as a Research Assistant at the Pakistan Institute of Nuclear Science & Technology and a Senior Lecturer at Allama Iqbal Open University. These roles have allowed Dr. Faiz to hone his research skills while contributing to environmental monitoring, sustainable technology, and energy applications.

Contributions and Research Focus 🔬

Dr. Faiz’s primary research focus is on the development of functionalized nanomaterials to address environmental challenges. His research spans three core areas:

  • Environmental Applications of Nanomaterials 🌍: He explores metal oxides and magnetic nanoparticles to create efficient sensors and advanced systems for detecting toxic gases and pollutants in air and water. His work is focused on real-time environmental monitoring, essential for ecological sustainability and public health.

  • Advanced Sensing Technologies ⚡: Dr. Faiz is advancing the development of MEMS-based gas sensors using inkjet printing technology. His efforts aim to improve the sensitivity, speed, and affordability of sensors for detecting hazardous gases at trace levels.

  • Supercapacitors for Energy and Environmental Applications 🔋: Dr. Faiz’s work on supercapacitors involves optimizing nanomaterials like metal oxides for energy storage systems that can be utilized in renewable energy storage and energy-efficient industrial devices.

Impact and Influence 🌍

Dr. Faiz’s work has made significant contributions to environmental science, nanotechnology, and sustainable energy systems. His research into nanomaterials has led to the development of new solutions for toxic pollutant detection, environmental monitoring, and energy storage technologies. With patents and research collaborations on a national level, he is helping to drive forward the global agenda on environmental sustainability.

Academic Cites 📑

Throughout his academic career, Dr. Faiz has been widely cited in scientific literature for his work on magnetic nanoparticles, environmental remediation, and nanomaterial synthesis. His contributions to toxic metal removal from water and the development of advanced sensors have made him a respected figure in the nanotechnology community. His publications continue to inspire new research in the fields of materials science and environmental engineering.

Research Skills 🛠️

Dr. Faiz possesses a diverse skill set in various experimental techniques, including:

  • Electron Microscopy (SEM, TEM)
  • X-ray Photoelectron Spectroscopy (XPS)
  • X-ray Diffraction (XRD)
  • Electrochemical Workstation Techniques
  • Atomic Absorption Spectrometry (AAS) and High-Performance Liquid Chromatography (HPLC)

These research skills enable him to conduct cutting-edge studies in nanomaterials and environmental monitoring. His ability to integrate various analytical techniques enhances the depth of his research and helps in developing innovative solutions for environmental challenges.

Teaching Experience 🏫

Dr. Faiz has an extensive teaching background, including roles as a Senior Lecturer and Science Teacher. He has taught a range of chemistry courses and has been involved in academic administration, including being a coordinator for international students and a class representative. His teaching approach blends scientific rigor with practical applications, encouraging students to engage with cutting-edge technologies and environmental solutions.

Awards and Honors 🏅

Dr. Faiz has been recognized with several awards, including:

  • Chinese Government Scholarship for his Ph.D. studies at Nanjing University.
  • Best Postgraduate Researcher award at the Institute of Chemical Sciences, Bahauddin Zakariya University.
  • Distinguished Researcher at the Pakistan Institute of Nuclear Science & Technology.

These accolades reflect his excellence in research, contribution to scientific knowledge, and commitment to environmental sustainability.

Legacy and Future Contributions 🌱

Dr. Faiz’s work promises to leave a lasting legacy in the fields of nanotechnology and environmental science. As he continues to develop functionalized nanomaterials, his research has the potential to transform industries by offering sustainable solutions for pollution detection and energy storage. Looking forward, he aims to push the boundaries of green nanomaterials, further advancing technologies for clean energy, pollution remediation, and environmental protection.

Publications Top Notes

Innovative adsorbent for sulphur dioxide: synergy of activated carbon, polyionic liquids, and chitosan

  • Authors: A. Wahab, Abdul; A. Farooq, Amjad; F. Faiz, Faisal; J. Wu, Jianghua; Y. Faiz, Yasir
    Journal: Adsorption
    Year: 2025

Tailoring MnO2 nanowire defects with K-doping for enhanced electrochemical energy storage in aqueous supercapacitors

  • Authors: J. Wu, Jianghua; F. Faiz, Faisal; M. Ahmad, Mashkoor; X. Pan, Xiaofang; Y. Faiz, Yasir
    Journal: Applied Surface Science
    Year: 2025

Removal of gaseous methyl iodide using hexamethylenetetramine and triethylenediamine impregnated activated carbon: A comparative study

  • Authors: T. Yaqoob, M. Ahmad, A. Farooq, F. Ali, Y. Faiz, A. Shah, F. Faiz, M.A. Irshad
    Journal: Diamond and Related Materials
    Year: 2023

Tuning electrocatalytic activity of Co3O4 nanosheets using CdS nanoparticles for highly sensitive non-enzymatic cholesterol biosensor

  • Authors: H. Waleed, H.U. Rasheed, A. Nisar, A. Zafar, Y. Liu, S. Karim, Y. Yu, H. Sun
    Journal: Materials Science in Semiconductor Processing
    Year: 2024

Mesoporous Co3O4@CdS nanorods as anode for high-performance lithium-ion batteries with improved lithium storage capacity and cycle life

  • Authors: H. Waleed, H.U. Rasheed, F. Faiz, A. Zafar, S. Javed, Y. Liu, S. Karim, H. Sun
    Journal: RSC Advances
    Year: 2024

 

 

Srither SR | Experimental methods | Best Researcher Award

Dr. Srither SR | Experimental methods | Best Researcher Award

Associate Professor at Koneru Lakshmaiah Education Foundation (KLEF) | India

Dr. SR. Srither is an accomplished Research Associate with a dynamic career spanning both India and abroad. With extensive expertise in Nanotechnology, his work focuses on energy harvesting, material synthesis, and nanocomposite development. He has contributed significantly to the advancement of piezoelectric and triboelectric technologies, with a primary focus on creating self-powered systems for flexible applications. His journey includes notable academic and professional roles across institutions such as the Southern University of Science and Technology (China) and Centre for Nano and Soft Matter Sciences (India).

👨‍🎓Profile

Google scholar 

Scopus

ORCID

Early Academic Pursuits 📚

Dr. Srither’s academic journey began with his B.E. in Electronics and Communication from St. Joseph’s College of Engineering, Chennai, followed by an M.Tech in Nanoscience and Technology from K.S. Rangasamy College of Technology, Coimbatore, where he graduated First Class with Distinction. His thirst for knowledge led him to pursue a Ph.D. in Nanotechnology at Anna University, Chennai. His early academic interests focused on the synthesis and characterization of nanomaterials, laying the foundation for his cutting-edge research in energy storage and conversion technologies.

Professional Endeavors 💼

Dr. Srither’s career trajectory showcases his commitment to research and teaching. He currently serves as a Visiting Professor at KL Deemed to be University, where he imparts his expertise to students in the Department of Electronics and Communication Engineering. His professional experiences extend across multiple prestigious research roles, notably as a Post-doctoral Fellow at the Quantum Information & Intelligent Energy Harvesting Lab, Southern University of Science and Technology (SUSTech), Shenzhen, China. His work continues to influence nanotechnology, energy harvesting, and energy storage devices.

Contributions and Research Focus 🔬

Dr. Srither’s research focuses on nanostructures, nanocomposites, and their applications in self-powered systems. Key contributions include the fabrication of piezo/triboelectric hybrid nanogenerators that are low-cost and flexible, designed for a wide range of IoT-enabled devices and health monitoring applications. His research also includes groundbreaking work on transparent polymers for triboelectric energy harvesting and the exploration of manganese dioxide nanoparticles for energy conversion applications.

Impact and Influence 🌍

Dr. Srither has made a lasting impact on the nanotechnology field through his innovative research and interdisciplinary projects. His work on energy harvesting has revolutionized the development of wearable devices and self-powered systems, enabling sustainable technology in fields like IoT and healthcare. His research has been recognized by notable platforms, including the Ministry of Science and Technology, Govt. of India, and has been showcased through multiple publications and patents.

Academic Cites 📑

Dr. Srither’s work has been cited extensively in high-impact journals, with his research on triboelectric nanogenerators and nanocomposite materials contributing significantly to the broader field of renewable energy and flexible electronics. He has also been a frequent presenter at international conferences and symposia, where his findings continue to inspire and influence researchers worldwide.

Research Skills 🧪

Dr. Srither possesses a diverse range of experimental skills that include spin coating, spray coating, electrospinning, and spray pyrolysis, along with advanced characterization techniques like X-ray diffraction (XRD), atomic force microscopy (AFM), and UV-Vis spectroscopy. His expertise in electrochemical testing and device evaluation has been pivotal in the development of energy harvesting systems and energy storage devices.

Teaching Experience 🍎

Dr. Srither’s role as a Visiting Professor at KL Deemed to be University allows him to impart his knowledge to undergraduate and postgraduate students in Nanotechnology. He also has significant experience in practical teaching, having assisted professors in lab work, project development, and demonstrations in nanotechnology. His involvement in designing and executing exhibits has further enriched his teaching journey, preparing students for real-world applications of nanoscience and technology.

Awards and Honors 🏆

Dr. Srither’s dedication to excellence has been recognized through numerous accolades, including the Best Paper Award at the International Conference on Wireless Communication and Emerging Technologies (RAWCET 2022) for his work on a wearable single-electrode mode triboelectric nanogenerator. His innovations have also been featured on the DST website, with recognition from the Ministry of Science and Technology, Govt. of India.

Legacy and Future Contributions 🚀

Dr. Srither’s work sets the foundation for significant advancements in sustainable energy technologies and smart devices. His legacy lies in his ability to merge nanoscience with practical, real-world applications, particularly in energy harvesting and self-powered systems. Moving forward, his ongoing projects, such as motion sensing in sewage tunnels and structural health monitoring applications, promise to continue shaping the future of energy efficiency and smart infrastructure.

Publications Top Notes

High-Sensitivity Optical Fiber-Based SPR Sensor for Early Cancer Cell Detection Using Cerium Oxide and Tungsten Disulfide

  • Authors: N. Hma Salah, Nasih V. Yesudasu, Vasimalla B. Kaur, Baljinder S.R. Srither, S. R. Kumar, Santosh
    Journal: Plasmonics
    Year: 2025

SMF-based SPR sensors utilizing thallium bromide immobilization for detection of various bacterial cells

  • Authors: V. Yesudasu, Vasimalla N. Hma Salah, Nasih S. Chella, Santhosh S.R. Srither, S. R. Kumar, Santosh
    Journal: Microchemical Journal
    Year: 2025

Electrical and dielectric properties of PVA-doped NiGdxFe2-xO4 nanoferrite particles

  • Authors: N Lenin, NJ Raj, RR Kanna, P Karthikeyan, M Balasubramanian, …
    Journal: Materials Science and Engineering: B
    Year: 2024

Simple Non-Invasive Coronary Artery Disease Detection Using Machine Learning

  • Authors: S Kalpana, SR Srither, NR Dhineshbabu, G Nikitha
    Journal: 2024 4th International Conference on Innovative Practices in Technology and …
    Year: 2024

Recent advances in wearable textile-based triboelectric nanogenerators

  • Authors: S Neelakandan, SR Srither, NR Dhineshbabu, S Maloji, O Dahlsten, …
    Journal: Nanomaterials
    Year: 2024

Shuxia Zhao | Theoretical Advances | Best Researcher Award

Assoc. Prof. Dr. Shuxia Zhao | Theoretical Advances | Best Researcher Award

Associate Professor at Dalian University of Technology, China

Dr. Shuxia Zhao is an Associate Professor at the Dalian University of Technology, with a specialization in electronegative and inductively coupled plasmas. She has an extensive academic background, with degrees in Physics, Materials Science, and Plasma Physics from Hebei Normal University and Dalian University of Technology, followed by Postdoctoral Research at the University of Antwerp. Dr. Zhao’s expertise lies in exploring the complex discharge structures of plasma and establishing interdisciplinary links across various fields of plasma physics.

👨‍🎓Profile

Early Academic Pursuits 🎓

Dr. Zhao began her academic journey at Hebei Normal University in 2000, where she completed her Bachelor’s degree in Physics. She continued her studies at the same institution, earning her Master’s degree in Physics and Chemistry of Material in 2007. Further refining her expertise, she pursued her Doctorate at Dalian University of Technology, specializing in Plasma Physics. Dr. Zhao also enriched her research experience as a Postdoctoral Researcher at the University of Antwerp, focusing on fluorocarbon inductively coupled plasmas.

Professional Endeavors 💼

Dr. Zhao has contributed to various significant research projects funded by the National Natural Science Foundation of China. In her current role as Associate Professor at DUT since 2013, she continues to advance knowledge in electronegative plasmas and inductively coupled plasmas. Dr. Zhao has led industry collaborations, notably with North microelectronics base, enhancing plasma source technologies.

Contributions and Research Focus 🔬

Dr. Zhao’s research explores the discharge mechanism and etching processes of fluorocarbon plasmas, as well as the complex discharge structures of electronegative plasmas. She is particularly interested in low-temperature plasmas and their potential connections with high-temperature fusion plasmas and astrophysical plasmas. Her work on mode transition and hysteresis in inductively coupled plasma sources has provided critical insights into plasma behavior and interactions.

Impact and Influence 🌍

Dr. Zhao’s groundbreaking work in plasma science has impacted both the academic community and the industry. Her research has provided important theories and models that enhance the understanding of plasma behaviors and their applications in various fields, including microelectronics and fusion energy. Her published books and articles have been well-cited, showcasing her role in advancing plasma physics.

Academic Citations 📊

Dr. Zhao’s research contributions are widely recognized, with a Web of Science ResearcherID of AFT-8684-2022. She has published 39 journals in renowned international databases like SCI and Scopus. Her work is highly cited and continues to shape plasma science research globally.

Research Skills 🧑‍🔬

Dr. Zhao is skilled in fluid modeling, plasma diagnostics, and theoretical plasma physics. She has developed innovative software for modeling argon inductively coupled plasmas and ionic species transport coefficients in low-pressure RF plasmas, securing patents for these developments. Her expertise extends to data analysis, numerical simulations, and plasma characterization.

Teaching Experience 🍎

Dr. Zhao has been an educator at Dalian University of Technology for over a decade. She is deeply invested in nurturing the next generation of plasma scientists and engineers. Dr. Zhao’s commitment to teaching and mentoring extends beyond the classroom, as she actively supervises graduate students and postdoctoral researchers in their own academic pursuits.

Legacy and Future Contributions 🌱

As Dr. Zhao continues to explore the complexities of inductively coupled plasmas, her future work will likely further advance the field of plasma physics, especially in the context of microelectronics and fusion energy. Her research legacy is one of interdisciplinary collaboration, innovative discoveries, and educational excellence, contributing to both scientific advancements and technological applications.

Publications Top Notes

Simulation of mode transitions in capacitively coupled Ar/O2 plasmas

  • Authors: X. Liu, S. Zhang, S. Zhao, H. Li, X. Ren
    Journal: Plasma Science and Technology
    Year: 2024

Self-Coagulation Theory and Related Comet- and Semi-Circle-Shaped Structures in Electronegative and Gaseous Discharging Plasmas in the Laboratory

  • Authors: Y. Tian, S. Zhao
    Journal: Applied Sciences (Switzerland)
    Year: 2024

Effect of gas flow on the nanoparticles transport in dusty acetylene plasmas

  • Authors: X. Liu, W. Liu, X. Zhang, X. Dong, S. Zhao
    Journal: Plasma Science and Technology
    Year: 2023

 

 

Jinghua Han | Interactions and fields | Best Researcher Award

Dr. Jinghua Han | Interactions and fields | Best Researcher Award

Sichuan University | China

Jinghua Han is an associate professor and doctoral supervisor at Sichuan University, specializing in laser effects, artificial intelligence (AI), and their cross-applications in various fields. With an academic background that includes a one-year study visit at the School of Mechanical Engineering and Aerospace Engineering at Rutgers University in the United States, Han has established herself as a key figure in laser technology and its integration with AI for practical applications in manufacturing, environmental and agricultural fields.

👨‍🎓Profile

Scopus

📚 Early Academic Pursuits

Dr. Han began her academic journey with a strong foundation in engineering and applied physics, which eventually led her to complete advanced studies at Sichuan University. Her decision to pursue a year-long academic visit to the United States in 2013-2014 further broadened her understanding of mechanical engineering and aerospace technologies. This international exposure fueled her passion for interdisciplinary research, allowing her to apply cutting-edge concepts in laser systems and artificial intelligence to real-world challenges.

💼 Professional Endeavors

Dr. Han has successfully hosted and participated in several high-profile research projects, including three funded by the National Natural Science Foundation of China and another key initiative backed by Huawei Technologies Co., Ltd.. Her collaborations span across major institutions like the China Academy of Engineering Physics, Chengdu Aerospace Science and Technology Corporation, and the Western Institute of Physics, reflecting her role in both national and international research communities.

🔬 Contributions and Research Focus

Han’s research spans a wide range of applications with a particular focus on laser effects and their applications across various sectors, including artificial intelligence, manufacturing, and environmental/agricultural engineering. She has authored over 50 SCI papers in prestigious journals such as Optics Express, and holds 10 invention patents. Her contributions are not limited to research; she has actively contributed to the field through the publication of her monograph, “Laser Effects and Engineering Applications”, published by Tsinghua University Press.

🌍 Impact and Influence

Dr. Han’s research has had a far-reaching impact, not only in academia but also in industry and public policy. Her collaborations with leading technological corporations like Huawei and Chengdu Aerospace Science and Technology Corporation showcase her ability to translate scientific discovery into real-world solutions. Moreover, her involvement in the Science and Technology Mayor’s League in Wuxi High-Tech Zone demonstrates her commitment to fostering collaboration between academia, government, and industry.

🏅 Academic Cites

With over 50 SCI papers published in high-impact journals, Dr. Han’s research has garnered widespread attention and citations. This body of work covers diverse aspects of laser technology, AI, and engineering applications, and has been referenced by researchers and professionals worldwide, solidifying her reputation as a leader in these fields.

🛠️ Research Skills

Dr. Han’s expertise encompasses laser technology, artificial intelligence, sensor integration, and the development of intelligent laser systems. She has demonstrated a high level of proficiency in multi-disciplinary research, combining principles from physics, engineering, and AI to innovate and create solutions that can benefit sectors like agriculture, manufacturing, and environmental science.

👩‍🏫 Teaching Experience

As a doctoral supervisor and educator, Dr. Han has mentored over 20 master’s and doctoral students, many of whom have gone on to become key professionals in renowned institutions like the Changguang Institute and Xiwu Institute. Her dedication to education is evident not only in her students’ successes but also in her receipt of the Second Prize of the Teaching Achievement Award from the Education Department of Sichuan Province. She was ranked third, a testament to her outstanding commitment to shaping the next generation of researchers and engineers.

🏆 Awards and Honors

Dr. Han has been recognized for her groundbreaking research and contributions to the scientific community. Some of her most prestigious awards include:

  • Vebleo Fellow (2022), awarded by the international scientific organization.
  • Asia Pacific Association for Artificial Intelligence (AAIA) Fellow (2022).
  • Second Prize of the Teaching Achievement Award from the Education Department of Sichuan Province, ranking third.

Her professional accolades reflect her excellence in both research and teaching, establishing her as a trailblazer in her field.

🔮 Legacy and Future Contributions

Dr. Han’s future contributions are poised to shape the intersection of AI, laser technology, and manufacturing. As a forward-thinking academic and researcher, she is focused on advancing intelligent laser systems and their applications to solve global challenges in agriculture and environmental sustainability. Her ongoing collaborations and mentorship ensure that her legacy will inspire future generations of scientists and engineers, reinforcing the importance of interdisciplinary research in addressing today’s most pressing issues.

Publications Top Notes

Application of optical micro-fibres decorated with a co-doped Er3+/Yb3+ silica film with fast desorption response for environmental cleanliness measurement of a laser facility

  • Authors: G. Zhou, H. You, W. Zhu, Y. Jiang, X. Jiang
    Journal: Measurement
    Year: 2025

Removal of micro-nano particles based on water-assisted enhanced plasma shock wave

  • Authors: Q. Song, J. Xiao, S. Li, M. Yang, G. Feng
    Journal: Applied Surface Science
    Year: 2024

Cubic nonlinear scanning for improved TDLAS-based methane concentration detection

  • Authors: R. You, H. Kang, X. Zhang, J. Han, G. Feng
    Journal: International Journal of Hydrogen Energy
    Year: 2024

High-performance Ag-TiO2 nanoparticle composite catalyst synthesized by pulsed laser ablation in liquid: properties, mechanism and preparation studies

  • Authors: L. O. N. G., D. Yu, J. Han, J. Zhu, K. Yang
    Journal: Optics Express
    Year: 2024

Fenton reaction in the process of “Laser + Fe” mode excited plasma for Rhodamine B degradation

  • Authors: J. Zhu, D. Yu, N. Xie, G. Feng, X. Long
    Journal: Optics Express
    Year: 2024

 

Hosam M Gomaa | Material Science | Member

Dr. Hosam M Gomaa | Material Science | Member

PHD at Faculty of Science, Al-Azhar University, Cairo, Egypt

Dr. Hosam M. Gomaa, based in Giza, Egypt, is an accomplished physicist specializing in Solid State Physics. With a background from Al-Azhar University, Cairo, he has lectured extensively in Libya and Egypt, covering diverse topics from General Physics to Optics. Currently affiliated with the Pharaohs Higher Institute, his research spans Materials, Optics, and Physics, focusing on areas like Oxide Glasses and Nanomaterials. Dr. Gomaa is known for his expertise in Thermal Analysis and Spectral Techniques. He has been an integral part of prestigious scientific teams, contributing significantly to Mossbauer Effect and Nanoscience research labs.

Professional Profiles:

Educational Qualifications

B. Sc. of Physics, Physics Department, Faculty of Science, Al-Azhar University, Cairo, Egypt, 1999/2000 M. Sc. of Solid State Physics, Department of Physics, Faculty of Science, Al-Azhar University, Cairo, Egypt, 2005 Ph. D. of Solid State Physics, Department of Physics, Faculty of Science, Al-Azhar University, Cairo, Egypt, 2008

Statement of Previous Experience:

Formal Lecturer (Assistant Professor) of Physics, Department of Physics, Faculty of Arts and Sciences, Sert University, Libya, 2009-2015 Lecturer (Assistant Professor) of Engineering Physics, Department of Physics, Faculty of Engineering Technology, Sert University, Libya, 2009-2015 Formal Tutor (Assistant Professor) of Basic Sciences (Physics, Electrical Engineering, Fundamentals of Electronics, Optics), Optical Branch, High Institute of Optical Technology, Cairo, Egypt, 2016-2020

Research Focus:

Dr. Hosam M. Gomaa’s research primarily focuses on the optical and structural properties of various glass systems, with a particular emphasis on bismuth borate glasses. His work encompasses the investigation of dopants like zinc, calcium, and niobium, and their effects on linear and nonlinear optical parameters. Additionally, he explores the structural modifications induced by the inclusion of different metal oxides, such as vanadium, copper, and titanium. Dr. Gomaa’s research contributes significantly to the understanding of glass materials for optoelectronic applications and radiation shielding. His studies offer valuable insights into the development of novel glass compositions with tailored optical and functional properties.

Publications

  1. Non-zero θ13 and δCP phase with A4 flavor symmetry and deviations to tri-bi-maximal mixing via Z2 × Z2 invariant perturbations in the neutrino sector, Publication: 2024.
  2. Effect of replacing B2O3 with Dy2O3 on the structural, physical, and radiation shielding properties of sodium boroaluminate glass, Publication: 2024.
  3. Investigating La2O3-enriched glass compositions: thermal, optical, structural properties and Gamma-Ray shielding efficiency, Publication: 2024.
  4. Photoimpedance spectroscopy of ZnTe/ZnMnTe heterojunction for photodetector devices using Cole–Cole diagrams and relaxation time processPublication: 2023.
  5. Effect of BaO doping on the structural and optical properties of some cerium-copper sodium borate glasses, Publication: 2023.
  6. Estimate of the effect of adding CoCl 2 in different amounts on the structural, optical properties, and the radiation shielding ability of arsenic borate glasses containing Na+, Ca++, and Pb++ cations, Publication: 2023.
  7. New mathematical formulas for more accurate physical descriptions of the optical and optoelectric conductivities of an optical medium, Publication: 2023.
  8. Effect of Graphene Nanopowder on the Structural and Optical Characteristics of Lead Borovanadate Glass Containing Ca2+ and Na+ Cations, Publication: 2023.
  9. Structural properties, linear, and non-linear optical parameters of ternary Se80Te(20−x)Inx chalcogenide glass systemsAnálisis estructural y parámetros ópticos lineales y no lineales de sistemas ternarios de vidrio de calcogenuro de composición Se80Te(20-x)Inx, Publication: 2023.
  10. Toward a novel and accurate relationship between electrical and optical conductivity in opto-material sciences: New strategyPublication: 2022.

 

.