Gavin DeBrun | Computational Methods | Best Researcher Award

Mr. Gavin DeBrun | Computational Methods | Best Researcher Award

R&D Staff, Sandia National Laboratories, United States

Gavin DeBrun is a dynamic and multidisciplinary researcher with a Bachelor of Science in Engineering Physics from the University of Illinois at Urbana-Champaign, supplemented by minors in Computer Science, Statistics, and Mathematics. His diverse research spans computational materials science, atmospheric modeling, nuclear corrosion safety, and machine learning applications. Gavin’s work includes prestigious appointments at Sandia National Laboratories, and his publications demonstrate active contribution to materials innovation, energy systems, and algorithm design. He is recognized for blending advanced simulation, data analysis, and scientific software development to solve complex real-world problems with academic rigor and technical depth.

👨‍🎓Profile

Google scholar

ORCID

📚 Early Academic Pursuits

From his undergraduate years, Gavin pursued an intensive and well-rounded curriculum combining physics, computer science, statistics, and math. At the University of Illinois, he rapidly immersed himself in research labs across departments, from atmospheric science to applied physics. His early work on storm evolution using radar data and split ventilator circuit designs during COVID-19 set the stage for a career shaped by both scientific creativity and societal impact. By sophomore year, he was already engaged in publication-worthy projects, a rare distinction that reflects both intellectual curiosity and a strong research aptitude at an early stage.

🧪 Professional Endeavors

Gavin has held research roles in seven different labs, including Sandia National Laboratories, where he currently develops molecular dynamics simulations and machine learning classification pipelines. His career reflects extraordinary versatility ranging from photovoltaic optimization algorithms to nuclear fuel canister corrosion studies using electrochemical impedance spectroscopy. Notably, he contributed to the Geubelle Computational Mechanics Group, refining finite element models for polymer composites. His consistent engagement with cross-disciplinary teams and national laboratories highlights not just technical skill, but also adaptability, collaboration, and a genuine drive to explore science at the interface of computation and engineering.

🧭 Contributions and Research Focus

Gavin’s research focus is deeply rooted in computational physics and materials engineering, with contributions spanning hydrogen diffusion, quantum computing emulation, and additive manufacturing. He has co-authored peer-reviewed papers on topics like frontal polymerization, corrosion-resistant coatings, and solid-state battery simulations. His work combines physics-based modeling with modern data-driven techniques, such as ML classifiers and simulation automation. Gavin excels in building software tools, running large-scale simulations, and validating models using real-world experimental data, positioning himself at the cutting edge of next-generation material innovation and sustainable energy solutions.

🌍 Impact and Influence

Gavin’s influence is evident in the multidisciplinary breadth of his projects and the applied nature of his research, which addresses critical challenges in renewable energy, quantum computing, and nuclear safety. He has contributed to innovations that enhance solar power efficiency, extend the life of nuclear infrastructure, and optimize advanced manufacturing methods. His efforts are not confined to academia several works have national implications, especially within energy and defense research sectors. His publication record and national lab affiliations showcase a rising research leader, poised to impact both fundamental science and applied technology development.

📄 Academic Citations

Gavin is a co-author of multiple peer-reviewed papers and conference proceedings, with publications in Composite Structures, Composites Part A, and Coatings, among others. His research has earned citations across materials science, energy systems, and applied physics communities. Most notably, his paper on irradiation effects in corrosion-resistant coatings (Coatings, 2025) and his work on frontal polymerization have gained early recognition. He has presented at prestigious venues like IMECE 2023 and ASC 2023, signaling his growing academic presence. As he continues publishing and expanding collaborations, his citation index is expected to grow rapidly in coming years.

🛠️ Research Skills

Gavin possesses advanced programming skills (C++, Python, SQL, R) and experience with scientific computing tools like FEniCS, PyTorch, NumPy, and ParaView. His expertise in data analysis, machine learning, and simulation modeling is supported by fluency in parallel programming, HPC environments, and scientific visualization. He has built quantum emulators, designed Monte Carlo simulations for hydrogen diffusion, and led data integration across weather models and radar systems. His blend of computational fluency, physical intuition, and data science methodologies equips him with a rare skillset ideal for solving high-dimensional, multidisciplinary problems.

🔮 Legacy and Future Contributions

Gavin DeBrun is building a legacy rooted in scientific versatility and computational innovation. His work spans multiple high-impact domains, and he consistently contributes to solving some of today’s most pressing energy and materials challenges. In the near future, he is poised to become a thought leader in computational materials science, with strong potential for Ph.D. pursuits, interdisciplinary publications, and industry collaborations. As an innovator, educator, and systems thinker, his contributions will likely influence the development of resilient energy systems, smart materials, and next-generation simulation tools for years to come.

Publications Top Notes

Multiscale modeling of frontal polymerization in laminated and woven composites
  • Authors: Michael Zakoworotny, Gavin DeBrun, Sameh H. Tawfick, Jeffery W. Baur, Philippe H. Geubelle
    Journal: Composite Structures
    Year: 2025
Reactive extrusion of frontally polymerizing continuous carbon fiber reinforced polymer composites
  • Authors: Nadim S. Hmeidat, Michael Zakoworotny, Yun Seong Kim, Thien B. Le, Gavin DeBrun, Rohan Shah, Jacob J. Lessard, Jeffery S. Moore, Jeffery W. Baur, Philippe H. Geubelle
    Journal: Composites Part A: Applied Science and Manufacturing
    Year: 2025
Impact of Irradiation on Corrosion Performance of Hybrid Organic/Inorganic Coatings on Austenitic Stainless Steel
  • Authors: Natalie Click, Andrew Knight, Brendan Nation, Makeila Maguire, Samay Verma, Gavin DeBrun, Tyler McCready, Adam Goff, Audrey Rotert, Don Hanson
    Journal: Coatings
    Year: 2025
Additive Manufacturing of Frontally-Polymerizable Continuous Carbon Fiber Tow-Based Composites
  • Authors: Nadim S. Hmeidat, Michael Zakoworotny, Nil A. Parikh, Thien B. Le, Pranjal Agrawal, Gavin DeBrun, Jeffery Baur, Philippe H. Geubelle, Sameh H. Tawfick, Nancy R. Sottos
    Journal: Proceedings of the American Society for Composites (ASC)
    Year: 2023

Marilyn Bishop | Theoretical Advances | Best Researcher Award

Dr. Marilyn Bishop | Theoretical Advances | Best Researcher Award

Associate Professor at Virginia Commonwealth University | United States

Marilyn F. Bishop is a tenured Associate Professor of Physics at Virginia Commonwealth University since 1986. She earned her Ph.D. in Physics from the University of California, Irvine in 1976. With a strong foundation in mathematics and physics, she has developed a multifaceted academic career blending theoretical physics with biophysical research. Bishop’s extensive work spans decades, contributing to both scientific understanding and educational advancements, making her a respected figure in physics education and research communities.

👨‍🎓Profile

Scopus

ORCID

🎓 Early Academic Pursuits

Bishop’s academic journey began with dual Bachelor’s degrees in Physics (1971) and Mathematics (1972) from UC Irvine, followed by a Master’s (1973) and Ph.D. in Physics (1976) from the same institution. She started as a Research Assistant at UC Irvine, honing her skills in theoretical physics. Early postdoctoral work at Purdue University and a visiting scientist role at Technische Universität München reflect her deep engagement with surface physics and condensed matter topics, establishing a strong foundation for her future research and teaching career.

💼 Professional Endeavors

Since 1986, Marilyn Bishop has been a key faculty member at VCU, earning tenure in 1990. Her earlier roles include Assistant Professor at Drexel University and consulting for Purdue University’s Physics Department. She has also been a Fellow at the Center for the Study of Biological Complexity, integrating physics with biological applications. Her professional work balances academic research, collaborative projects, and consulting, emphasizing both theoretical and computational physics, alongside mentoring students and contributing to interdisciplinary scientific communities.

🔬 Contributions and Research Focus

Bishop’s research emphasizes surface polaritons, spatially dispersive materials, and light scattering phenomena, particularly relating to biophysical systems like sickle hemoglobin polymerization. She has published extensively on surface exciton polaritons, Raman scattering, and spin susceptibility in electron gases. Her interdisciplinary work bridges physics and biology, supported by NIH grants focused on computational modeling of cardiopulmonary physiology. Her innovative use of photonic band structure methods to study biological tissues, such as the eye’s cornea, marks a notable contribution to biophysics.

🌟 Impact and Influence

Marilyn Bishop’s impact is seen through her numerous publications, presentations, and invited talks at major physics conferences like the APS March Meetings. She has helped shape understanding in condensed matter physics and biophysics, fostering collaboration between physics and biological sciences. Her research has influenced studies on electron interactions, spin susceptibility, and optical properties of materials, inspiring new computational approaches. She is a mentor to students and colleagues, advancing physics education and encouraging interdisciplinary exploration.

📖 Academic Cites

Her scholarly work has been cited widely in condensed matter physics and biophysics, particularly her studies on surface polaritons and electron gas spin susceptibility. Papers published in prestigious journals like Physical Review B and Physical Review Letters demonstrate her research rigor and relevance. Participation in workshops such as the NSF’s Materials Theory and her role in presenting at over 50 conferences have further solidified her standing in the scientific community, influencing ongoing research in theoretical and applied physics.

🧠 Research Skills

Marilyn Bishop possesses advanced skills in theoretical modeling, computational physics, and light scattering techniques. She developed Mathematica programs for physics visualization and data analysis, pioneering online homework systems in physics education. Her expertise extends to Monte Carlo simulations, photonic band structure calculations, and modeling complex biological systems. Her research methodology combines rigorous mathematical frameworks with computational tools to explore physical phenomena at both micro and macro scales, enhancing interdisciplinary research capabilities.

👩‍🏫 Teaching Experience

Bishop has a rich teaching portfolio, delivering courses from introductory physics labs to advanced graduate seminars in quantum mechanics, electromagnetism, and theoretical mechanics. She created new courses like Physics of Sound and Music and integrated Mathematica visualization tools into the curriculum. Known for developing online homework and detailed instructional materials, Bishop has mentored numerous students and collaborated with colleagues to enhance physics pedagogy at VCU, combining research insights with effective teaching strategies.

🏆 Awards and Honors

Her accolades include the Drexel University Research Scholar Award, membership in Sigma Xi, and the VCU SEED Award (2022-2023) for innovative research proposals. She also earned recognition early in her career with the First Place in the Writer’s Division of the Advertiser-Press Awards (1969). Bishop has secured multiple NIH grants supporting research and education, as well as industry funding, underscoring her research’s impact and her commitment to scientific excellence and mentorship.

🔮 Legacy and Future Contributions

Marilyn F. Bishop’s legacy lies in her interdisciplinary research bridging physics and biology, innovative teaching methods, and mentorship. Her ongoing work on sickle-cell hemoglobin structure and computational biophysics continues to push boundaries. As a tenured professor and research fellow, she is poised to influence future generations through continued scholarship, course development, and collaborative projects. Her integration of computational tools and physical theory sets a strong foundation for future scientific and educational advancements.

Publications Top Notes

Entropies of the Classical Dimer Model

  • Authors: John C. Baker, Marilyn F. Bishop, Tom McMullen
    Journal: Entropy
    Year: 2025

An α-chain modification rivals the effect of fetal hemoglobin in retarding the rate of sickle cell fiber formation

  • Authors: E.H. Worth, M.K. Fugate, K.C. Grasty, P.J. Loll, Marilyn F. Bishop, F.A. Ferrone
    Journal: Scientific Reports
    Year: 2023

Entropy of Charge Inversion in DNA including One-Loop Fluctuations

  • Authors: M.D. Sievert, Marilyn F. Bishop, Tom McMullen
    Journal: Entropy
    Year: 2023

Superlinear increase of photoluminescence with excitation intensity in Zn-doped GaN

  • Authors: M.A. Reshchikov, A.J. Olsen, Marilyn F. Bishop, Tom McMullen
    Journal: Physical Review B – Condensed Matter and Materials Physics
    Year: 2013

The Sickle-Cell Fiber Revisited

  • Authors: Marilyn F. Bishop, Frank A. Ferrone
    Journal: Biomolecules
    Year: 2023

 

 

Zhaocang Meng | Computational Methods | Best Researcher Award

Assist. Prof. Dr. Zhaocang Meng | Computational Methods | Best Researcher Award

Institute of Modern Physics, Chinese Academy of Sciences | China

Dr. Zhaocang Meng is a materials physicist specializing in first-principles simulations, irradiation damage modeling, and additive manufacturing of advanced materials. He earned his Ph.D. in Science through a joint program between the Institute of Modern Physics, Chinese Academy of Sciences (CAS) and Lanzhou University. His research spans the atomic-scale behavior of defects, mechanical property evaluation, and high-throughput screening for material optimization. Currently based at the Institute of Modern Physics, CAS, he is an integral contributor to strategic projects funded by both national and provincial Chinese foundations.

👨‍🎓Profile

Scopus

🎓 Early Academic Pursuits

Dr. Meng began his academic journey at Northwest Normal University, majoring in Physics and Electronic Engineering, where he laid the groundwork in material science and theoretical physics. He continued his master’s studies at the Institute of Modern Physics, CAS, focusing on radiation effects and material behavior. His intellectual curiosity and growing expertise led to a Ph.D. (2018–2021) in a joint doctoral program between CAS and Lanzhou University, where he honed his skills in density functional theory (DFT) and multi-scale simulations, preparing him for a robust career in theoretical and computational materials science.

💼 Professional Endeavors

Since July 2021, Dr. Meng has served as a researcher at the Institute of Modern Physics, Chinese Academy of Sciences, contributing to major national research initiatives, including the CAS Strategic Priority Program. His role encompasses both theoretical modeling and applied computation for nuclear-grade materials, ceramics, and metallic systems. He is actively involved in Grain Boundary Segregation Engineering for SiC and BeO, and supports the development of neural network potentials. His practical contributions extend to thermophotovoltaic energy systems and irradiation-resilient structural materials, demonstrating a bridge between computational insight and real-world application.

🔬 Contributions and Research Focus 

Dr. Meng’s primary contributions lie in the atomistic modeling of radiation-induced defects, grain boundary behavior, and mechanical performance of ceramics and metals. His first-principles investigations in materials like Ti₃AlC₂, BeO, SiC, and Be₁₂Ti have revealed novel insights into defect–impurity interactions, hydrogen/helium diffusion, and segregation phenomena under extreme environments. He has also made impactful strides in the development of neural network potentials for materials like SiC, allowing large-scale simulations with quantum-level accuracy. His work directly supports the advancement of materials for nuclear reactors, space missions, and extreme-condition engineering.

🌍 Impact and Influence

Dr. Meng’s work has influenced fields such as nuclear materials, condensed matter theory, and computational materials science. His articles in high-impact journals like Physical Chemistry Chemical Physics, Journal of Nuclear Materials, and RSC Advances have become key references in radiation material modeling. His collaborations across diverse domains, from hydrogen embrittlement to deep potential learning for FCC copper, highlight his versatility. The adoption of his findings in defect prediction and grain boundary design has practical implications for materials used in reactors and space technology, positioning him as a rising figure in next-generation material research.

📚 Academic Cites 

With a growing body of 14+ peer-reviewed publications, Dr. Meng’s research outputs have earned significant citations in domains like irradiation defect dynamics, machine-learned interatomic potentials, and grain boundary engineering. His work on Ti₃AlC₂ and Be₁₂Ti systems has been cited for its pioneering insights into defect clusters and transmutation effects, while his 2023 papers on SiC doping and neural network-based modeling have gained traction among materials engineers and computational physicists. His interdisciplinary footprint, combining physics, chemistry, and mechanical engineering, enhances his recognition across both academic and applied research networks.

🛠️ Research Skills 

Dr. Meng demonstrates mastery in first-principles methods (DFT), molecular dynamics, machine learning potentials, and multi-scale simulation frameworks. His computational toolkit includes VASP, Quantum ESPRESSO, LAMMPS, and deep learning platforms like DeePMD-kit. He excels in automated high-throughput screening, grain boundary structure prediction, and radiation damage modeling. His ability to link atomic-level processes to macroscopic properties allows him to tackle engineering problems with atomic precision. He is adept at designing simulation protocols that align with experimental validations, ensuring a feedback loop between theory and practice a critical skill in today’s data-driven research environment.

👨‍🏫 Teaching Experience 

While primarily a researcher, Dr. Meng has informally mentored junior scientists and graduate students during his tenure at the Institute of Modern Physics. He has contributed to internal training modules and simulation workshops focusing on first-principles methods and materials modeling software. As his academic journey matures, he is well-positioned to engage in formal teaching or curriculum development, especially in computational material science, AI-driven simulations, and solid-state physics. His clarity in technical writing and collaborative style suggest strong potential as a future university lecturer or postgraduate supervisor.

🏅 Awards and Honors 

Although specific awards are not mentioned, Dr. Meng’s selection for national strategic research programs (e.g., CAS Grant No. XDA0410000) and provincial funding initiatives like Guangdong Basic Research Foundation reflect institutional recognition of his capabilities. His consistent publication record in top-tier international journals underscores his scientific credibility. Being chosen to lead studies involving Grain Boundary Engineering and deep learning potentials in cutting-edge materials confirms his reputation among peers and senior collaborators. With this trajectory, formal honors such as Young Scientist Awards or Outstanding Researcher Fellowships are highly likely in the near future.

🔮 Legacy and Future Contributions 

Dr. Zhaocang Meng is poised to leave a lasting legacy in predictive materials design. His work in irradiation resistance, grain boundary tailoring, and AI-driven material exploration sets a solid foundation for next-gen energy systems, including fusion reactors, radioisotope thermoelectric generators, and space propulsion materials. Future contributions may include cross-disciplinary collaboration with AI scientists, sustainable materials discovery, and experimental validation partnerships. His potential to transition from a leading researcher to a thought leader and educator is evident. Dr. Meng represents a new era of materials scientists who bridge theory, computation, and practical innovation.

Top Noted Publications

Segregation and aggregation behavior of impurity atoms at grain boundaries of BeO: A first-principles study

  • Authors: Xuejie Wang, Teng Shen, Canglong Wang, Kai He, Zhaocang Meng*, et al.
    Journal: Journal of Nuclear Materials
    Year: 2025

Screening and manipulation by segregation of dopants in grain boundary of Silicon carbide: First-principles calculations

  • Authors: Z.C. Meng, C.L. Wang, Y.L. Wang, et al.
    Journal: Ceramics International
    Year: 2023

First-principles investigations of oxygen interaction with hydrogen/helium/vacancy irradiation defects in Ti₃AlC₂

  • Authors: Zhaocang Meng, Canglong Wang, Jitao Liu, Yinlong Wang, Xiaolu Zhu, Lei Yang, Liang Huang
    Journal: Physical Chemistry Chemical Physics
    Year: 2021

New insight into the interaction between divacancy and H/He impurity in Ti₃AlC₂ by first-principles studies

  • Authors: Zhaocang Meng, Canglong Wang, Jitao Liu, Yinlong Wang, Xiaolu Zhu, Lei Yang, Liang Huang
    Journal: Physical Chemistry Chemical Physics
    Year: 2020

Deep potential for a face-centered cubic Cu system at finite temperatures

  • Authors: Y.Z. Du, Z.C. Meng, Q. Yan, et al.
    Journal: Physical Chemistry Chemical Physics
    Year: 2022

 

Joseph Brizar Okaly | Theoretical Advances | Best Researcher Award

Dr. Joseph Brizar Okaly | Theoretical Advances | Best Researcher Award

Researcher at GHS Minkama | Cameroon

Dr. Okaly Joseph Brizar is a distinguished physicist, educator, and academic leader. Holding a Ph.D. in Physics from the University of Yaounde I, he currently serves as the Vice-Principal and Physics Lecturer at Government High School Minkama, under the Ministry of Secondary Education, Cameroon. His research spans biophysics, statistical physics, and nonlinear systems, earning him international recognition. Married and a father of six, Dr. Okaly balances a robust academic career with administrative duties and remains committed to scientific excellence and educational reform in Cameroon.

👨‍🎓Profile

Scopus

ORCID

🎓 Early Academic Pursuits

Dr. Okaly’s academic journey began with a Baccalaureate in Mathematics and Physics in 2000 from GHS Obala. He pursued higher education at the University of Yaounde I, obtaining a Bachelor’s (2008), Master’s (2013), and ultimately a Ph.D. in Physics (2019). His training included teacher certification programs (Grades 1 & 2) from the High Teacher Training College, equipping him with both scientific acumen and pedagogical skills. His doctoral thesis, “Base pairs opening and bubble transport in DNA systems,” laid the foundation for his research in biological and condensed matter systems.

💼 Professional Endeavors

With over 20 years of professional experience, Dr. Okaly has held diverse academic and administrative roles. He has taught Physics across secondary schools and higher institutions, including Polytech d’Obala and the University of Yaounde I. Rising through the ranks, he served as Head of Department, Level Responsible, and now as Vice-Principal at GHS Minkama. His dual roles reflect strong leadership, strategic oversight, and dedication to education management. His career exemplifies the integration of academic rigor and institutional development in Cameroon’s education sector.

🔬 Contributions and Research Focus

Dr. Okaly’s research is rooted in nonlinear dynamics, particularly in DNA systems, earthquake modeling, and long-range interactions. He has authored 12 peer-reviewed publications in respected journals like Chaos, Phys. Rev. E, and Physica A. His work on bubble transport in DNA, damped systems, and statistical modeling demonstrates a deep commitment to biophysics and molecular simulations. He has collaborated extensively with notable researchers, exploring themes such as soliton dynamics, hydrodynamic friction, and external force interactions bridging theoretical physics with real-world biological and geological systems.

🌍 Impact and Influence

Dr. Okaly’s scholarly work significantly advances the understanding of complex physical systems, particularly in biomolecular physics and earthquake wave modeling. His contributions have improved theoretical models used in medical research and environmental studies. As a senior educator and administrator, he has mentored hundreds of students, fostering a new generation of physicists in Cameroon. His influence extends beyond the classroom into national science policy through curriculum reform and educational leadership. His research has gained international recognition, shaping the discourse in condensed matter and statistical physics communities.

📚 Academic Citations

Dr. Okaly’s research has been cited in global academic literature, underscoring its relevance in nonlinear science, biophysics, and geophysics. Articles such as “Nonlinear dynamics of damped DNA systems with long-range interaction” and “Base pair opening in damped helicoidal models” are often referenced by scholars exploring molecular dynamics and DNA stability. His 2025 publication in the European Physical Journal Plus reflects continued momentum in cutting-edge research. The increasing citation rate of his work showcases his growing impact on the international physics research community.

🧪 Research Skills

Dr. Okaly demonstrates exceptional skill in theoretical modeling, differential equations, numerical simulations, and interdisciplinary analysis. His expertise in simulating molecular systems, such as DNA, showcases a deep understanding of long-range interaction effects and damped dynamics. He skillfully integrates mathematical physics, statistical tools, and computational methods to model complex phenomena in biological and physical systems. This blend of skills allows him to contribute to a wide range of physics applications, from molecular biology to earthquake wave propagation a true reflection of scientific versatility and innovation.

👨‍🏫 Teaching Experience

A seasoned educator, Dr. Okaly has taught Physics at various academic levels since 2004. His experience ranges from secondary schools (GHS Guéré, GHS Niga, GTHS Ngaoundéré) to higher institutions like the University of Yaounde I. His teaching combines conceptual clarity, experimental insights, and technology-integrated learning. As Vice-Principal and Department Head, he has introduced pedagogical reforms, mentored junior teachers, and led curriculum innovations. His dedication to teaching has impacted thousands of students, many of whom have pursued STEM careers, thereby contributing to national development.

🏅 Awards and Honors

While formal awards are not explicitly listed, Dr. Okaly’s appointments to leadership positions (such as Vice-Principal and Head of Department) reflect institutional recognition of his academic excellence, integrity, and professionalism. His selection to collaborative research projects with senior physicists and publication in renowned international journals is a testament to his merit and contribution to science. He remains a strong candidate for future academic awards, especially in physics research, science education, and educational leadership, with a proven record of impactful scholarship and service.

🌟 Legacy and Future Contributions

Dr. Okaly Joseph Brizar is establishing a lasting legacy through his contributions to science, education, and community leadership. He is actively shaping the next generation of Cameroonian scientists while producing cutting-edge research on DNA dynamics and earthquake modeling. Looking ahead, he aims to expand international collaborations, secure research funding, and promote scientific innovation in Africa. His long-term vision includes bridging education and research, developing science policy, and enhancing Africa’s presence in the global scientific arena. His legacy will reflect knowledge, mentorship, and visionary leadership.

Top Noted Publications

Nonlinear dynamics of damped DNA systems with long-range interaction

  • Authors: J. B. Okaly*, A. Mvogo, R. L. Woulaché, T. C. Kofané
    Journal: Communications in Nonlinear Science and Numerical Simulation
    Year: 2018

Semi-discrete Breather in a Helicoidal DNA Double Chain-Model

  • Authors: J. B. Okaly*, A. Mvogo, R. L. Woulaché, T. C. Kofané
    Journal: Wave Motion
    Year: 2018

Nonlinear dynamics of DNA systems with inhomogeneity effects

  • Authors: J. B. Okaly*, A. Mvogo, R. L. Woulaché, T. C. Kofané
    Journal: Chinese Journal of Physics
    Year: 2018

Base pairs opening and bubble transport in damped DNA dynamics with transport memory effects

  • Authors: J. B. Okaly*, F. II Ndzana, R. L. Woulaché, C. B. Tabi, T. C. Kofané
    Journal: Chaos: An Interdisciplinary Journal of Nonlinear Science
    Year: 2019

Solitary wavelike solutions in nonlinear dynamics of damped DNA systems

  • Authors: J. B. Okaly*, F. II Ndzana, R. L. Woulaché, T. C. Kofané
    Journal: European Journal of Physics Plus
    Year: 2019

 

Mohammed A. Al-Seady | Computational Methods | Best Researcher Award

Dr. Mohammed A. Al-Seady | Computational Methods | Best Researcher Award

PhD Student at  University of Szeged/College of Science and Informatics | Hungary

Mohammed A. Al-Seady is a passionate and emerging materials scientist and computational physicist from Iraq, currently pursuing his PhD in Physics at the University of Szeged, Hungary. He serves as a researcher at the Center for Environmental Research and Studies, University of Babylon. With a Master’s degree in Molecular Sciences focusing on graphene-based materials, Al-Seady is deeply committed to advanced research in two-dimensional nanomaterials, renewable energy applications, and environmental remediation. He has authored 16 peer-reviewed articles, demonstrating his dedication to addressing critical scientific and global sustainability challenges through computational modeling and simulation techniques.

👨‍🎓Profile

Google scholar

Scopus

ORCID

🎓 Early Academic Pursuits

Mohammed A. Al-Seady began his academic journey at the University of Babylon, where he earned his B.Sc. and M.Sc. degrees in Physics in 2015. His early fascination with nanostructures and materials science, particularly graphene, inspired him to specialize in Molecular Sciences. His academic performance and enthusiasm for scientific inquiry distinguished him early, earning him opportunities to work closely with faculty on graphene synthesis, material characterization, and fundamental physics modeling. These formative years laid a strong theoretical and experimental foundation for his future contributions in nanotechnology and computational materials physics.

💼 Professional Endeavors

Professionally, Al-Seady has held the position of Researcher at the Center for Environmental Research and Studies, University of Babylon, contributing to key environmental technology projects. Simultaneously, he is advancing his doctoral studies in Physics at the University of Szeged in Hungary. His professional path reflects a commitment to international academic collaboration, research excellence, and scientific development across both Iraq and Europe. By balancing his roles in academic research and higher education, he is establishing himself as a versatile scientist working on the intersection of theoretical physics, materials engineering, and green technology innovation.

🔬 Contributions and Research Focus

Mohammed’s research centers on two-dimensional (2D) materials such as graphene and hexagonal boron nitride (h-BN), with applied work in photovoltaics, ionic batteries, dye-sensitized solar cells (DSSCs), and gas adsorption. His work uses computational modeling tools like Gaussian09, Quantum ESPRESSO, and Materials Studio to simulate and optimize the performance of nanostructured materials. By focusing on environmental and energy applications, he contributes solutions to pollution control, energy storage, and solar energy harvesting, creating a bridge between theoretical studies and real-world environmental impact.

🌍 Impact and Influence

With 16 peer-reviewed publications, Mohammed A. Al-Seady’s research is gaining traction in the fields of computational nanomaterials, sustainable energy, and environmental technology. His interdisciplinary work helps shape the scientific discourse on the use of 2D materials in renewable energy and remediation systems. His involvement in both local research institutions and European academic networks demonstrates his ability to act as a scientific connector. Through his publications and collaborations, he is building an international research footprint and influencing future studies on green nanotechnology and computational simulations.

📚 Academic Citations

Al-Seady’s publications are indexed on Scopus and ResearchGate, reflecting a growing citation count and peer engagement. His Scopus author ID (57223213775) shows his inclusion in global citation networks, ensuring the visibility of his contributions to the academic community. Though still in the early stages of his research career, the consistent quality and relevance of his work are leading to increased citations in journals focusing on nanomaterials, computational physics, and clean energy. His scholarship is steadily building a reputation for rigor and applicability.

🧠 Research Skills

Mohammed has developed a robust technical skill set essential for advanced materials research. His proficiency in Python and C programming supports his work in numerical modeling and simulations, while tools like Quantum ESPRESSO and Gaussian09 enable him to perform high-accuracy density functional theory (DFT) calculations. His expertise extends to scientific writing, data interpretation, and computational analysis, making him an asset in both independent and collaborative projects. These skills allow him to design, model, and optimize novel nanomaterials for a wide range of energy and environmental applications.

👨‍🏫 Teaching Experience

While his profile emphasizes research, Mohammed has contributed to educational activities at the University of Babylon, supporting physics coursework and helping students understand quantum mechanics, computational modeling, and material science concepts. He has supervised undergraduate lab sessions and provided technical mentoring to research interns working on nanotechnology-related projects. His ability to translate complex scientific ideas into accessible educational content highlights his strength as an emerging educator. As he progresses in his career, his teaching contributions are expected to expand alongside his research output.

🔮 Legacy and Future Contributions

Mohammed A. Al-Seady is on a promising trajectory toward becoming a leading figure in computational materials science. His ongoing work aims to push the boundaries of 2D material applications for clean energy, sustainability, and pollution mitigation. With plans to broaden his research collaborations, mentor the next generation of scientists, and contribute to global scientific innovation, Mohammed’s legacy will likely include transformative contributions to green nanotechnology. As his career matures, he is expected to play a pivotal role in shaping scientific solutions for environmental and energy crises worldwide.

Top Noted Publications

Improved light harvesting with graphene/boron nitride nano-heteroislands: a high-efficiency photosensitizer design
  • Authors: Mohammed A. Al-Seady, Hayder M. Abduljalil, Hussein Hakim Abed, Mudar A. Abdullsatar, Rajaa K. Mohammad, Saif M. Hassan, Osamah J. Al-sareji, Mousumi Upadhyay Kahaly

  • Journal: Structural Chemistry

  • Year: 2024

Ethanol properties effects on its reaction with Mo-doped SnO₂ clusters: A gas sensor model
  • Authors: Mudar Ahmed Abdulsattar, Rashid Hashim Jabbar, Mohammed A. Al-Seady

  • Journal: Results in Surfaces and Interfaces

  • Year: 2024

Investigation of Nitrogen Dioxide Gas Sensing Characteristics in Boron Nitride and Aluminum Nitride Nanoribbons: A First Principles Study
  • Authors: Mohammed A. Al-Seady

  • Journal: Library Progress International

  • Year: 2024

Temperature and humidity effects on the acetone gas sensing of pristine and Pd-doped WO₃ clusters: A transition state theory study
  • Authors: Mudar Ahmed Abdulsattar, Hayder M. Abduljalil, Hussein Hakim Abed, Mohammed A. Al‑Seady

  • Journal: Journal of Molecular Modeling

  • Year: 2024

Unveiling the potential of graphene and S-doped graphene nanostructures for toxic gas sensing and solar sensitizer cell devices: insights from DFT calculations
  • Authors: S.A.A. Alsaati, Rabab Saadoon Abdoon, Eman Hamid Hussein, Hayder M. Abduljalil, Rajaa K. Mohammad, Mohammed A. Al-Seady, Ansaf N. Jasim, Noor Al-Huda Saleh, Lynet Allan

  • Journal: Journal of Molecular Modeling

  • Year: 2024

 

Mansur Mustafaoğlu | Computational Methods | Academic Achievement in Physics Award

Dr. Mansur Mustafaoğlu | Computational Methods | Academic Achievement in Physics Award

Atatürk University | Turkey

Dr. Mansour Nasiri Khalaji is a seasoned mechanical engineer and researcher, currently affiliated with the Department of Mechanical Engineering at Atatürk University, Erzurum, Turkey. With a profound commitment to thermal sciences, Dr. Khalaji has developed an international academic presence, particularly in the domains of heat transfer, fluid mechanics, and computational modeling.

👨‍🎓Profile

Google scholar

ORCID

📘 Early Academic Pursuits

Dr. Khalaji began his academic journey with a passion for mechanical systems and thermal processes. His Master’s thesis, titled “Experimental and Numerical Investigation of Heat and Flow in a Cross Heat Exchanger System”, laid a strong foundation in both experimental methods and numerical simulations. Building on this, his PhD research focused on “Flow and Heat Transfer in Newtonian and Non-Newtonian Flows in Different Bifurcation Models”, showcasing early specialization in complex fluid behaviors.

🏢 Professional Endeavors

Dr. Khalaji currently works in the Heat Laboratory at Atatürk University, where his main responsibilities include monitoring, mechanical engineering analysis, and the application of CFD tools. As a researcher in the Department of Thermodynamics, he applies his technical expertise to advance energy-efficient solutions and thermal system designs.

🔬 Contributions and Research Focus

Dr. Khalaji’s research spans various critical areas, including computational fluid dynamics (CFD), heat exchangers, photovoltaic systems, and thermal performance optimization. He is proficient in ANSYS-FLUENT, SOLIDWORKS, MATLAB, and the Taguchi method, enabling him to model and simulate highly accurate thermal systems. His collaborative works also explore carbon nanotubes, bifurcation models, and plate-fin heat exchangers, bridging the gap between applied physics and mechanical engineering.

🌍 Impact and Influence

His published work in journals like Applied Thermal Engineering, Journal of Heat Transfer, and Mechanics of Advanced Materials and Structures has significantly contributed to advancements in energy systems and thermal design. His research has implications for renewable energy, industrial cooling systems, and sustainable engineering practices, reinforcing his position as a thought leader in applied thermodynamics.

📈 Academic Citations

Dr. Khalaji has co-authored over a dozen high-impact journal articles, many of which are widely cited in the fields of mechanical engineering, heat transfer, and energy systems. While his h-index and total citations are not explicitly mentioned here, the breadth and depth of his contributions suggest a growing scholarly influence.

🛠️ Research Skills

His technical toolkit includes expertise in CFD modeling, heat exchanger design, thermal-fluid analysis, and parametric optimization using statistical tools. His work reflects a blend of hands-on experimentation and advanced computational analysis, making him a well-rounded researcher in both theoretical and applied mechanics.

👨‍🏫 Teaching Experience

While not elaborated in detail, his role at Atatürk University likely includes academic supervision, undergraduate and graduate instruction, and laboratory mentoring. His multilingual ability (Persian, English, Azeri, and Turkish) further enhances his effectiveness as an educator in diverse academic environments.

🏅 Awards and Honors

Although specific awards are not listed, Dr. Khalaji has been involved in nationally funded projects such as the TÜBİTAK Project and BAP Project, which support cutting-edge research in thermal systems design. His peer-reviewed publications and collaborative work with prominent researchers indicate recognition from the academic and engineering community.

🌟 Legacy and Future Contributions

Looking ahead, Dr. Khalaji is poised to make impactful contributions to next-generation energy systems, high-efficiency heat exchangers, and innovative cooling technologies. His multidisciplinary approach positions him as a potential leader in academic research, industrial innovation, and global energy sustainability efforts.

Top Noted Publications

Numerical Investigation of Changes in Heat Transfer Coefficient of Water-Aluminum Oxide Nanofluid Cooling in Nuclear Reactors

  • Authors: Mansur Mustafaoglu
    Journal: Nuclear Technology
    Year: 2025

Numerical analysis of the three-dimensional model of pulsatile and non-Newtonian blood flow in a carotid artery with local occlusion

  • Authors: Mansur Mustafaoğlu, İsak Kotçioğlu, Muhammet Kaan Yeşilyurt
    Journal: Mathematical Modelling and Numerical Simulation with Applications
    Year: 2025

Numerical thermal analysis of armchair (6,6) and zig-zag (12,0) carbon nano-tubes (CNTs)

  • Authors: I. Kotcioglu, M. Mustafaoglu, N. Dogan
    Journal: Mechanics of Advanced Materials and Structures
    Year: 2024

Heat transfer analysis of armchair (5,5) and zigzag (10,0) carbon nanotubes

  • Authors: Isak Kotcioglu, Mansour Nasiri Khalaji, Nihat Dogan
    Journal: Mechanics of Advanced Materials and Structures
    Year: 2021

 

 

Sathish Panneer Selvam | Theoretical Advances | Best Scholar Award

Dr. Sathish Panneer Selvam | Theoretical Advances | Best Scholar Award

Assistant Professor at Gachon university | South Korea

Dr. Sathish Panneer Selvam is a dynamic Assistant Professor at Gachon University, South Korea, specializing in electrochemical biosensors, nanomaterials, and density functional theory (DFT). With a strong foundation in experimental chemistry and computational modeling, Dr. Selvam’s interdisciplinary research bridges the gap between biomedical diagnostics and renewable energy catalysis, contributing significantly to next-generation sensor technologies.

👨‍🎓Profile

Google scholar 

Scopus

ORCID

🎓 Early Academic Pursuits

Dr. Selvam began his academic journey with a Master’s degree in Electrochemical Sensing and Water Splitting under Prof. Kyusik Yun, where he focused on DNA-based nanomaterials and self-assembled sensors. He pursued his PhD (2020–2024) under Prof. Sungbo Cho, contributing to sensor development for disease diagnostics and reaction mechanism analysis via DFT. This formative period laid the groundwork for his future breakthroughs in smart diagnostics.

💼 Professional Endeavors

Starting as a Quality Control Executive at Biocon Biopharmaceutical Ltd., Dr. Selvam transitioned seamlessly into academia. His current role as an Assistant Professor (2024–2025) at Gachon University involves leading advanced biosensing projects, such as cancer diagnostics, enzyme activity detection, and nanocomposite development. His hands-on expertise spans fabrication, characterization, and computational modeling.

🔬 Contributions and Research Focus

Dr. Selvam’s research is distinguished by its interdisciplinary depth and real-world relevance. He has designed single-atom catalyst biosensors for detecting pancreatic and breast cancer. Additionally, he has explored molecularly imprinted polymers for biomarker detection and utilized DFT and molecular dynamics to simulate reaction pathways. His development of triboelectric nanogenerators for self-powered bacterial detection reflects his ability to address critical challenges in medical diagnostics, environmental monitoring, and energy applications.

🌍 Impact and Influence

Dr. Selvam has authored 16+ peer-reviewed publications, many in high-impact journals such as Chemical Engineering Journal, Small Methods, and Biosensors and Bioelectronics, with impact factors ranging from 8 to 23. His contributions to cancer biosensing, H2 evolution, and COVID-19 detection have attracted international collaborations with researchers from UK, France, and India, solidifying his global influence.

📊 Academic Cites & Recognition

Dr. Selvam’s work is increasingly cited by peers in the fields of biosensors, nanotechnology, and theoretical chemistry. With several publications already gaining traction in the academic community, he is on track for significant citation growth and thought leadership in applied quantum chemistry and nanomedicine.

🧪 Research Skills

Dr. Selvam demonstrates a robust technical skill set that seamlessly bridges experimental techniques with computational modeling. He excels in electrochemical characterization using systems like Iviumstat, Biologics, and PARSTAT. His expertise in structural analysis includes SEM, TEM, XRD, EXAFS, and Raman spectroscopy. Additionally, he is proficient in High-Performance Liquid Chromatography (HPLC) and a variety of spectroscopic tools. On the theoretical side, he utilizes DFT simulations, molecular docking, and molecular dynamics, allowing for deep insights into complex reaction mechanisms.

🎓 Teaching Experience

As an Assistant Professor, Dr. Selvam is engaged in mentoring undergraduate and graduate students. He fosters a research-driven learning environment that encourages critical thinking, scientific writing, and interdisciplinary collaboration, essential for shaping future scientists.

🌟Patents

Dr. Selvam holds several patents, including the Chalcogenide Loaded Cobalt MOF for Patulin Mycotoxin Detection (KR Patent 10-2437215), an Electrochemical Biosensing Platform for Rheumatoid Arthritis Biomarker detection (KR Patent 10-2381031), and a Nanocomposite modified electrode for Etidronic acid detection (KR Patent 10-2475238), co-authored with Sungbo Cho and Kyusik Yun. These innovations demonstrate his expertise in biosensing, electrochemical platforms, and biomarker detection.

📘 Legacy and Future Contributions

Dr. Selvam has a strong portfolio of patents, a growing reputation in academic publishing, and a unique ability to synthesize experimental and computational insights. As a thought leader in smart biosensing and energy catalysis, his future contributions are expected to include the development of scalable diagnostic tools for global health, AI-integrated sensor platforms, and further exploration of quantum chemistry for bio-interfaces. His work promises significant advances in both healthcare and energy solutions.

Publications Top Notes

EXAFS and spectroscopic insights into Mn, Tc, and Re-doped phthalocyanines: A multifaceted DFT study of electronic and optical properties

  • Authors: Sathish Panneer Selvam, Zeeshan, Sungbo Cho
    Journal: Surfaces and Interfaces
    Year: 2025

Cerium single atom anchored silver selenide: A high-performance catalyst for hydrogen evolution reaction with ultra-low activation energy and enhanced stability

  • Authors: Sathish Panneer Selvam, Sungbo Cho
    Journal: Surfaces and Interfaces
    Year: 2024

Experimental insights and DFT analysis of metal-free DNA nanocatalyst with enhanced hydrogen evolution via phosphate-mediated proton acceptance

  • Authors: Sathish Panneer Selvam, Shanmugasundaram Kamalakannan, K. Rudharachari Maiyelvaganan, Muthuramalingam Prakash, Sivalingam Gopi, Hansa Mahajan, Kyusik Yun, Sungbo Cho
    Journal: International Journal of Hydrogen Energy
    Year: 2024

Highly Synergistic Co3+ and Pyridinic‐N‐Rich Bifunctional Electrocatalyst for Ultra‐Low Energy-Driven Effective Hydrogen Production and Urea Oxidation

  • Authors: Sathish Panneer Selvam, Sungbo Cho
    Journal: Advanced Sustainable Systems
    Year: 2022

Novel SeS2-loaded Co MOF with Au@PANI comprised electroanalytical molecularly imprinted polymer-based disposable sensor for patulin mycotoxin

  • Authors: Sathish Panneer Selvam
    Journal: Biosensors and Bioelectronics
    Year: 2021

 

Hoc Nguyen | Computational Methods | Best Researcher Award

Assoc. Prof. Dr. Hoc Nguyen | Computational Methods | Best Researcher Award

Senior Lecturer at Hanoi National University of Education | Vietnam

Nguyen Quang Hoc D, Assoc. Prof. PhD, is a distinguished academic and researcher in the field of Theoretical Physics. He currently holds the position of High-ranking Lecturer at the Department of Theoretical Physics, Faculty of Physics, at the Hanoi National University of Education, where he has contributed extensively to both teaching and research since 2009. His academic journey reflects a deep commitment to physics, spanning over decades of study and experience in solid-state physics, theoretical physics, and mechanical properties of materials.

👨‍🎓Profile

ORCID

Early Academic Pursuits 🎓

Nguyen Quang Hoc D embarked on his academic career with a solid foundation in solid-state physics, earning his Engineer degree from Hanoi University of Technology in 1982. His deep interest in theoretical physics led him to pursue advanced studies at the Hanoi National University of Education, where he completed his Master’s degree in Theoretical Physics in 1989 and later achieved his PhD in 1994, further honing his expertise in the field.

Professional Endeavors 💼

His professional career began in 1983 at the College of Teacher Training (now Haiphong University), where he served as a Lecturer and Head of the Physical Laboratory until 1994. Later, he joined the Institute of Nuclear Science and Technique, VINATOM in 1994, contributing as a Researcher. In 1997, he transitioned to the Department of Scientific Management, Faculty of Physics at Hanoi National University of Education, where he took on roles as an Expert and Principal Lecturer until he became an Associate Professor in 2009. Since 2016, he has remained in his current capacity as a High-ranking Lecturer at the university.

Contributions and Research Focus 🔬

Prof. Nguyen Quang Hoc D has focused much of his research on mechanical and thermodynamic properties of metals and interstitial alloys, particularly through the statistical moment method. His work has provided valuable insights into the transport properties of superconductors and how artificial nanostructures can influence these properties. His research has significant implications in materials science, particularly in understanding how nanostructures can improve the performance of superconductors in real-world applications.

Impact and Influence 🌍

With a career spanning more than three decades, Assoc. Prof. Nguyen Quang Hoc D has made lasting contributions to both academic research and teaching. His work on superconductors and nanostructure materials has advanced our understanding of the mechanical and thermodynamic properties of advanced materials. His findings have opened the door for further studies in nanotechnology and material science, positioning him as a leading figure in the development of advanced materials in the Vietnamese academic community.

Academic Citations 📚

Prof. Nguyen Quang Hoc D has earned recognition for his work, resulting in numerous academic citations and publications in international journals related to materials physics. His contributions to the field of theoretical physics have significantly impacted the understanding of interstitial alloys, superconductivity, and the behavior of metals under extreme conditions, making him a respected authority in his field.

Research Skills 🧠

Assoc. Prof. Nguyen Quang Hoc D possesses advanced research skills in statistical methods, materials characterization, and nanotechnology. His expertise includes the application of the statistical moment method to study the thermodynamic behavior of materials, allowing him to analyze and predict the mechanical properties of metals and alloys under various conditions. He has also worked on superconductivity, making contributions to transport properties and the influence of nanostructure pinning on type-II superconductors.

Teaching Experience 👨‍🏫

Assoc. Prof. Nguyen Quang Hoc D has a wealth of teaching experience, spanning over two decades at the Hanoi National University of Education. He has taught a range of undergraduate and graduate courses in theoretical physics and solid-state physics, providing students with foundational knowledge while also challenging them with cutting-edge concepts in the field. His role as a mentor and principal lecturer has helped shape the next generation of physicists and scientists in Vietnam.

Awards and Honors 🏅

Throughout his career, Assoc. Prof. Nguyen Quang Hoc D has been the recipient of various awards and honors in recognition of his contributions to the field of physics. His dedication to both research and teaching has earned him respect within the academic community, and he continues to inspire those around him with his innovative research and commitment to excellence.

Legacy and Future Contributions 🌱

As Assoc. Prof. Nguyen Quang Hoc D continues his work at Hanoi National University of Education, his legacy remains rooted in his innovative research, teaching dedication, and academic leadership. Moving forward, he is expected to continue influencing the field of material science, particularly in the realms of superconductivity and nanotechnology. His future contributions will undoubtedly lead to advancements in the understanding of metals, alloys, and superconductive materials, strengthening the scientific community in Vietnam and beyond.

Publications Top Notes

On the Melting of Crystal Under Compression: SMM Fundamental Theory and its Application to Laser Materials Processing

  • Authors: Nguyen Quang Hoc, Le Hong Viet
    Journal: Transactions of the Indian Institute of Metals
    Year: 2025

Theoretical predictions of thermodynamic properties, elastic deformation, HCP-FCC structural phase transition and melting of iron at high temperatures up to 18000 K and high pressures up to 4000 GPa

  • Authors: Nguyen Quang Hoc, Nguyen Duc Trung, Hua Xuan Dat, Le Thu Lam
    Journal: Physics Letters A
    Year: 2025

Correction: Thermodynamic properties of perovskite MgSiO3 with cubic structure under extreme conditions

  • Authors: Quang Hoc Nguyen, Nhi Quynh Ngo, Thi Mai Dao, Cong Vien Tran, Thi Thu Tra Lai, Thi Van Anh Le, Thi Thuy An Nguyen
    Journal: The European Physical Journal B
    Year: 2024

Thermodynamic properties of perovskite MgSiO3 with cubic structure under extreme conditions

  • Authors: Hoc Quang Nguyen, Nhi Quynh Ngo, Mai Thi Dao, Vien Cong Tran, Tra Thi Thu Lai, Anh Thi Van Le, An Thi Thuy Nguyen
    Journal: The European Physical Journal B
    Year: 2024

Study on Remelting of Crystal Under Extreme Conditions

  • Authors: Hoc Quang Nguyen, Huyen Thanh Thi Tran, Nhi Quynh Ngo, Mai Thi Dao, Phong Khac Nguyen
    Journal: Transactions of the Indian Institute of Metals
    Year: 2024

 

 

Basaad Hamza | Theoretical Advances | Editorial Board Member

Assist. Prof. Dr. Basaad Hamza | Theoretical Advances | Editorial Board Member

Mustansiriyah university | Iraq

Dr. Basaad Hadi Hamza is an Assistant Professor in Electro-Optical Physics at Mustansiriyah University, College of Sciences. With a Ph.D. in Electro-Optical Physics (2004) from Mustansiriyah University, his academic expertise spans simulation programs for electro-optical tracking systems and optical systems. His commitment to advancing the field of electro-optical physics is evident through his teaching and research contributions.

👨‍🎓Profile

Google scholar

Scopus

ORCID

Early Academic Pursuits 🎓

Dr. Basaad’s academic journey began at Mustansiriyah University, where he earned his B.Sc. in Physics (1992), followed by a M.Sc. in Nuclear Physics (1998), and eventually his Ph.D. in Electro-Optical Physics (2004). His doctoral thesis focused on the development of a simulation program for electro-optical tracking systems, laying the foundation for his career in applied physics.

Professional Endeavors 💼

Dr. Basaad has an extensive teaching background, contributing to the development of future scientists and engineers. He taught various undergraduate courses in Physics 1, Electricity and Magnetism, Thermodynamics, and Analytical Mechanics. He has also guided graduate students, particularly in specialized topics for Ph.D. comprehensive examinations. His professional affiliations include serving as the Chairman of the Diversity Committee, overseeing curriculum preparation, and leading both undergraduate and graduate examination committees.

Contributions and Research Focus 🔬

Dr. Basaad’s research focus includes polarization effects on soliton propagation, radiance calculations, and the discrimination of targets from background in infrared (IR) imagery. He is particularly interested in the development of simulation programs for transforming IR images across various bands, a significant contribution to remote sensing and infrared imaging technologies. His work also includes improving detector performance in optical spectral ranges to enhance the accuracy of images.

Impact and Influence 🌍

Dr. Basaad’s research has had a broad impact, particularly in IR imaging, target discrimination, and optical physics. His innovative work on transforming IR images from band to band, coupled with his simulation techniques, has contributed to advancements in defense technologies, remote sensing, and optical systems. His publications, including in journals like the International Journal of Application or Innovation in Engineering & Management and Mustansiriyah Journal of Science, highlight his significant role in these fields.

Research Skills 🔍

Dr. Basaad possesses strong analytical skills, particularly in the areas of simulation programming, optical imaging, and IR technology. His proficiency in simulation software and knowledge of IR wavelength bands make him a leader in image transformation techniques. His work on target discrimination using multi-channel data and threshold methods highlights his ability to solve complex problems in infrared imagery.

Teaching Experience 📘

Dr. Basaad’s teaching experience spans over two decades, during which he has taught a range of undergraduate and graduate-level physics courses. He has taught Physics 1, Electricity and Magnetism, Thermodynamics, and Analytical Mechanics, and has supervised graduate theses. His guidance on special topics for Ph.D. students and his role in preparing students for comprehensive exams demonstrates his deep commitment to academic development.

Legacy and Future Contributions 🌱

Dr. Basaad’s legacy is marked by his contributions to electro-optical physics, especially in the development of simulation techniques for infrared imaging. Looking ahead, he plans to continue advancing research in target discrimination and optical systems, with potential applications in remote sensing, security, and environmental monitoring. His ongoing mentorship of graduate students will further ensure his influence in academic research and scientific innovation.

Publications Top Notes

Green Synthesis of Silver Nanoparticles and Their Effect on the Skin Determined Using IR Thermography

  • Authors: Alaabedin Alrabab Ali Zain, Majeed Aseel Musafa Abdul, Basaad Hadi Hamza
    Journal: Kuwait Journal of Science
    Year: 2024

Infrared Imaging of Skin Cancer Cell Treated with Copper Oxide and Silver Nanoparticles

  • Authors: M.M. Mowat, M.S. Khallaf, B.H. Hamza
    Journal: Bionatura
    Year: 2023

People Identification via Tongue Print Using Fine-Tuning Deep Learning

  • Authors: A.S. Obaid, M.Y. Kamil, B.H. Hamza
    Journal: International Journal of Reconfigurable and Embedded Systems
    Year: 2023

People Recognition via Tongue Print Using Deep and Machine Learning

  • Authors: A.S. Obaid, M.Y. Kamil, B.H. Hamza
    Journal: Journal of Artificial Intelligence and Technology
    Year: 2023

Improved Detector Performance Rendering in the Optical Spectral Ranges to Provide Accurate Image

  • Authors: Basaad Hadi Hamza
    Journal: Mustansiriyah Journal of Science
    Year: 2019

 

Radomira Lozeva | Computational Methods | Best Researcher Award-3369

Dr.Radomira Lozeva| Computational Methods | Best Researcher Award

Dr Radomira Lozeva CNRS

Professional Profiles

Publications

Conclusion

Given her extensive research experience, significant contributions to nuclear physics, leadership in experiments, successful mentorship, and active engagement in the scientific community, Radomira Lozeva is highly suitable for both the Research for Community Impact Award and the Best Research Award. Her innovative work and dedication to advancing the field make her a strong contender for these prestigious recognitions.