Hanyang Li | High energy physics | Best Researcher Award

Prof. Hanyang Li | High energy physics | Best Researcher Award

Lab Director at Harbin Engineering University | China

Dr. Hanyang Li is a dedicated researcher and professor specializing in optical microcavity and laser propulsion technologies. With a background rooted in chemical engineering and physical chemistry, his journey spans top academic institutions and international collaborations. Currently a Professor at the College of Physics and Optoelectronic Engineering, Harbin Engineering University, Dr. Li integrates scientific innovation with practical applications, mentoring the next generation of photonics researchers and contributing extensively to high-impact journals.

👨‍🎓Profile

Scopus

📘 Early Academic Pursuits

Dr. Li’s academic foundation was laid at Heilongjiang University, where he earned a B.S. in Applied Chemistry (2003–2007). He then pursued a M.Eng. in Physical Chemistry (2007–2009) followed by a Ph.D. in Chemical Engineering and Technology (2009–2015) at the prestigious Harbin Institute of Technology. These formative years shaped his deep interest in optical systems, nanostructures, and laser-matter interactions, driving him toward cutting-edge interdisciplinary research.

💼 Professional Endeavors

Dr. Li has demonstrated exceptional academic progression, beginning as a Lecturer in the College of Science at Harbin Engineering University (2017–2021), rising to Associate Professor (2021–2024), and ultimately Professor in 2024. His global outlook is reflected in his role as a Visiting Research Fellow at the University of North Carolina at Charlotte (USA) from 2019–2020. These roles have not only enriched his teaching and research but also expanded his international collaborations.

🔬 Contributions and Research Focus

Dr. Li’s research revolves around fiber sensors, microresonators, whispering-gallery modes (WGM), and nano/microlaser systems. He has led groundbreaking projects funded by the National Natural Science Foundation of China, the Heilongjiang Provincial Foundation, and the China Postdoctoral Science Foundation. His work in co-doped nanofiber lasers, enzyme reaction monitoring in microcavities, and micropropulsion dynamics continues to push the boundaries of photonic innovation.

🌍 Impact and Influence

With over 110 SCI-indexed publications, including more than 50 as first/corresponding author, Dr. Li has significantly influenced the fields of microcavity optics and laser-based sensing systems. His H-index of 21 attests to the scholarly impact of his work. Two of his papers have earned cover-page recognition in ACS Photonics and Liquid Crystals, underscoring their novelty and scientific relevance. He also serves as a technical consultant to Harbin Kaimeisi Technology Co., Ltd., bridging academic research with industrial development.

📊 Academic Citations

Dr. Li’s research is widely cited in international journals, particularly in optics, nanomaterials, and sensor technologies. His works in Optics Letters, ACS Photonics, Applied Physics Letters, and Journal of Materials Chemistry C are frequently referenced, reflecting his status as a thought leader in integrated photonic systems and functional microdevices.

🧪 Research Skills

Dr. Li’s research arsenal includes optical design, microresonator fabrication, laser pulse diagnostics, and nanomaterial synthesis. He is adept in developing fiber-optic devices, performing real-time sensing, and constructing phase-change materials-based systems. His strength lies in multidisciplinary integration, combining chemistry, physics, and engineering to address fundamental and applied challenges.

📚 Teaching Experience

Since 2021, Dr. Li has taught “Microcavity Photonics Devices and Applications” at the graduate level and “Microcavity Optics” for undergraduates at Harbin Engineering University. These courses are crafted to empower students with both theoretical insight and experimental practice, preparing them to excel in modern photonics research.

🎓🤝Industry-Academia Collaboration

Prof. Yeeu-Chang Lee has a strong foundation in academic research and a forward-looking vision for real-world applications. He has actively contributed to scholarly innovation and industry-academia collaboration. Through leading and participating in multiple pilot programs, he has helped bridge academic research with industrial transformation particularly in cultivating professional talent and facilitating the upgrade of manufacturing capabilities in industrial parks.
His work has been recognized through national awards for invention and excellence in industry-academia collaboration, reflecting a sustained commitment to integrating research innovation with societal and industrial impact.
Selected Industry-Academia Collaboration Projects:
  • Development of reverse nanoimprint lithography for fabricating nanopatterned sapphire substrates
  • Enhancing the efficiency of light-emitting diodes through soft precision imprinting technology
  • Development of a fabrication process for nanostructured sapphire substrates
  • Investigation of nanopatterning on 2-inch full sapphire wafers
  • Process development of laser-based resistor trimming for embedded printed circuit boards
  • Preparation and characterization of microstructured optical thin films
Value-Added Collaboration and Outreach Projects:
  • National Science and Technology Council (NSTC) Project for Research Outcome Exploration and Value-Added Application
  • Revitalization and Upgrade Program for Industrial Park Manufacturers
  • Pilot Project for Training Professionals in Industrial Equipment and System Design

🏅 Awards and Honors

Dr. Li’s academic excellence has been recognized through multiple research grants and fellowships, including support from the China Postdoctoral Science Foundation and the Natural Science Foundation of Heilongjiang Province. He is also an esteemed member of the Chinese Society for Optical Engineering, further attesting to his reputation in the scientific community.

🌟 Legacy and Future Contributions

Looking ahead, Dr. Li aims to deepen his work on optical microdevices and laser-driven micropropulsion, with plans to develop next-gen photonic systems for biomedical, aerospace, and energy applications. His commitment to scientific excellence, industry collaboration, and student mentorship positions him as a key figure in shaping the future of photonic technology in China and beyond.

Publications Top Notes

The experimental study on concentration disturbance pattern and conversion mechanism of underwater plasma laser propulsion

  • Authors: Y. Ge, X. Tang, Y. Chen, X. Yang, H. Li
    Journal: Optics and Lasers in Engineering
    Year: 2025

Fiber Bragg grating-based method for underwater object angular measurement

  • Authors: H. Li, Y. Song, J. Wang, X. Dou
    Journal: Measurement Science and Technology
    Year: 2025

Observation of microsphere clusters separated by pulsed laser in water environment

  • Authors: Y. Ge, G. Zhou, X. Yang, J. Sun, H. Li
    Journal: Laser Physics
    Year: 2025

Observation of spectral splitting of whispering-gallery modes in asymmetrical photonic molecules

  • Authors: J. Wang, J. Sun, Y. Zhang, Z.I. Liu, H. Li
    Journal: Optics Letters
    Year: 2024

Bragg grating-based all-optical continuous two-dimensional force perceptron

  • Authors: H. Li, Z. Wu, J. Dai, G. Zhou, J. Sun
    Journal: Measurement Science and Technology
    Year: 2024

Valeriu Savu | High energy physics | Best Researcher Award

Dr. Valeriu Savu | High energy physics | Best Researcher Award

INOE2000 | Romania

Valeriu Savu is a highly accomplished Technological Development Engineer with an extensive career spanning over 35 years. Currently working at the National Institute of Research and Development for Optoelectronics (INOE2000) in Măgurele, Romania, Savu has demonstrated significant expertise in research and development of electronic modules and optical equipment. His work primarily revolves around lasers, optical fibers, and nanotechnology, and his contributions have been instrumental in advancing applications within telecommunications and military systems.

👨‍🎓Profile

Google scholar

Scopus

ORCID

Early Academic Pursuits 🎓

Savu’s academic journey began at the Polytechnic Institute of Bucharest, where he obtained a Bachelor’s degree in Electronics and Telecommunications in 1986. Later, he pursued a Master’s degree in Nanostructures and Unconventional Engineering Processes at the Polytechnic University of Bucharest (2012-2014). This was followed by the completion of his PhD in Engineering Sciences in 2007-2014 with a thesis on radio pulse selection and processing. His doctoral work focused on cosmic ray detection, emphasizing advanced methodologies for high-precision data processing in complex environments like saline settings.

Professional Endeavors 💼

Savu’s professional career began in 1990 with the Research Design Institute of Electromechanics ICPEM, where he worked on military electronics systems. From 2000 to 2005, he served as an Engineer at Elettra Communications S.A., contributing to the telecommunications sector with an emphasis on testing and verification of military-grade equipment. Since 2005, Savu has been at INOE2000, leading the Department of Engineering Design and Technology, where he focuses on cutting-edge optical devices and laser systems. His experience spans across the creation of advanced lasers, fiber optics, and sensor technologies for both commercial and military applications.

Contributions and Research Focus 🔬

Valeriu Savu has made notable contributions to several fields, including laser technology, optical fibers, and military electronics. He is an expert in the design, testing, and characterization of laser systems, photovoltaics, and nanostructured materials. One of his major research focuses includes Cherenkov radiation detection and the application of nanotechnology for optical sensing. Savu has been involved in the development of innovative sensors, including UV sensors for organic materials and high-voltage power supplies used in medical laser systems.

Impact and Influence 🌍

Savu’s work has significantly advanced the field of optoelectronics and has been applied in medical, military, and telecommunications sectors. He has also patented several devices, including laser protection systems and cosmic radiation detectors for specialized environments like salt mines. His innovative solutions continue to influence scientific research and engineering practices globally.

Academic Cites 📚

Savu’s scholarly work has earned recognition within the academic community, with numerous scientific articles published in prominent journals. His research has appeared in the Romanian Journal of Physics, Romanian Journal of Biophysics, and other prestigious publications. He has contributed to international conferences and his research papers are frequently cited by peers. Notable academic publications include his studies on the Nd:YAG laser for microsurgical ophthalmology and breast tissue investigation using diffuse optical tomography.

Research Skills 🧑‍💻

Valeriu Savu is highly skilled in experimental research, device testing, and the design of optical systems. He has expertise in advanced signal processing, laser characterization, and system integration. Savu’s proficiency with software tools such as OrCAD, FabMaster, NI Multisim, and OriginLab has made him a highly versatile researcher, capable of modeling complex systems and optimizing experimental designs. His experience spans across lab-based investigations, field tests, and cross-disciplinary applications of advanced technologies.

Teaching Experience 🍏

While Savu’s career has been predominantly research-driven, his extensive academic background and technical expertise have made him a valuable contributor to teaching and training in the field of optoelectronics. He has actively mentored students at various stages of their careers, guiding them through engineering problems and sharing his knowledge of cutting-edge technologies. His role as a PhD advisor and involvement in academic projects has contributed to the development of future scientists and engineers in the optoelectronics field.

Awards and Honors 🏆

Throughout his career, Savu has received various certificates and awards recognizing his contributions to both military and civilian applications. His innovative work has been acknowledged by organizations and research institutions, and he has earned several certificates of innovation for his unique designs and systems. Savu’s patents are a testament to his creative and practical contributions to optical technology and laser applications.

Legacy and Future Contributions 🔮

Savu’s extensive body of work leaves a lasting legacy in the field of optoelectronics, particularly in laser applications, telecommunications, and military technology. His ongoing work in cosmic radiation detectors and laser safety will likely influence future technological advancements in various sectors. As he continues to develop new systems and devices, his future contributions are expected to further shape the landscape of optical technology and engineering research.

Patents and Innovations 💡

Valeriu Savu’s patents reflect his ingenuity and forward-thinking approach to technology. Some of his recent applications include systems for automated discharge protection in laser pumps and power supply disconnect systems. His patents focus on enhancing the safety and efficiency of electronic systems, laser devices, and telecommunications infrastructure, with an emphasis on providing innovative solutions for user protection and optimal performance in real-world applications.

Publications Top Notes

Power Dissipation Reduction System for Adjustable Power Supplies
  • Authors: V Savu, MI Rusu, D Savastru, D Manea
    Journal: Energies
    Year: 2025

Analysis of a high-power laser thermal phenomena induced onto a composite made UAV/drone in flight
  • Authors: D Savastru, V Savu, MI Rusu, M Tautan, A Stanciu
    Journal: Journal of Optoelectronics and Advanced Materials
    Year: 2024

Sampling the travel distance of a vehicle through an unconventional method for data acquisition
  • Authors: MI Rusu, V Savu, D Savastru, CH Gandescu, A Stan, DM Cotorobai
    Journal: Journal of Optoelectronics and Advanced Materials
    Year: 2023

Grating Optic Fiber Sensors Detection of Smart Polymer Composite Delamination
  • Authors: D Savastru, D Savastru, MI Rusu, M Tautan, V Savu, II Lancranjan
    Journal: Optics, Photonics and Lasers
    Year: 2023

Ellipsometric characterization of tungsten oxide thin films, before and after He plasma exposure
  • Authors: MI Rusu, Y Addab, C Martin, C Pardanaud, V Savu, II Lancranjan, …
    Journal: Optoelectronics and Advanced Materials-Rapid Communications
    Year: 2023

 

Ayan Kumar Makar | Nuclear Physics | Best Researcher Award

Mr. Ayan Kumar Makar | Nuclear Physics | Best Researcher Award

Plasma Science Society of India | India

Ayan Kumar Makar is a dedicated researcher and life member of the Plasma Science Society of India (LM-1979). He specializes in nuclear fusion, having worked extensively in various nuclear facilitation centers in India. With a strong academic background and a passion for fusion research, he is currently pursuing his PhD at the Centre of Plasma Physics – Institute for Plasma Research. Alongside his research, he holds an MBA from the Arun Jaitley National Institute of Financial Management and an M.Sc. in Applied Physics from the Central University of Jharkhand.

👨‍🎓Profile

Scopus

ORCID

Early Academic Pursuits 🎓

Ayan Kumar Makar began his academic journey with a focus on applied physics at the Central University of Jharkhand, where he earned his M.Sc.. His foundation in physics was solidified during his time at Vivekananda Mission High School (Class XII) and Budge Budge St. Paul’s Day School (Class X). His early academic experiences laid the groundwork for his deep interest in nuclear fusion and plasma physics, driving him to pursue advanced studies and research.

Professional Endeavors 🏢

Currently, Makar serves as a Research Fellow at the Centre of Plasma Physics under the Institute for Plasma Research. He has contributed significantly to the Pulsed Plasma Accelerator Laboratory, engaging in cutting-edge research. His professional journey is distinguished by his association with various nuclear research facilities in India, showcasing his expertise in nuclear fusion and plasma dynamics. His role at the Institute for Plasma Research has positioned him at the forefront of fusion research in India.

Contributions and Research Focus 🔬

Makar’s research spans multiple critical areas, including:

  • Heavy-ion collisions and their effects on nuclear reactions.
  • The study of plasma astrophysics, focusing on the stability of triple star systems.
  • Fusion plasma stability and the occurrence of dust in Tokamak reactors.
  • The dynamics of energetic particles in magnetically confined fusion plasmas.
  • Plasma centrifugation methods for nuclear waste separation.

These contributions, reflected in his published works in leading journals, have made a significant impact in nuclear physics and fusion technology.

Impact and Influence 🌍

Makar’s research has had substantial influence within the plasma science community, especially in the areas of fusion plasma stability and nuclear waste management. His work on the audit of dust in Tokamaks and the energetic particles in fusion plasmas has provided new insights that could shape future fusion reactors. Moreover, his exploration of the plasma centrifugation method for nuclear waste separation offers a potential breakthrough in solving one of the major challenges in nuclear energy.

Research Skills 🧪

Makar’s research skills include advanced techniques in plasma diagnostics, nuclear fusion technologies, and energetic particle analysis. His ability to design and conduct experiments in magnetically confined plasma systems and to analyze heavy-ion collision data makes him a skilled experimental physicist. He has also demonstrated proficiency in computational modeling for fusion plasma behavior and has expertise in developing plasma separation techniques for nuclear waste management.

Legacy and Future Contributions 🌟

Ayan Kumar Makar’s legacy will likely be defined by his contributions to fusion plasma stability, nuclear waste management, and his continued research in plasma astrophysics. His groundbreaking work in the field of fusion reactors will likely influence future fusion energy generation methods. Additionally, his exploration of plasma techniques for waste management has the potential to revolutionize the way we approach nuclear waste in the coming decades.

Publications Top Notes

  • An Overview of Heavy-Ion Collisions

    • Author: Ayan Kumar Makar
    • Journal: Journal of Nuclear Engineering & Technology
    • Year: 2019
  • Basis of Plasma Astrophysics in Stability of the Triple Star System

    • Author: Ayan Kumar Makar
    • Journal: Results in Physics
    • Year: 2020
  • An Audit of Occurrence of Dust in Tokamak and Stability of Fusion Plasma

    • Author: Ayan Kumar Makar
    • Journal: The Japan Society of Plasma Science and Nuclear Fusion Research
    • Year: 2020
  • An Investigation of Energetic Particles in the Magnetically Confined Fusion Plasma

    • Author: Ayan Kumar Makar
    • Journal: Turkish Journal of Nuclear Sciences (The Turkish Energy, Nuclear, and Mineral Research Agency)
    • Year: 2024
  • Plasma Centrifugation Method for Separation of the Nuclear Waste

    • Author: Ayan Kumar Makar
    • Journal: Radiation Effects and Defects in Solids
    • Year: 2024