Soumia CHQONDI | Interactions and fields | Best Researcher Award

Prof. Soumia CHQONDI | Interactions and fields | Best Researcher Award

Chouab Doukkali University | Morocco

Prof. Soumia CHQONDI is a Moroccan physicist and Assistant Professor at the Faculty of Sciences, El Jadida, affiliated with the Université Chouaib Doukkali. She is also an active member of the Laboratoire d’Innovation en Sciences, Technologies et Modélisation (ISTM). With a Doctorate in Physics obtained through a cotutelle program between Université Moulay Ismail (Morocco) and Université Pierre et Marie Curie (France), she has dedicated her academic journey to theoretical and computational studies of quantum systems. Her work on laser-atom interactions has earned her recognition through international publications, conference presentations, and collaborations across the physics community.

Profile

Scopus

Early Academic Pursuits

Soumia began her academic career with a Baccalauréat in Mathematical Sciences, followed by a DEUG in Physics and Chemistry at Université Moulay Ismail, Meknès. She pursued a Licence in Fundamental Physics (Electronics) and a Master in Applied Physics, specializing in Laser & Nanophysics. Her academic excellence led her to a doctoral program in cotutelle between two prestigious institutions in Morocco and France, where she explored quantum systems in intense laser fields. These early stages shaped her scientific rigor, developed her analytical thinking, and laid the foundation for a promising career in theoretical physics and simulation.

Professional Endeavors

Since October 2020, Prof. Chqondi serves as an Assistant Professor at the Faculty of Sciences of El Jadida, where she teaches and supervises research. From 2016 to 2020, she was a scientific researcher at the Laboratoire de Physique du Rayonnement et des Interactions Laser-Matière in Meknès, where she conducted numerical simulations of time-dependent atomic systems. Her career began in secondary education, teaching computer science from 2006 to 2019. Her multidisciplinary expertise, spanning informatics, applied physics, and quantum simulations, reflects a commitment to both pedagogical innovation and scientific advancement within and beyond the university environment.

Contributions and Research Focus

Prof. Chqondi’s research focuses on theoretical atomic physics, particularly laser-matter interactions, quantum ionization dynamics, and photoelectron angular distributions in atoms exposed to two-color and high-frequency laser fields. She has co-authored 8+ peer-reviewed articles, contributed to international book chapters, and presented at numerous conferences. Her work bridges fundamental quantum mechanics with advanced numerical modeling, offering insights into ultrafast electronic processes and photoionization phenomena. Using TDSE (time-dependent Schrödinger equation) and Floquet theory, she investigates non-linear laser interactions, essential for the development of next-generation optical technologies and quantum-based innovations.

Impact and Influence

Prof. Chqondi’s research has contributed to a deeper understanding of quantum systems in strong laser fields, impacting both theoretical frameworks and simulation techniques in laser physics. Her work has been featured in indexed journals such as Atoms, Modern Physics Letters A, and Turkish Journal of Physics. She collaborates with national and international scholars, notably Prof. Abdelkader Makhoute, enhancing scientific diplomacy between Moroccan and European institutions. Through her roles in teaching, publication, and mentoring, she inspires emerging researchers, helping bridge the gap between classical education and cutting-edge physics research in the Arab and African academic communities.

Academic Citations

Prof. Chqondi’s scientific publications are cited in peer-reviewed international journals, reflecting her contribution to specialized fields such as photoionization, laser-assisted electron dynamics, and numerical physics simulations. While exact citation metrics (e.g., h-index) are not provided, her consistent presence in indexed and impact-factor journals, including Nonlinear Dynamics and Systems Theory, underscores her academic credibility. Her co-authored articles are frequently referenced in studies exploring quantum dynamics, laser spectroscopy, and semi-classical theories. As her work gains further recognition and is integrated into broader research, its citation count and visibility are likely to grow substantially.

Research Skills

Prof. Chqondi demonstrates strong computational and theoretical skills. She is proficient in Fortran, Maple, LaTeX, and OriginPro, vital tools in quantum simulation and data analysis. Her research involves solving TDSE, modeling photoelectron spectra, and applying Floquet theory to atomic systems. She is skilled in Microsoft Office, Linux/Windows, and has experience with statistical analysis using Excel. Her scientific rigor is matched with literature review expertise, scientific writing, and effective use of academic databases. She also incorporates modern tools like Urkund for plagiarism detection, ensuring academic integrity in research and publishing.

Teaching Experience

Prof. Chqondi has over 15 years of experience in education, from secondary teaching in computer science to university-level physics instruction. Since 2020, she has taught undergraduate and graduate courses at Université Chouaib Doukkali, focusing on quantum physics, simulation techniques, and scientific computing. She also contributes to the mentorship of research students, supporting project development and thesis supervision. Her approach combines foundational theory with modern simulation practices, bridging gaps between classroom learning and applied physics research. She also integrates digital tools and interactive learning environments to enhance student engagement and scientific curiosity.

Awards and Honors

Although specific awards or fellowships are not listed, Prof. Chqondi’s selection for a cotutelle Ph.D. program between Morocco and France indicates early recognition of her potential. Her invited participation in prestigious international conferences and summer schools, such as in Paris and Tangier, highlights her academic merit. Her paper presentations at major events like SPIn2022 and Moroccan ADM 2023 also underline her standing in the field. Her contributions have earned her respect among scientific peers, and she remains a strong candidate for academic distinctions such as the Best Researcher Award, based on her consistent output and specialization.

Legacy and Future Contributions

Prof. Chqondi is poised to become a leading voice in theoretical physics and computational laser-matter interaction studies in Morocco and the MENA region. With a foundation in quantum dynamics and a commitment to scientific integrity, she continues to mentor students, publish impactful research, and build interdisciplinary collaborations. Her future work may extend into quantum control systems, ultrafast optics, or machine learning in physics simulations. As an educator and researcher, she is contributing to a new generation of Moroccan physicists, and her legacy will likely include pioneering simulation techniques and advancing quantum education in developing contexts.

Publications Top Notes

Controlling the Ionization Dynamics of Argon Induced by Intense Laser Fields: From the Infrared Regime to the Two-Color Configuration

  • Authors: Soumia Chqondi, Souhaila Chaddou, Ahmad Laghdas, Abdelkader Makhoute
    Journal: Atoms
    Year: 2025

Photoelectron angular distributions for photoionization of argon by two-color fields

  • Authors: Soumia Chqondi, Souhaila Chaddou, Abdelkader Makhoute
    Journal: Modern Physics Letters A
    Year: 2024

A New Feedback Control for Exponential and Strong Stability of Semi-Linear Systems with General Decay Estimates

  • Authors: M. Chqondi, S. Chqondi, K. Tigma, Y. Akdim
    Journal: Nonlinear Dynamics and Systems Theory
    Year: 2024

Theoretical description of the two-color photoelectron spectra process of hydrogen: comparison between TDSE calculation and Kroll and Watson approach

  • Authors: Souhaila Chaddou, Soumia Chqondi, Abdelmalek Taoutioui, Abdelkader Makhoute
    Journal: Turkish Journal of Physics
    Year: 2019

Numerical simulation of photoionization processes of the atomic hydrogen by a Ti: Saphir laser

  • Authors: S. Chaddou, S. Chqondi, A. Makhoute
    Journal: International Journal of Photonics and Optical Technology
    Year: 2017

 

 

Md. Rajibul Islam | High energy physics | Best Researcher Award

Dr. Md. Rajibul Islam | High energy physics | Best Researcher Award

Research Fellow at The Hong Kong Polytechnic University | Hong Kong

Md. Rajibul Islam is a distinguished Research Fellow in Photonics at The Hong Kong Polytechnic University. With over a decade of academic and research excellence, his expertise bridges the domains of photonics, optical sensors, and AI-driven biomedical solutions. Known for his interdisciplinary innovation, he holds a Ph.D. in Photonics Engineering, a Master’s in IT, and a Bachelor’s in Computer Applications. His scientific contributions are recognized globally through patents, international awards, and Q1 journal publications. He continues to champion healthcare technology innovation through cutting-edge research and collaborative ventures.

👨‍🎓Profile

Google scholar

Scopus

ORCID

📚 Early Academic Pursuits

Md. Rajibul Islam began his academic journey with a Bachelor of Computer Applications from IGNOU, India, laying a foundation in computing. His early interest in secure systems led him to pursue a Master of Science (by Research) in IT at Multimedia University (MMU), Malaysia, where he focused on fingerprint identification and verification technologies. Driven by a passion for physics and photonics, he earned a Ph.D. in Photonics Engineering from the University of Malaya, researching fiber Bragg grating-based Fabry-Perot resonators. His academic trajectory reflects a seamless blend of computational and physical sciences, underpinning his interdisciplinary research focus.

💼 Professional Endeavors 

Dr. Islam has held progressive academic positions, including Assistant Professor, Head of Department, and Associate Professor in Bangladesh’s top institutions such as UAP and BUBT. Internationally, he is engaged as a Research Fellow at The Hong Kong Polytechnic University, where he leads cutting-edge photonic sensor research for healthcare. His professional roles extend to industry consulting, software engineering, and research assistance across Malaysia and Ireland. These roles have shaped his ability to bridge theory and application, manage multidisciplinary teams, and contribute to the global research ecosystem. He consistently integrates teaching, innovation, and leadership in every position held.

🔬 Contributions and Research Focus

Dr. Islam’s core research revolves around fiber optic sensors, particularly fiber Bragg gratings (FBGs) and photonic devices for biomedical applications. He combines AI and photonics, enabling smart diagnostics and disease monitoring through enhanced sensor data analysis. His patent on few-mode fiber grating sensors showcases innovation in high-sensitivity sensing technologies. He has also contributed to vocal fold disorder detection, leaf disease identification, and high-speed optical communication systems. His work demonstrates versatility, spanning machine learning, image processing, and optoelectronics. Dr. Islam’s research is rooted in real-world relevance, bridging medical technology and photonics engineering.

🌍 Impact and Influence

Dr. Islam’s research has a measurable global impact, evidenced by peer-reviewed journal publications, international presentations, and a diverse citation base. His work is featured in Q1 and Q2 journals including Scientific Reports and Infrared Physics and Technology, ensuring high visibility within the scientific community. His contributions to biomedical photonics, AI-based diagnosis, and optical sensor design are used as reference frameworks by scholars and engineers globally. As a keynote speaker, panelist, and reviewer for top journals, he helps shape the scientific discourse. His interdisciplinary methods inspire research across AI, optics, and healthcare technologies.

📖 Academic Cites

Though citation metrics such as h-index are not provided here, Dr. Islam’s inclusion in SCOPUS-indexed journals, such as Scientific Reports, with an impact factor of 3.9, reflects research quality and relevance. His co-authored and first-authored works on deep learning architectures, fiber optic systems, and disorder classification are gaining academic traction. Cited in AI, photonics, and biomedical engineering domains, his papers contribute to emerging research trends. He has collaborated with international authors across Asia, Europe, and the Middle East, enhancing the citation diversity and reach of his work. His publications are considered valuable resources for ongoing applied research.

🧪 Research Skills

Dr. Islam possesses advanced experimental and computational skills across photonics, sensor design, and AI-based diagnostics. Technically adept in fiber Bragg grating fabrication, optical spectrum analysis, laser-based sensor development, and cleanroom processes, he couples this with Python, MATLAB, and COMSOL Multiphysics for simulation and analysis. He also develops AI pipelines using TensorFlow and PyTorch, particularly in image-based disease classification and signal processing. His skill in lab automation and data acquisition systems enhances experimental efficiency. Dr. Islam bridges engineering precision with computational intelligence, a rare blend that elevates the scope and accuracy of biomedical research.

👨‍🏫 Teaching Experience

With more than a decade in academia, Dr. Islam has taught both undergraduate and postgraduate courses in Data Communication, AI, Software Engineering, Database Systems, and Computer Architecture. His roles at UAP, BUBT, and North South University demonstrate a strong pedagogical presence. He fosters interactive learning and encourages research mentorship, having supervised numerous student theses in AI and medical applications. His curriculum design integrates latest industry trends and research breakthroughs, making learning application-focused. He leverages his international exposure to deliver globally relevant education, nurturing future innovators in computing and photonics.

🏅 Awards and Honors 

Dr. Islam is a recipient of prestigious accolades, including full sponsorships for events like the ACM-ICPC World Finals, ICTP Winter School, and PECIPTA Innovation Fair. His Bronze Medal for Few-Mode Fiber Sensor and Best Paper Award at ISCC-2011 highlight his technical ingenuity. Featured in Marquis Who’s Who and Stanford Who’s Who, he has earned national and international recognition. His multiple fellowships and research grants, including from Erasmus Mundus and IEERD, underscore sustained academic excellence. These honors reflect his research impact, scholarly leadership, and commitment to technological advancement in healthcare and photonics.

🌟 Legacy and Future Contributions

Dr. Islam is actively shaping a new frontier in biomedical sensing, where AI meets photonics. His legacy lies in developing cost-effective, high-accuracy optical sensors for early disease diagnosis and health monitoring. Looking ahead, he plans to expand collaborations across Asia and Europe, commercialize patented technologies, and establish AI-integrated photonics labs in developing countries. By mentoring future scientists, contributing to policy-making panels, and authoring advanced curricula, he is fostering a new generation of innovators and ethical researchers. His future contributions will undoubtedly influence medical technologies, academic reforms, and international research partnerships for decades to come.

Publications Top Notes

An Enhanced LSTM Approach for Detecting IoT-Based DDoS Attacks Using Honeypot Data

  • Authors: Arnob, A.K.B.; Mridha, M.F.; Safran, M.; Amiruzzaman, M.; Islam, M.R.
    Journal: International Journal of Computational Intelligence Systems
    Year: 2025

Low-Profile Reflective Metasurface for Broadband OAM Beam Generation at Ka-Band

  • Authors: Md. Rajibul Islam (Corresponding Author)
    Journal: Infrared Physics & Technology
    Year: 2025

FallVision: A Benchmark Video Dataset for Fall Detection

  • Authors: Nakiba Nuren Rahman; Abu Bakar Siddique Mahi; Durjoy Mistry; Shah Murtaza Rashid Al Masud; Aloke Kumar Saha; Rashik Rahman; Md. Rajibul Islam
    Journal: Data in Brief
    Year: 2025

An Evaluation of EVM-Compatible Blockchain Platforms for Trade Finance

  • Authors: Asif Bhat; Rizal Mohd Nor; Md Amiruzzaman; Md. Rajibul Islam; Munleef Quadir
    Journal: Journal of Advanced Research Design
    Year: 2025

A Machine Learning Approach for Vocal Fold Segmentation and Disorder Classification Based on Ensemble Method

  • Authors: Nobel, S.M.N.; Swapno, S.M.M.R.; Islam, M.R.; Safran, M.; Alfarhood, S.; Mridha, M.F.
    Journal: Scientific Reports
    Year: 2024

 

 

Bibhushan Shakya | High energy physics | Best Researcher Award

Dr. Bibhushan Shakya | High energy physics | Best Researcher Award

Staff Scientist at DESY | Germany

Dr. Bibhushan Shakya is a theoretical physicist specializing in particle physics and cosmology, currently serving as a Junior Staff Scientist at DESY, Hamburg. His research spans dark matter, gravitational waves, and early universe phenomena. With a Ph.D. from Cornell University, and professional stints at CERN, University of Michigan, and UCSC, he has emerged as a globally respected researcher. He has co-authored over 40 publications, supervised multiple graduate theses, and served in advisory and organizational roles within major international physics communities, including Snowmass and BCVSPIN. A native of Nepal, he actively contributes to science outreach across South Asia.

👨‍🎓Profile

Google scholar

Scopus

🎓 Early Academic Pursuits

Dr. Shakya’s academic journey began at Stanford University, where he earned three undergraduate degrees with distinction in Physics (Theoretical Concentration), Mathematics, and Philosophy. His passion for the fundamentals of the universe led him to Cornell University for doctoral studies under the mentorship of Prof. Maxim Perelstein. There, he specialized in theoretical particle physics, completing a Ph.D. thesis on dark matter phenomenology during a transformative period in experimental cosmology. His early academic years reflect a rare combination of depth in theoretical physics and breadth in interdisciplinary thought, laying the groundwork for his future contributions to cosmology and high-energy physics.

🧪 Professional Endeavors

Dr. Shakya has held prestigious research positions globally. After completing his Ph.D., he undertook postdoctoral fellowships at the University of Michigan, University of Cincinnati, and UC Santa Cruz, forming collaborative bridges across top U.S. institutions. He served as a Senior Fellow at CERN, Geneva, contributing to LISA cosmology initiatives, before joining DESY in 2021. His roles involve not just research but strategic leadership, including organizing seminars, leading selection committees, and mentoring Ph.D. students. He is recognized as a scientific community builder, contributing to international collaboration platforms like Snowmass 2022 and BCVSPIN in South Asia.

🔬 Contributions and Research Focus

Dr. Shakya’s research focuses on early-universe cosmology, dark matter, and gravitational wave signals from first-order phase transitions. His work addresses phenomena at the intersection of cosmology and high-energy physics, often exploring nonthermal origins of dark matter, tachyonic fields, and leptogenesis via bubble collisions. His publications in JCAP, JHEP, PRD, and PRL underscore both depth and originality. Notably, he collaborates with prominent physicists like Giudice, Kamionkowski, and Pomarol, positioning him at the forefront of phenomenological cosmology. His recent work with student co-authors further highlights his commitment to mentored discovery and academic development.

🌍 Impact and Influence

Dr. Shakya’s impact is global and multi-dimensional. Through publications, student mentorship, and international collaborations, he has significantly advanced the understanding of the early universe. As Chair of BCVSPIN, he champions particle physics in developing South Asian regions, fostering access to frontier research. His leadership role in the Snowmass 2022 Cosmic Frontier initiative helped shape the U.S. particle physics strategic roadmap. He regularly reviews for top-tier journals and major funding bodies like ERC and NSERC, reinforcing his influence on scientific standards. His lectures and outreach efforts have inspired young researchers and the general public across continents.

📚 Academic Cites and Publications

Dr. Shakya has authored over 40 peer-reviewed publications on arXiv, InspireHEP, and in leading journals like JCAP, JHEP, PRD, and PLB. His work is widely cited, with growing influence in cosmological phase transition physics, gravitational wave phenomenology, and non-thermal dark matter scenarios. Many of his papers involve cross-disciplinary ideas at the intersection of particle physics and cosmology, often co-authored with international experts and students. Some of his highly recognized works include those on dark photon production from cosmic strings, leptogenesis, and bubble collision dynamics. His research citations reflect a strong and growing academic footprint.

🧠 Research Skills and Expertise

Dr. Shakya exhibits exceptional analytical skills in quantum field theory, early-universe modeling, and beyond Standard Model physics. His ability to translate highly technical theory into observable cosmological predictions demonstrates deep understanding and creativity. He is proficient in phenomenological modeling, analytical methods, and scientific computation, making his work relevant to experimental data from CMB, LISA, and gravitational wave observatories. His collaborations across theory and experiment exemplify a rare blend of vision and rigor. He is also known for clear scientific communication, essential for both mentoring and outreach. These skills position him as a leading contributor to modern theoretical physics.

🧑‍🏫 Teaching and Mentorship

Dr. Shakya has contributed extensively to teaching and mentoring, both formally and informally. At University of Hamburg, he delivered guest lectures on supersymmetry and collider physics. He regularly teaches at international summer and winter schools (e.g., BCVSPIN, Hamburg Summer School) on topics like dark matter phenomenology and gravitational waves. He has supervised multiple Bachelor’s, Master’s, and Ph.D. students, many of whom have co-authored papers and moved on to prestigious research positions. His mentorship style encourages intellectual independence and scientific curiosity, making him an asset to any academic institution committed to excellence and training the next generation.

🏅 Awards and Honors

While Dr. Shakya has not yet been publicly recognized with individual awards, his appointment as Junior Staff Scientist at DESY, one of the world’s premier particle physics labs, underscores institutional recognition of his excellence. He has served as a referee for elite physics journals, a grant reviewer for the ERC and NSERC, and a strategic leader in international collaborations all clear acknowledgments of his scientific standing. His inclusion in roles like Snowmass 2022 liaison and chairing BCVSPIN reflects peer trust and leadership. These achievements serve as strong indicators of his eligibility for Best Researcher Award recognition.

🔮 Legacy and Future Contributions

Dr. Shakya’s legacy is already taking shape through his publications, mentorship, outreach, and scientific leadership in South Asia. In the future, he is well-positioned to become a principal investigator, lead independent grant-funded projects, and shape the field through interdisciplinary research. His ongoing involvement in gravitational wave cosmology, especially related to LISA, aligns with the next frontier in observational physics. By continuing to connect young scientists, global institutions, and frontier physics, he will play a pivotal role in both advancing science and making it more inclusive. His long-term influence will be felt across academia, policy, and outreach.

Publications Top Notes

📄 Particle Production from Phase Transition Bubbles
  • Authors: Henda Mansour, Bibhushan Shakya

  • Journal: Physical Review D

  • Year: 2025

📄 Aspects of Particle Production from Bubble Dynamics at a First Order Phase Transition
  • Author: Bibhushan Shakya

  • Journal: Physical Review D

  • Year: 2025

📄 Nonthermal Heavy Dark Matter from a First-Order Phase Transition
  • Authors: G. Giudice, H.M. Lee, A. Pomarol, B. Shakya

  • Journal: Journal of High Energy Physics (JHEP)

  • Year: 2024

📄 White Paper on Light Sterile Neutrino Searches and Related Phenomenology
  • Authors: Multiple authors (including Bibhushan Shakya)

  • Journal: Journal of Physics G: Nuclear and Particle Physics

  • Year: 2024

📄 Bouncing Dark Matter
  • Authors: L. Puetter, J.T. Ruderman, E. Salvioni, B. Shakya

  • Journal: Physical Review D

  • Year: 2024

 

Seyed Mohammad Ali Radmanesh | Interactions and fields | Best Researcher Award

Prof. Seyed Mohammad Ali Radmanesh | Interactions and fields | Best Researcher Award

Professor of Physics at University of New Orleans, United States

Dr. Seyed Mohammad Ali Radmanesh is a distinguished application scientist and experimental physicist with over 5 years of hands-on research experience in cryotronics, high-field magneto-transport measurements, and quantum materials. With a robust interdisciplinary background in materials science, applied physics, and engineering, Dr. Radmanesh has contributed to several high-impact studies, including publications in Nature-branded journals. He is recognized for his deep technical knowledge, data analysis capabilities, and experimental instrumentation expertise in low-temperature physics, making him a valuable contributor to cutting-edge material research.

👨‍🎓Profile

Google scholar

Scopus

🎓 Early Academic Pursuits

Dr. Radmanesh’s academic journey began with a B.Sc. in Materials Science and Engineering from Chamran University of Ahvaz, where he explored mechanical properties and heat treatment of metals. He deepened his expertise through an M.Sc. in Materials Science and Engineering at the University of Tehran, focusing on magnetic nanocomposites. His passion for condensed matter physics drove him to pursue an M.Sc. and Ph.D. in Applied Physics and Engineering at the University of New Orleans, where he became proficient in quantum materials research, developing strong foundations in low-temperature instrumentation and magneto-transport techniques.

🧪 Professional Endeavors

Professionally, Dr. Radmanesh has served as a researcher, application scientist, and visiting scholar at institutions like the National High Magnetic Field Laboratory (NHMFL). He led and collaborated on experiments investigating Dirac and Weyl semimetals, utilizing state-of-the-art systems such as Dilution Refrigerators, PPMS, SQUID, and VSM Cryostats. His role has involved device fabrication, data acquisition, and LabVIEW automation. He has also contributed to projects funded by NSF EPSCoR and has worked with various global experts on topics like topological superconductivity and London penetration depth, enhancing the experimental understanding of quantum electronic states.

📚 Contributions and Research Focus

Dr. Radmanesh’s research has focused extensively on quantum materials, particularly topological insulators, Dirac/Weyl semimetals, and unconventional superconductors. He has played a central role in uncovering nontrivial topological states, π Berry phases, and electron coherence mechanisms under extreme cryogenic and magnetic conditions. His Ph.D. work on correlated materials and collaborative studies on half-Heusler compounds have significantly advanced the understanding of exotic superconducting states. Through his expertise in low-temperature transport measurements, Dr. Radmanesh continues to shape the landscape of experimental condensed matter physics with highly cited contributions.

🌍 Impact and Influence

Dr. Radmanesh’s work has had a global scientific impact, with publications in prestigious journals such as Nature Materials, Nature Communications, and Nature Physics. His findings on Dirac fermions, zero Landau levels, and spin-orbit coupling have informed theoretical and applied research in quantum computing, magnetoelectronics, and next-gen materials development. He has collaborated with leading research labs and scientists in the U.S. and internationally. His work continues to influence experimental techniques in cryotronics and quantum device engineering, while mentoring younger scientists and fostering interdisciplinary collaboration in academia and industry.

📖 Academic Citations

Dr. Radmanesh has authored or co-authored 11 peer-reviewed papers, with 5 published in Nature-branded journals and others in Physical Review B, Scientific Reports, and Journal of Magnetism and Magnetic Materials. His research has been cited in high-impact studies, reflecting the relevance and scientific rigor of his contributions. Particularly, papers on topological semimetals (SrMnSb₂, TaP) and superconductivity in half-Heuslers have received considerable academic attention. His 2020 article on nontrivial paired states remains an essential reference for researchers exploring novel quantum phases and low-dimensional superconductors.

🛠️ Research Skills

Dr. Radmanesh possesses cutting-edge technical skills in cryogenic and magnetic instrumentation, including operation and troubleshooting of Dilution Refrigerators, PPMS, VSM, EPR, and LabVIEW-controlled systems. He is experienced in TDO-based London penetration depth measurements, Hall and resistivity measurements, and device prototyping using LPKF circuit board plotters. His command over data analysis tools (Origin, Maple, MATLAB) and software for experiment control has made him a reliable lead for complex experimental setups. He also applies vacuum systems and magnetic resonance tools to evaluate electronic, magnetic, and topological features in novel materials.

👨‍🏫 Teaching Experience 

While his primary focus has been research, Dr. Radmanesh has supported academic environments through graduate-level mentoring, poster presentations, and technical workshops. He has helped undergraduate and master’s students with experimental setup, data interpretation, and instrument handling. During his time at the University of Tehran, he worked as a Computer Center expert, assisting peers with network systems and academic computing. Additionally, he has been an active presenter at APS and IEEE conferences, where he disseminated knowledge, discussed methodology, and contributed to collaborative learning, establishing himself as a knowledge facilitator in the scientific community.

🏆 Awards and Honors

Dr. Radmanesh has received multiple NSF EPSCoR Research Infrastructure Improvement (RII) Awards, recognizing his contribution to high-impact scientific projects. He has consistently earned top spots in poster competitions and has been inducted into Omicron Delta Kappa, the National Leadership Honor Society. A member of the IEEE and a reviewer for Materials Letters, he actively contributes to the scientific peer review process. These honors reflect his academic excellence, leadership, and professional integrity, distinguishing him as a prominent early-career researcher with a well-rounded scholarly and service profile.

🌟 Legacy and Future Contributions

Dr. Radmanesh is poised to become a leading innovator in quantum materials research and experimental cryogenic science. His future goals include developing next-generation instrumentation for quantum state detection, mentoring new researchers, and contributing to quantum device engineering applicable in computing and energy. His legacy will be built on combining deep theoretical insight with technical precision, advancing both academic understanding and practical application of novel materials. With plans to continue collaborative research and lead high-impact projects, Dr. Radmanesh is set to make lasting contributions that will shape the future of materials science and applied physics.

Publications Top Notes

Superconductivity in Layered Dichalcogenide Pt₀.₀₂TaSe₂ Single Crystals

  • Authors: S.M.A. Radmanesh, R. Ghanbari, A. Diaconu
    Journal: Solid State Communications
    Year: 2025

The Synthesis and Characterization of Hard-Soft Mn₅₂Al₄₅.₇C₂.₃–α-Fe Nanocomposite Magnets

  • Authors: S.N. Attyabi, S.M.A. Radmanesh, S.A.S. Ebrahimi, H. Dehghan
    Journal: Journal of Superconductivity and Novel Magnetism, Vol. 35 (5), pp. 1229–1240
    Year: 2022

Stress-Induced Grain Refinement in Hard Magnetic Mn₅₂Al₄₅.₇C₂.₃ Fabricated Using the Ball-Milling Method

  • Authors: S.N. Attyabi, S.M.A. Radmanesh, S.A. Seyyed Ebrahimi, H. Dehghan, …
    Journal: Materials, Vol. 15 (22), Article 7919
    Year: 2022

Effect of the Heat Treatment on the Electrical Resistivity and Magnetization Reversal Behavior of MnAl Alloys

  • Authors: M. Shakouri, S.M.A. Radmanesh, S.A.S. Ebrahimi, H. Dehghan
    Journal: Materials Science and Engineering: B, Vol. 274, Article 115486
    Year: 2021

Nontrivial Paired States in Novel Topological Superconductors

  • Authors: S.M.A. Radmanesh, S.A.S. Ebrahimi, A. Diaconu, J.Y. Liu
    Journal: Journal of Alloys and Compounds, Vol. 848, Article 156498
    Year: 2020

 

 

 

Lijun Wang | High energy physics | Best Researcher Award

Dr. Lijun Wang | High energy physics | Best Researcher Award

Changzhou University | China

Dr. Lijun Wang is a dynamic researcher and educator specializing in thermoelectric materials, currently a Research Fellow at the Queensland University of Technology and previously a Lecturer at Changzhou University. With a Ph.D. in Materials Science and Engineering from China University of Petroleum (Beijing) and a visiting Ph.D. experience at The University of Queensland, Dr. Wang brings a global perspective to advanced materials research. His expertise bridges energy materials, nanostructures, and thermal transport, underlined by over 28 peer-reviewed publications, 5 patents, and an impressive academic citation record.

👨‍🎓Profile

Scopus

Google scholar

🎓 Early Academic Pursuits

Dr. Wang began his academic journey with a Bachelor’s degree in Polymer Materials from Liaocheng University, followed by a Master’s in Textile and Material Engineering from Dalian Polytechnic University. His drive for deeper scientific exploration led to a Ph.D. in Materials Science and Engineering at China University of Petroleum-Beijing, supported by the China Scholarship Council. As a Visiting Ph.D. Researcher at The University of Queensland, he honed his skills in nanomaterials and thermoelectrics, laying the foundation for his future contributions in thermal conductivity engineering and energy conversion systems.

🧑‍🔬 Professional Endeavors

Dr. Wang’s professional career features a dual academic appointment—a Lecturer at Changzhou University since 2020 and a Research Fellow at Queensland University of Technology starting in 2024. At Changzhou University, he has taught and developed several key materials science and chemistry courses. His academic leadership also includes supervising Master’s and undergraduate research projects. His international experience and involvement in multi-institutional collaborations highlight his role in advancing research on SnTe-based and flexible thermoelectric systems, contributing to global energy solutions and academic excellence.

🔬 Contributions and Research Focus

Dr. Wang’s research is focused on thermoelectric materials, especially SnTe-based systems, thermal conductivity minimization, and nanostructure engineering. He has significantly contributed to the design of high-performance materials using doping strategies, phonon scattering mechanisms, and solution-based synthesis methods. His work addresses critical needs in flexible electronics, energy harvesting, and battery thermal management. Dr. Wang’s impactful studies have been published in prestigious journals like ACS Applied Materials & Interfaces, Chemical Society Reviews, and Nano Energy, where he frequently serves as first author or co-corresponding author.

🌏 Impact and Influence

Dr. Wang’s research has attracted over 700 Google Scholar citations, demonstrating significant scientific influence. His innovations in SnTe thermoelectric materials have received international recognition, contributing to advancements in green energy technologies and sustainable materials. He has co-authored in high-impact journals such as Advanced Science, ACS Nano, and Acta Materialia, influencing the academic and industrial communities alike. His patented technologies represent tangible outputs of academic research into real-world applications, particularly in energy-efficient electronic systems.

📚 Academic Citations

With 28 publications, including 10 first-author papers, 5 patents, and an H-index of 12, Dr. Wang’s work has achieved 704 citations to date. His most cited work on Se/Cd Co-doped SnTe has been referenced 56 times, highlighting its impact on thermoelectric research. Several of his publications in ACS Applied Materials, Nano Energy, and Chemical Engineering Journal are foundational to lattice thermal conductivity and nanostructuring techniques. His research continues to influence new generations of material scientists, both through citations and collaborative projects.

🛠️ Research Skills

Dr. Wang possesses a strong arsenal of experimental techniques, including microwave solvothermal synthesis, nanostructure design, and high-resolution microscopy. His work involves thermal property measurements, electronic transport analysis, and computational modeling of energy materials. He is skilled in collaborative research, project management, and multidisciplinary problem-solving, especially in the fields of thermoelectrics, photovoltaics, and membrane materials. His ability to translate fundamental science into technological innovation is reflected in both his patented methods and high-impact publications.

🧑‍🏫 Teaching Experience

At Changzhou University, Dr. Wang has taught and developed curriculum for four core undergraduate courses: Material Economy and Management, Organic Membrane Materials, Foundations of Crystallography, and Experimental Chemistry from 2020 to 2023. His innovative teaching approach integrates theoretical grounding with practical applications, inspiring students toward research excellence. As a certified higher education lecturer and Master’s thesis supervisor, he has mentored over 10 undergraduate and graduate students, many of whom have pursued advanced studies and research roles under his guidance.

🏆 Awards and Honors

Dr. Wang has received numerous prestigious awards including the Chinese Government Award for Outstanding Joint PhD Students Abroad (2017) and the National PhD Scholarship. He also won the Outstanding Poster Award at the Chinese Materials Conference 2017. His teaching and academic merits earned him the Higher Education Teaching Qualification Certificate and Master’s Supervisor Certification in China. His early academic excellence was recognized with multiple university scholarships and an Outstanding Graduate Award a testament to his consistent academic dedication and leadership.

🚀 Legacy and Future Contributions

Dr. Wang aims to pioneer the next generation of energy materials through advanced thermoelectric systems, flexible devices, and scalable synthesis methods. With his evolving role at Queensland University of Technology, he is poised to lead international collaborations, contribute to climate-conscious technologies, and mentor a new wave of materials scientists. His growing body of patented inventions and scholarly works will shape the future of energy conversion technologies. Dr. Wang’s legacy lies in his dedication to bridging fundamental research with real-world impact, paving a sustainable path forward.

Top Noted Publications

Zn/In dual doping enhances the thermoelectric performance of SnTe
  • Authors: Lijun Wang, Xiao-Lei Shi, Lvzhou Li, Cuicui Dong, Pengcheng Miao, Ziyi Shen, Ningyi Yuan, Jianning Ding, Shuqi Zheng, Zhi-Gang Chen
    Journal: Journal of Physics: Materials
    Year: 2024

Advances in solid-state and flexible thermoelectric coolers for battery thermal management systems
  • Authors: Lijun Wang, Xiao-Lei Shi, Yicheng Yue, Lvzhou Li, Cuicui Dong, Jianjun Guan, Jianning Ding, Ningyi Yuan, Zhi-Gang Chen
    Journal: Soft Science
    Year: 2024

Advancing flexible thermoelectrics for integrated electronics
  • Authors: Xiao-Lei Shi, Lijun Wang, Wanyu Lyu, Tianyi Cao, Wenyi Chen, Boxuan Hu, Zhi-Gang Chen*
    Journal: Chemical Society Reviews
    Year: 2024

Zinc Doping Induces Enhanced Thermoelectric Performance of Solvothermal SnTe
  • Authors: Lijun Wang, Xiao-Lei Shi*, Lvzhou Li, Min Hong, Bencai Lin, Pengcheng Miao, Jianning Ding, Ningyi Yuan, Shuqi Zheng*, Zhi-Gang Chen*
    Journal: Chemistry – An Asian Journal
    Year: 2024

Hierarchical Structuring to Break the Amorphous Limit of Lattice Thermal Conductivity in High-Performance SnTe-Based Thermoelectrics
  • Authors: Lijun Wang, Min Hong, Qiang Sun, Yuan Wang, Luo Yue, Shuqi Zheng*, Jin Zou*, Zhi-Gang Chen*
    Journal: ACS Applied Materials & Interfaces
    Year: 2020

 

 

 

 

Ahmed Abdelsalam | Theoretical Advances | Best Researcher Award

Mr. Ahmed Abdelsalam | Theoretical Advances | Best Researcher Award

Teaching assistant at Cairo University | Egypt

Ahmed Gamal Abdelsalam is a passionate theoretical physicist and teaching assistant at Cairo University, with deep involvement in quantum mechanics, plasma physics, and high-energy particle research. Originating from Giza, Egypt, Ahmed has consistently combined academic excellence with community service, showing both intellectual and social commitment. His journey from volunteer educator to published researcher reflects a blend of discipline, leadership, and scientific rigor. Known for his multi-disciplinary expertise, he contributes actively to Egypt’s academic and scientific development, with a strong potential to make lasting international contributions in physics and data modeling.

👨‍🎓Profile

Google scholar

🎓 Early Academic Pursuits

Ahmed began his academic career with a B.Sc. in Science from Cairo University in 2016. He enhanced his learning through prestigious summer schools at Zewail University and hands-on training at the National Research Center. His pursuit of knowledge led him to complete a Pre-Master’s program in 2019 and an M.Sc. in Science in 2021, specializing in theoretical physics. Through these experiences, Ahmed demonstrated early interest in particle interactions and quantum potentials, setting the foundation for future research. His commitment to academic excellence is supported by continuous training in plasma physics and modern physical theories.

💼 Professional Endeavors

Ahmed’s professional journey began with volunteer teaching in a literacy project (2011–2012), where he rose to team leader. From 2016 to 2018, he served as a military officer, leading operations with precision. Since 2018, he has worked as a teaching assistant at Cairo University, supporting courses in physics, research guidance, and laboratory instruction. These roles exhibit his leadership, discipline, and mentorship capabilities. His seamless transition between education, national service, and academia reflects strong adaptability, professional responsibility, and a dedication to societal development alongside academic growth.

🔬 Contributions & Research Focus

Ahmed’s research spans quarkonium spectroscopy, spin splitting, and magnetic interactions in particle systems. His most cited work “Bound state of heavy quarks using a general polynomial potential”—proposes novel models in quantum chromodynamics. He also co-authored a paper on space plasma phenomena in Scientific Reports (2025), marking his entry into applied space physics. His work explores complex mathematical approaches using Nikiforov-Uvarov methods, Schrödinger equations, and analytical modeling. Through this, Ahmed contributes significantly to modern theoretical physics, bridging foundational theory with computational applications in quantum systems and astrophysical plasmas.

🌍 Impact and Influence

Ahmed’s research impact is evident through citations, interdisciplinary topics, and recognition in global journals. His 2018 publication has 35 citations, reflecting its academic reach. By addressing subjects like quark-antiquark systems and Venusian magnetospheric behavior, his work influences both particle physics and space research domains. His research contributions provide analytical tools and spectral data for understanding subatomic forces and cosmic interactions, fostering cross-disciplinary innovation. Ahmed’s influence is not just in numbers but in the applicability of his findings to future space exploration and high-energy experiments, paving paths for emerging physicists in Egypt and beyond.

📊 Academic Citations

Ahmed has co-authored six notable publications. His standout paper on heavy quarks (2018) is cited 35 times, while other works such as the meson spectra (2022) and spin splitting (2020) have also drawn attention. His arXiv preprint and additional contributions collectively amount to over 50 citations, underscoring a growing academic presence. Published in respected journals like Advances in High Energy Physics, Results in Physics, and Scientific Reports, his works are referenced in research related to quantum theory, plasma physics, and nuclear interactions, affirming his role as a rising voice in theoretical and applied physics research.

🧠 Research Skills

Ahmed possesses advanced research skills in mathematical modeling, data fitting, and simulation of physical systems. He is proficient in programming languages like Python, Fortran, C, C++, and analytical tools such as IDL, Matlab, and Origin software. He applies numerical methods and theoretical frameworks to solve quantum field problems and interpret experimental data. His expertise in problem-solving, statistical analysis, and computational physics allows him to work across multiple physics disciplines. Ahmed also leverages Google Drive, Microsoft Office, and scientific visualization tools to organize, communicate, and present his findings clearly and professionally.

👨‍🏫 Teaching Experience

Ahmed has served as a teaching assistant at Cairo University since 2018, supporting undergraduate and postgraduate physics courses. His role includes lab instruction, tutorial sessions, and student mentoring, making complex theories accessible to learners. His earlier experience as a literacy teacher (2011–2012) equipped him with communication and leadership skills, further honed during his military officer training. Ahmed is known for fostering student engagement, using both traditional and digital platforms. His ability to blend academic rigor with student support makes him a well-rounded educator and a role model for aspiring Egyptian physicists.

🏅 Awards and Honors

While Ahmed has not listed formal awards, his academic journey reflects prestigious participation in elite programs like Zewail University’s Theoretical Physics School and BUE’s Plasma Physics Courses. His publications in indexed journals and the 2025 article in Scientific Reports signify a high level of peer recognition. His promotion within volunteer work and successful completion of military service also indicate commendable leadership and integrity. With growing citation counts and participation in national research programs, Ahmed has laid the groundwork for future awards in physics research, education, and innovation.

🚀 Legacy and Future Contributions

Ahmed is poised to become a leading researcher in theoretical and plasma physics. With experience in quantum mechanics, space physics, and analytical modeling, he is well-positioned to contribute to cutting-edge discoveries in astrophysics and particle interactions. He envisions deeper involvement in international collaborations, contributing to Egypt’s academic global presence. By mentoring future students and publishing impactful work, he aims to leave a lasting legacy of excellence, innovation, and service. His future may include Ph.D. studies, grant-winning research, and expanding his influence across global scientific communities.

Top Noted Publications

  • Bound state of heavy quarks using a general polynomial potential
    Authors: H. Mansour, A. Gamal
    Journal: Advances in High Energy Physics
    Year: 2018

  • Meson spectra using Nikiforov-Uvarov method
    Authors: H. Mansour, A. Gamal
    Journal: Results in Physics
    Year: 2022

  • Spin splitting spectroscopy of heavy Quark and Antiquarks systems
    Authors: H. Mansour, A. Gamal, M. Abolmahassen
    Journal: Advances in High Energy Physics
    Year: 2020

  • Two body problems with magnetic interactions
    Authors: H. Mansour, A. Gamal
    Year: 2019

  • Spectroscopy of the Quarkonium Systems for Heavy Quarks
    Authors: H. Mansour, A. Gamal
    Year: 2020

 

 

Ajit Bhat | Nuclear Physics | Best Researcher Award

Mr. Ajit Bhat | Nuclear Physics | Best Researcher Award

R&D Mechanical Engineer at Oak Ridge National Lab | United States

Ajit Bhat is an accomplished R&D Mechanical Engineer with specialized expertise in aerospace engineering, mechanical systems design, and fusion energy technologies. Currently contributing to advanced research at Oak Ridge National Laboratory, Ajit brings a robust blend of technical proficiency, innovative thinking, and hands-on experience across national labs, industry, and academic research projects.

👨‍🎓Profile

Scopus

Orcid

🎓 Early Academic Pursuits

Ajit began his academic journey at the University at Buffalo, SUNY, where he earned a B.Sc. in Mechanical and Aerospace Engineering with Cum Laude honors. He furthered his education at the University of Michigan, Ann Arbor, completing his Master’s in Aerospace Engineering in December 2017. His studies focused on fluid dynamics, orbital mechanics, and control systems, laying the foundation for his future contributions to aerospace and energy sectors.

🧑‍💼 Professional Endeavors

Ajit’s career showcases an impressive diversity of roles in high-impact institutions. At Oak Ridge National Laboratory, he has been instrumental in supporting multiple departments with mechanical and robotics system designs, including the successful deployment of a gantry system for remote handling and the development of a 3D-printed tungsten divertor for fusion reactors. At the Institute of Energy Studies, North Dakota, he led projects in carbon capture technology, involving fluid flow analysis, structural integrity assessments, and data acquisition system troubleshooting. While at Piper Aircraft Inc., Ajit designed landing gear systems and aircraft components, managed hydraulic actuator issues, and streamlined procurement processes. His time at Lawrence Berkeley National Lab included remodelling infrared beamline structures and radiation shielding in accelerator facilities, demonstrating his ability to adapt across specialized domains.

🔬 Contributions and Research Focus

Ajit’s research contributions span several frontier domains. He has made significant strides in fusion energy systems, particularly through the design of a magnetic coupler for the ITER project and the creation of 3D-printed plasma-facing components. His expertise in computational fluid dynamics (CFD), finite element analysis (FEA), and thermal systems supports his broader focus on energy sustainability and mechanical innovation. Ajit’s background in space systems engineering is evident through his work on a NASA-funded CubeSat project, where he led the mechanical subsystem and collaborated with interdisciplinary teams to meet mission requirements.

🌍 Impact and Influence

Ajit’s professional influence is notable in sectors that demand precision engineering and innovation. His work in fusion research at ORNL supports global efforts in clean energy, while his earlier roles in aircraft design and radiation infrastructure contribute to national aerospace and nuclear facilities. His participation in legacy waste cleanup initiatives and carbon capture processes reflect his commitment to sustainability and environmental engineering.

📚 Academic Citations and Publications

Ajit has co-authored impactful publications such as “Electrostatic Lubricant Filter Design Study”, presented at the 2022 IEEE CEIDP Conference, and “Work Cell Development for Legacy Waste Cleanup in Oak Ridge”, presented at WM Symposia 2024. Additionally, he delivered a technical talk titled “Design and Analysis of an Integrated Additively Manufactured Test Article for Plasma Facing Component” at the 26th Technology of Fusion Energy Conference (TOFE), reflecting his growing presence in the academic and research community.

🧠 Research Skills

Ajit possesses advanced technical competencies in CAD software (PTC Creo, NX, AutoCAD, Inventor), simulation tools (ANSYS Fluent, Abaqus, XFLR5), and programming languages (MATLAB, C++, LabView). His hands-on capabilities with 3D printing, lathe operations, and manual machining tools complement his simulation expertise, making him a well-rounded engineer capable of bridging theory and practice in high-tech environments.

👨‍🏫 Teaching and Mentorship Experience

During his time at the University of Michigan, Ajit served as a Research Assistant, managing mechanical subsystems in a NASA CubeSat project. His role involved interdisciplinary collaboration, design validation, and project communication, which naturally required mentoring undergraduate and graduate team members. While not a formal teaching role, this experience demonstrates his ability to guide and lead technical teams in educational settings.

🏆 Awards and Honors

Ajit graduated Cum Laude from SUNY Buffalo and has been selected for key roles at some of the most prestigious national laboratories in the U.S., including ORNL and LBNL. While the current record does not include individual academic awards, his selection for critical national-level projects and technical leadership in research affirms his professional recognition and excellence.

🧭 Legacy and Future Contributions

Ajit Bhat is on a promising trajectory to leave a lasting legacy in fusion energy research, additive manufacturing, and cross-sector mechanical engineering. As global interest in sustainable technologies grows, his interdisciplinary expertise positions him as a future leader in both research innovation and technical implementation. With a strong foundation, growing publication record, and deep technical insight, Ajit’s contributions are expected to expand and influence next-generation energy and aerospace systems.

 

Devika Phukan | The matter particles | Women Researcher Award

Dr. Devika Phukan | The matter particles | Women Researcher Award

Associate Professor at The Assam Royal Global University, Guwahati | India

Dr. Devika Phukan is a distinguished physicist and professor with a career spanning over 25 years in the domain of optics, photonics, and laser spectroscopy. Currently serving at Royal Global University, she is widely recognized for her research excellence, teaching dedication, and mentorship of doctoral scholars. Her journey is an inspiring example of a woman researcher who has significantly contributed to scientific advancement in applied physics.

👨‍🎓Profile

Google scholar

Scopus

ORCID

📚 Early Academic Pursuits

Dr. Phukan began her academic journey at HFC Model School, Namrup (now BVFCL), followed by higher secondary education at Namrup Higher Secondary School. Her passion for physics took shape at Gargaon College, where she completed her B.Sc. in Physics, later pursuing M.Sc., M.Phil., and Ph.D. in Physics from Dibrugarh University. This solid academic foundation laid the groundwork for her career in laser physics and spectroscopy.

🧑‍🏫 Professional Endeavors

Dr. Phukan embarked on her professional career at Salt Brook Academy (1999–2001), later holding positions at Sri Revanna Siddheswaraya Institute of Technology and Rajiv Gandhi Institute of Technology, Bangalore. Since 2009, she has been an integral part of Royal Global University, contributing as a senior faculty member and researcher. Her professional trajectory reflects steady growth, leadership, and commitment to academic excellence.

🔬 Contributions and Research Focus

Dr. Phukan’s research interests include laser and nonlinear optics, optical communications, optoelectronics, and photonics, with a particular emphasis on laser spectroscopy and photonic crystal fibers. She has authored 13 peer-reviewed journal articles and several conference papers that address cutting-edge topics like soliton pulse propagation, stimulated Raman scattering, and Brillouin threshold analysis. Her recent work in ultrashort optical pulse transmission in photonic crystal fibers demonstrates her contributions to emerging technologies in fiber optics and communication systems.

🌐 Impact and Influence

Her work is cited in reputed journals such as the Journal of Optics, Pramana – Journal of Physics, and Asian Journal of Physics. Through her mentorship, two Ph.D. scholars have been awarded their degrees, while six more are currently pursuing research under her guidance. This highlights her influence in shaping the next generation of physicists and her ability to create a vibrant research ecosystem.

📈 Academic Citations and Research Skills

Dr. Phukan’s scholarly output reflects a strong command over experimental and computational techniques in nonlinear optics. While citation metrics (such as h-index) are not listed here, her consistent publication in peer-reviewed journals and collaborations with research scholars illustrate high research productivity and relevance. Her ability to translate complex physical phenomena into practical simulations and fiber models underscores her technical depth and analytical skills.

🏫 Teaching Experience

With expertise in Engineering Physics, Electrodynamics, Laser Physics, Optoelectronics, and Atomic & Molecular Physics, Dr. Phukan brings a rich interdisciplinary perspective to the classroom. Her teaching approach combines fundamental theory with real-world applications, making her courses engaging and highly relevant to modern physics and engineering students.

🏆 Awards and Honors

In recognition of her outstanding contribution to education, Dr. Phukan received the Best Faculty Award in 2015 from Gyan Sagar Institution (now Royal Global University). This honor reflects her excellence in teaching, research guidance, and dedication to institutional development.

🌟 Legacy and Future Contributions

Dr. Devika Phukan continues to inspire through her intellectual rigor, mentorship, and commitment to scientific innovation. She stands as a role model for women in STEM, particularly in physics and photonics. With her ongoing research, active Ph.D. supervision, and dedication to teaching, she is poised to make further groundbreaking contributions in fiber optics and laser-based technologies.

Publications Top Notes

Analysis of the effect of Stimulated Brillouin Scattering Threshold (SBST) and Stokes power in single mode optical fibre of different characteristic profile by simulation

  • Authors: Partha Pratim Borah, Devika Phukan, Anurup Gohain Barua
    Journal: Journal of Optics
    Year: 2025

Modelling and analysis of amplitude, spatial domain, spatial grids, width and time steps of soliton wave with reference to energy

  • Authors: Bidish Borah, Devika Phukan, Anurup Gohain Barua
    Journal: Journal of Optics
    Year: 2025

Exploring Structural and Propagation Features of Photonic Crystal Fibers for Superior Ultrashort Pulse Delivery

  • Authors: Priyanka Talukdar, Devika Phukan
    Journal: Journal of Optics
    Year: 2025

A Comparative Analysis of Basic and Enhanced Hole Structures in Photonic Crystal Fibers

  • Authors: P. Talukdar, D. Phukan
    Journal: Journal of Optics
    Year: 2024

A Comparative Exploration of Femtosecond Optical Pulse Propagation in Hollow Core Photonic Crystal Fiber and Optical Fiber

  • Author: Devika Phukan
    Journal: Webology
    Year: 2023

 

 

Jie Fan | Electroweak Physics | Best Researcher Award

Assoc. Prof. Dr. Jie Fan | Electroweak Physics | Best Researcher Award

Associate Researcher at Changchun University of Science and Technology  | China

Dr. Jie Fan is an Associate Researcher, Doctoral Supervisor, and Research Teacher at Changchun University of Science and Technology. Recognized as a High-Level D Talent in Jilin Province, Dr. Fan is a rising force in the field of semiconductor laser technology. With more than 30 academic publications and involvement in innovative laser device development, Dr. Fan is carving a significant niche in optoelectronic device research.

👨‍🎓Profile

Scopus

🎓 Early Academic Pursuits

Dr. Fan pursued advanced studies in semiconductor optoelectronics, laying a robust academic foundation in laser device physics and engineering. The academic journey was defined by an early focus on semiconductor light sources and beam quality enhancement, which later evolved into targeted, high-impact research directions.

💼 Professional Endeavors

Currently serving at the Changchun University of Science and Technology, Dr. Fan has taken on multiple roles including research leader, doctoral mentor, and project investigator. Leading 9 scientific research projects showcases not only scientific depth but also the ability to manage complex, long-term research efforts effectively.

🔬 Contributions and Research Focus

Dr. Fan’s core research revolves around high-power and high beam quality semiconductor laser technology. A standout contribution is the monolithic integration of DBR master oscillator and tapered power amplifier (MOPA) structure, enabling lasers with enhanced beam quality and peak power. Another key innovation is the development of dual-wavelength semiconductor laser devices using double Bragg grating diffraction feedback, achieving stable dual-output modes. Furthermore, Dr. Fan has addressed the challenge of transverse multi-lobe output in high-power lasers, enhancing near-fundamental mode performance—a vital step for real-world applications.

🌐 Impact and Influence

Despite a currently low citation index (1), the originality and applied relevance of Dr. Fan’s work present strong potential for future academic and industrial impact. The submission of 8 additional patents underlines continuous innovation and the intention to bridge research with practical solutions in optoelectronics.

📚 Academic Citations

With 27 SCI/Scopus-indexed journal articles, including contributions to Optics Letters and Optics Communications, Dr. Fan has made substantial efforts in academic dissemination. While the current citation index reflects early-stage impact, the volume and quality of publications indicate strong groundwork for rising academic influence.

🧠 Research Skills

Dr. Fan brings expertise in semiconductor laser modeling, structural integration, diffraction feedback design, and device fabrication. The ability to move from conceptual design to physical realization of complex laser systems showcases a rare combination of theoretical insight and experimental skill.

👨‍🏫 Teaching Experience

As a doctoral supervisor, Dr. Fan is deeply involved in mentoring graduate students and guiding cutting-edge research topics. The integration of teaching and research helps foster a new generation of optoelectronics researchers equipped with both academic rigor and applied skills.

🏆 Awards and Honors

Dr. Fan is listed among the High-Level D Talents in Jilin Province, recognizing his scientific excellence and research leadership. This designation is a testament to his growing status as a key contributor in China’s advanced optoelectronics research landscape.

🧬 Legacy and Future Contributions

Looking ahead, Dr. Fan is poised to further influence the semiconductor laser industry through scalable device designs and collaborative innovation. While more visibility through citations, industry partnerships, and global collaboration will enhance his profile, the foundational research already promises a lasting legacy in high-performance laser device engineering.

Publications Top Notes

Research on the Asymmetric Phase-Shift Laterally-Coupled DFB Semiconductor Lasers with High Single Longitudinal Mode Yield

  • Authors: Zhang, Naiyu; Qiu, Bocang; Zou, Yonggang; Li, Qingmin; Ma, Xiaohui
    Journal: Optics Express
    Year: 2025

Study on Mode Characteristics of Supersymmetric Transversally Coupled Array Semiconductor Lasers

  • Authors: Wang, Zelong; Fan, Jie; Zou, Yonggang; Li, Yan; Ma, Xiaohui
    Journal: Optics Communications
    Year: 2025

Thermal Characteristics Analysis of Multi-Material Composite Heat Sink Structure Based on VCSEL Array

  • Authors: Wang, Chenxin; Zou, Yonggang; Fan, Jie; Song, Yingmin; Liang, Hongjin
    Journal: Laser and Optoelectronics Progress
    Year: 2025

Near 1050 nm Laterally Coupled DFB Laser with Tightened-Ridge-Waveguide for Improving Grating Coupling Capability and Controlling Lateral Modes

  • Authors: Hou, Huilong; Fan, Jie; Fu, Xiyao; Zou, Yonggang; Ma, Xiaohui
    Journal: Optics Letters
    Year: 2025

Dual-Wavelength Composite Grating Semiconductor Laser for Raman Detection

  • Authors: Huang, Zhuoer; Zou, Yonggang; Fu, Xiyao; Wang, Xiaozhuo; Cheng, Biyao
    Journal: Optics and Laser Technology
    Year: 2025

 

 

Jerzy Dryzek | The matter particles | Excellence in Research Award

Prof. Dr. Jerzy Dryzek | The matter particles | Excellence in Research Award

Professor at Institute of Nuclear Physics PAS | Poland

Prof. Jerzy Dryzek is a renowned physicist specializing in solid state physics and positron annihilation spectroscopy, with over four decades of academic and research experience. A pioneer in experimental physics in Poland, he has played a central role in developing advanced laboratory techniques in the field, particularly at the Institute of Nuclear Physics PAN in Kraków. His extensive international collaborations and leadership in scientific projects underscore his lasting influence in materials science and nuclear physics.

👨‍🎓Profile

Scopus

ORCID

📚 Early Academic Pursuits

Dr. Dryzek embarked on his academic journey with a Master’s degree from the Academy of Mining and Metallurgy in Kraków (1975–1980), where he focused on the “Technology of thin films.” He simultaneously pursued another Master’s in Nuclear Physics from the Jagiellonian University in Kraków (1977–1981), conducting a thesis on the “Measurement of the positron lifetime in silver films.” His deep interest in positron-related phenomena led to his Ph.D. (1981–1986) in Solid State Physics, with a dissertation titled “Electrical conductivity and electrical properties of thin metallic films (Au, Ag, Cu).”

🧪 Professional Endeavors

Since 1987, Dr. Dryzek has held a permanent position at the Institute of Nuclear Physics in Kraków, where he has been instrumental in establishing and expanding the positron annihilation laboratory. His international exposure includes scientific visits to Münster University, Germany, Helsinki University of Technology, Finland, Texas Christian University, USA, and collaborative research at Chalmers University of Technology, Sweden, and KEK in Tsukuba, Japan. He also served as Professor at the University of Zielona Góra (2005–2009) and Opole University (2009–2014).

🔬 Contributions and Research Focus

Dr. Dryzek’s research focus lies in positron annihilation spectroscopy, with special emphasis on pulsed positron beams, two-dimensional Doppler broadening, and positron annihilation in flight. He has led multiple national and international research projects, exploring grain boundaries, resonance trapping, and nonhomogeneous systems. His innovative work includes the construction of Doppler broadening spectrometers and advancing methods of studying subsurface zones in metallic alloys.

🌍 Impact and Influence

Dr. Dryzek’s impact extends beyond laboratory research. Through his leadership in the Centre of Excellence ADREM, he contributes to applying physics to human health and environmental safety. His collaborative initiatives have fostered German-Polish scientific cooperation, and his lectures and research work have enriched institutions in Europe, the USA, and Japan. His influence is particularly notable in shaping positron annihilation research infrastructure in Poland.

📖 Academic Cites

Dr. Dryzek’s work has been widely cited in peer-reviewed journals and international conferences, especially in the context of tribology, surface studies, and positron annihilation in condensed matter. His habilitation thesis in 2001, titled “Positron annihilation characteristics in condensed matter,” laid the foundation for his recognition as an Assistant Professor and later Full Professor in 2012.

🛠️ Research Skills

Dr. Dryzek demonstrates expertise in experimental physics, with deep proficiency in positron annihilation techniques, Doppler spectroscopy, and positron beam construction. He is also skilled in research project management, having led numerous scientific grants, coordinated interdisciplinary networks such as POSMAT, and conducted technology-based studies on materials like polymers, metals, and minerals.

👨‍🏫 Teaching Experience

Alongside research, Dr. Dryzek has actively contributed to academic teaching, notably as a lecturer in physics at the Pedagogical University in Kraków (1990–1992) and as a visiting professor at international institutions. He played a significant role in educating students from Münster University, fostering cross-border scientific knowledge exchange under the German-Polish Collaboration framework.

🏆 Awards and Honors

Among his recognitions are several competitive research grants awarded by the Committee of Scientific Research in Poland, European Commission (COST Programs), and German-Polish Foundations. His leadership in teaching grants, instrument development, and joint international projects reflects the high regard of his contributions to science and education.

🔮 Legacy and Future Contributions

With a legacy rooted in scientific innovation, academic mentorship, and international collaboration, Dr. Dryzek has established himself as a pioneer in positron physics. His work continues to inspire future generations, and his efforts in network coordination, grant acquisition, and technical development ensure ongoing contributions to the fields of solid-state physics and material science. His vision for advancing positron annihilation studies remains a guiding light for both theoretical and applied physics communities.

Publications Top Notes

Superior barrier performance, mechanical properties and compostability in relation to supramolecular structure of renewable based poly(trimethylene furanoate) modified with suberic acid

  • Authors: A. Zubkiewicz, A. Szymczyk, J. Dryzek, V.M. Siracusa, N. Lotti
    Journal: European Polymer Journal
    Year: 2025

Positronium Formation on the Rhenium Surface Studied by Slow Positron Measurements

  • Authors: J. Dryzek, M.O. Liedke, M. Butterling, E. Dryzek
    Journal: Physica Status Solidi (B) Basic Research
    Year: 2025

Influence of flexible segment length on the phase structure and properties of poly(hexamethylene 2,5-furandicarboxylate)-block-biopolytetrahydrofuran copolymers

  • Authors: S. Paszkiewicz, K. Walkowiak, I. Irska, Z.J. Rozwadowski, J. Dryzek
    Journal: Journal of Applied Polymer Science
    Year: 2024

Positron Annihilation and EBSD Studies of Subsurface Zone Created During Friction in Vanadium

  • Authors: J. Dryzek, M.X. Wróbel
    Journal: Journal of Tribology
    Year: 2023

Influence of the positron implantation profile on the study of the defect depth distribution by the positron annihilation technique

  • Authors: J. Dryzek
    Journal: Journal of Applied Physics
    Year: 2023