Hailang Dai | Experimental methods | Best Researcher Award

Assist. Prof. Dr. Hailang Dai | Experimental methods | Best Researcher Award

Associate research fellow, Shanghai Jiao Tong University, China

Dr. Hailang Dai is an Associate Researcher at Shanghai Jiao Tong University and a rising expert in the fields of advanced optics, micro-lasers, and biomedical photonics. After completing his studies under the mentorship of renowned professors Xianfeng Chen and Zhuangqi Cao, Dr. Dai has become a pivotal figure in interdisciplinary research that merges optical technologies with medical applications. He has led and participated in numerous nationally funded projects, built the first interdisciplinary biomedical photonics laboratory at the university, and published over 50 high-impact research articles in journals like Physical Review Letters, Optics Letters, and Photonics Research.

👨‍🎓Profile

Scopus

ORCID

🎓 Early Academic Pursuits

Dr. Dai began his academic journey at the School of Physics and Astronomy at Shanghai Jiao Tong University, where he studied under esteemed mentors, laying a strong foundation in theoretical and experimental optics. Early in his career, he demonstrated outstanding academic potential, receiving multiple prestigious scholarships, including the National Scholarship, CICIFSA, and Huawei Scholarship. His deep curiosity in light–matter interactions and functional materials led him to focus on optoelectronic devices. His consistent excellence earned him admission to the highly competitive Shanghai Super Postdoctoral Talent Support Program, marking a significant step in his scholarly development.

🧪 Professional Endeavors

Dr. Dai’s professional path has been defined by interdisciplinary innovation and academic leadership. As an Associate Researcher and doctoral supervisor, he has guided research in advanced functional optoelectronics and biomedical optics. He established the first biomedical photonics laboratory at the Institute of Optical Science and Technology and has successfully led several China Postdoctoral Science Foundation projects. In collaboration with leading academics, he has contributed as first or co-author in top-tier journals. Dr. Dai is currently the Principal Investigator of the National Natural Science Foundation of China Youth Fund Project, showcasing his research leadership and forward-looking vision.

🔬 Contributions and Research Focus

Dr. Dai’s research has focused on micro-lasers, nonlinear optics, biomedical diagnostics, and integrated photonic devices. His groundbreaking work involves optical waveguides, high-Q cavities, and laser-based biomedical applications that address real-world challenges such as disease detection and therapeutic solutions. He uniquely combines optical science with biomedicine, exploring novel mechanisms for treating diseases using photonics-based technologies. His ability to connect fundamental physics with practical solutions has placed him at the forefront of interdisciplinary research, with work featured in journals like Physical Review Applied and Biomedical Optics Express.

🌍 Impact and Influence

Dr. Dai’s interdisciplinary research has had a transformational impact on the development of optical medical diagnostics and next-generation optoelectronic devices. His innovations in micro-laser technology and waveguide systems have contributed to both academic advancement and industrial application. His publications have been widely cited, reflecting the relevance and scientific merit of his work. Beyond his own research, he has inspired emerging scholars and helped shape a new generation of researchers in optical physics. His research bridges fundamental science and applied biomedical engineering, cementing his reputation as a pioneer in photonics-driven medical solutions.

📊 Academic Cites

Dr. Dai’s body of work is well-recognized in the academic community, garnering hundreds of citations across highly respected journals. His articles in Physical Review Letters, Nano Letters, Optics Express, and ACS Photonics are frequently cited by peers working in optics, material science, and biomedical engineering. This citation record underscores the broad applicability of his work and his standing as a credible, high-impact researcher. His collaborations with international scholars and consistent contributions to cutting-edge research ensure continued visibility and academic influence, positioning him as a thought leader in his interdisciplinary field.

🧠 Research Skills

Dr. Dai exhibits a wide spectrum of research skills including theoretical modeling, experimental design, nanofabrication, optical simulation, and biomedical instrumentation. His command of nonlinear optics, laser physics, and optical materials is complemented by his ability to integrate optical platforms into clinical research settings. He is adept in using tools such as COMSOL, Lumerical, and FDTD for photonic simulations. His ability to conceptualize and execute multidisciplinary projects makes him highly valuable in collaborative research. Furthermore, his experience in establishing laboratories and managing research teams showcases his strong leadership and project execution abilities.

📚 Teaching Experience

As a doctoral supervisor, Dr. Dai has actively mentored graduate students and postdoctoral researchers, integrating them into his research on micro-lasers and biophotonics. His teaching philosophy emphasizes hands-on learning, critical thinking, and interdisciplinary exploration. He has also contributed to curriculum development in photonics and optical instrumentation, and frequently delivers seminars and research talks within the university and at academic conferences. His mentorship has resulted in student-led publications and project awards, underlining his role in academic development. Dr. Dai continues to foster a supportive learning environment, cultivating future leaders in optics and biomedical science.

🏅 Awards and Honors

Dr. Dai’s academic journey is marked by prestigious accolades such as the Shanghai Super Postdoctoral Fellowship, National Scholarship, Huawei Scholarship, and the CICIFSA Doctoral Scholarship. He has also secured funding from the China Postdoctoral Science Foundation and is currently leading a Youth Fund Project from the National Natural Science Foundation of China. These recognitions not only highlight his scientific excellence but also acknowledge his dedication to national research goals. His consistent record of scholarships and grants reflects a career built on merit, innovation, and academic contribution.

🔮 Legacy and Future Contributions

Dr. Hailang Dai is well-positioned to leave a lasting legacy in the fields of biophotonics and functional optics. With an established research infrastructure and a growing team, his next steps likely involve expanding international collaboration, exploring AI-integrated optical diagnostics, and commercializing his biomedical technologies. His vision includes making optical solutions more accessible for healthcare diagnostics and pioneering next-generation optoelectronic materials. As a mentor, innovator, and leader, his ongoing work will continue to inspire future scientists and impact both academic research and real-world healthcare applications, making him a strong contender for prestigious global research awards.

Publications Top Notes

📄 High-quality factor in a symmetrical metal-cladding optical waveguide
  • Authors: Yi Lai, Zhangchi Sun, Dan Ru, Chenhuan Ding, Ling Ding, Chen Wang, Cenxin Luo, Hailang Dai, He Li

  • Journal: Journal of Nonlinear Optical Physics & Materials

  • Year: 2025

📄 Manipulation of Rare-Earth-Ion Emission by Nonlinear-Mode Oscillation in a Lithium Niobate Microcavity
  • Authors: Jiangwei Wu, Yuxuan He, Qilin Yang, Xueyi Wang, Xiangmin Liu, Yong Geng, Guangcan Guo, Qiang Zhou, Xianfeng Chen, Yuping Chen

  • Journal: Nano Letters

  • Year: 2025

📄 Analysis of the key signaling pathway of baicalin that induces autophagy in papillary thyroid cancer via an optical resonator
  • Authors: Yi Lai, Dan Ru, Chenhuan Ding, Chen Wang, Ling Ding, Cenxin Luo, Yujie Qi, Xianfeng Chen, Hailang Dai, He Li

  • Journal: Biomedical Optics Express

  • Year: 2025

📄 Ultralow-Threshold Lithium Niobate Photonic Crystal Nanocavity Laser
  • Authors: Xiangmin Liu, Chengyu Chen, Rui Ge, Jiangwei Wu, Xianfeng Chen, Yuping Chen

  • Journal: Nano Letters

  • Year: 2025

📄A Sixteen‐user Time‐bin Entangled Quantum Communication Network With Fully Connected Topology
  • Authors: Yiwen Huang, Zhantong Qi, Yilin Yang, Yuting Zhang, Yuanhua Li, Yuanlin Zheng, Xianfeng Chen

  • Journal: Laser & Photonics Reviews

  • Year: 2025

 

Md. Rajibul Islam | High energy physics | Best Researcher Award

Dr. Md. Rajibul Islam | High energy physics | Best Researcher Award

Research Fellow at The Hong Kong Polytechnic University | Hong Kong

Md. Rajibul Islam is a distinguished Research Fellow in Photonics at The Hong Kong Polytechnic University. With over a decade of academic and research excellence, his expertise bridges the domains of photonics, optical sensors, and AI-driven biomedical solutions. Known for his interdisciplinary innovation, he holds a Ph.D. in Photonics Engineering, a Master’s in IT, and a Bachelor’s in Computer Applications. His scientific contributions are recognized globally through patents, international awards, and Q1 journal publications. He continues to champion healthcare technology innovation through cutting-edge research and collaborative ventures.

👨‍🎓Profile

Google scholar

Scopus

ORCID

📚 Early Academic Pursuits

Md. Rajibul Islam began his academic journey with a Bachelor of Computer Applications from IGNOU, India, laying a foundation in computing. His early interest in secure systems led him to pursue a Master of Science (by Research) in IT at Multimedia University (MMU), Malaysia, where he focused on fingerprint identification and verification technologies. Driven by a passion for physics and photonics, he earned a Ph.D. in Photonics Engineering from the University of Malaya, researching fiber Bragg grating-based Fabry-Perot resonators. His academic trajectory reflects a seamless blend of computational and physical sciences, underpinning his interdisciplinary research focus.

💼 Professional Endeavors 

Dr. Islam has held progressive academic positions, including Assistant Professor, Head of Department, and Associate Professor in Bangladesh’s top institutions such as UAP and BUBT. Internationally, he is engaged as a Research Fellow at The Hong Kong Polytechnic University, where he leads cutting-edge photonic sensor research for healthcare. His professional roles extend to industry consulting, software engineering, and research assistance across Malaysia and Ireland. These roles have shaped his ability to bridge theory and application, manage multidisciplinary teams, and contribute to the global research ecosystem. He consistently integrates teaching, innovation, and leadership in every position held.

🔬 Contributions and Research Focus

Dr. Islam’s core research revolves around fiber optic sensors, particularly fiber Bragg gratings (FBGs) and photonic devices for biomedical applications. He combines AI and photonics, enabling smart diagnostics and disease monitoring through enhanced sensor data analysis. His patent on few-mode fiber grating sensors showcases innovation in high-sensitivity sensing technologies. He has also contributed to vocal fold disorder detection, leaf disease identification, and high-speed optical communication systems. His work demonstrates versatility, spanning machine learning, image processing, and optoelectronics. Dr. Islam’s research is rooted in real-world relevance, bridging medical technology and photonics engineering.

🌍 Impact and Influence

Dr. Islam’s research has a measurable global impact, evidenced by peer-reviewed journal publications, international presentations, and a diverse citation base. His work is featured in Q1 and Q2 journals including Scientific Reports and Infrared Physics and Technology, ensuring high visibility within the scientific community. His contributions to biomedical photonics, AI-based diagnosis, and optical sensor design are used as reference frameworks by scholars and engineers globally. As a keynote speaker, panelist, and reviewer for top journals, he helps shape the scientific discourse. His interdisciplinary methods inspire research across AI, optics, and healthcare technologies.

📖 Academic Cites

Though citation metrics such as h-index are not provided here, Dr. Islam’s inclusion in SCOPUS-indexed journals, such as Scientific Reports, with an impact factor of 3.9, reflects research quality and relevance. His co-authored and first-authored works on deep learning architectures, fiber optic systems, and disorder classification are gaining academic traction. Cited in AI, photonics, and biomedical engineering domains, his papers contribute to emerging research trends. He has collaborated with international authors across Asia, Europe, and the Middle East, enhancing the citation diversity and reach of his work. His publications are considered valuable resources for ongoing applied research.

🧪 Research Skills

Dr. Islam possesses advanced experimental and computational skills across photonics, sensor design, and AI-based diagnostics. Technically adept in fiber Bragg grating fabrication, optical spectrum analysis, laser-based sensor development, and cleanroom processes, he couples this with Python, MATLAB, and COMSOL Multiphysics for simulation and analysis. He also develops AI pipelines using TensorFlow and PyTorch, particularly in image-based disease classification and signal processing. His skill in lab automation and data acquisition systems enhances experimental efficiency. Dr. Islam bridges engineering precision with computational intelligence, a rare blend that elevates the scope and accuracy of biomedical research.

👨‍🏫 Teaching Experience

With more than a decade in academia, Dr. Islam has taught both undergraduate and postgraduate courses in Data Communication, AI, Software Engineering, Database Systems, and Computer Architecture. His roles at UAP, BUBT, and North South University demonstrate a strong pedagogical presence. He fosters interactive learning and encourages research mentorship, having supervised numerous student theses in AI and medical applications. His curriculum design integrates latest industry trends and research breakthroughs, making learning application-focused. He leverages his international exposure to deliver globally relevant education, nurturing future innovators in computing and photonics.

🏅 Awards and Honors 

Dr. Islam is a recipient of prestigious accolades, including full sponsorships for events like the ACM-ICPC World Finals, ICTP Winter School, and PECIPTA Innovation Fair. His Bronze Medal for Few-Mode Fiber Sensor and Best Paper Award at ISCC-2011 highlight his technical ingenuity. Featured in Marquis Who’s Who and Stanford Who’s Who, he has earned national and international recognition. His multiple fellowships and research grants, including from Erasmus Mundus and IEERD, underscore sustained academic excellence. These honors reflect his research impact, scholarly leadership, and commitment to technological advancement in healthcare and photonics.

🌟 Legacy and Future Contributions

Dr. Islam is actively shaping a new frontier in biomedical sensing, where AI meets photonics. His legacy lies in developing cost-effective, high-accuracy optical sensors for early disease diagnosis and health monitoring. Looking ahead, he plans to expand collaborations across Asia and Europe, commercialize patented technologies, and establish AI-integrated photonics labs in developing countries. By mentoring future scientists, contributing to policy-making panels, and authoring advanced curricula, he is fostering a new generation of innovators and ethical researchers. His future contributions will undoubtedly influence medical technologies, academic reforms, and international research partnerships for decades to come.

Publications Top Notes

An Enhanced LSTM Approach for Detecting IoT-Based DDoS Attacks Using Honeypot Data

  • Authors: Arnob, A.K.B.; Mridha, M.F.; Safran, M.; Amiruzzaman, M.; Islam, M.R.
    Journal: International Journal of Computational Intelligence Systems
    Year: 2025

Low-Profile Reflective Metasurface for Broadband OAM Beam Generation at Ka-Band

  • Authors: Md. Rajibul Islam (Corresponding Author)
    Journal: Infrared Physics & Technology
    Year: 2025

FallVision: A Benchmark Video Dataset for Fall Detection

  • Authors: Nakiba Nuren Rahman; Abu Bakar Siddique Mahi; Durjoy Mistry; Shah Murtaza Rashid Al Masud; Aloke Kumar Saha; Rashik Rahman; Md. Rajibul Islam
    Journal: Data in Brief
    Year: 2025

An Evaluation of EVM-Compatible Blockchain Platforms for Trade Finance

  • Authors: Asif Bhat; Rizal Mohd Nor; Md Amiruzzaman; Md. Rajibul Islam; Munleef Quadir
    Journal: Journal of Advanced Research Design
    Year: 2025

A Machine Learning Approach for Vocal Fold Segmentation and Disorder Classification Based on Ensemble Method

  • Authors: Nobel, S.M.N.; Swapno, S.M.M.R.; Islam, M.R.; Safran, M.; Alfarhood, S.; Mridha, M.F.
    Journal: Scientific Reports
    Year: 2024

 

 

Bei Chen | High energy physics | Best Researcher Award

Ms. Bei Chen | High energy physics | Best Researcher Award

Tianjin University of Technology | China

Chen Bei is a dynamic Photoelectric Chip Engineer specializing in Condensed Matter Physics with a focus on inorganic semiconductor materials and devices. With solid academic roots and research training from prestigious institutions like Tianjin University of Technology and National University of Defense Technology, Chen Bei is known for his hands-on expertise in photoelectric device fabrication, characterization, and broadband photodetectors. His works contribute to both civilian innovations and defense technologies, demonstrating a rare blend of academic excellence and applied engineering acumen.

👨‍🎓Profile

Scopus

🎓 Early Academic Pursuits

Chen Bei began his academic journey in Physics at Inner Mongolia University for Nationalities, where he ranked Top 3 of 50 students and held a leadership role as Vice Minister in the student organization department. His undergraduate studies emphasized quantum mechanics, solid-state physics, and electrodynamics, laying the groundwork for a career in advanced material science. His academic excellence continued with a Master’s in Condensed Matter Physics at Tianjin University of Technology, where he consistently ranked in the top 5 and received competitive scholarships and teaching responsibilities.

💼 Professional Endeavors

Currently serving as a Photoelectric Chip Engineer at the Jiangtian Research Group (National University of Defense Technology), Chen Bei’s role includes testing photoelectric chip packaging, bare die analysis, and optical path construction. This position builds on his experience in device fabrication, gained through years of semiconductor research. His ongoing work explores integration strategies for military-grade silicon-based photonic systems, marking a critical step in real-world technological deployment. His engineering contributions are aligned with national priorities and show potential for both academic and industrial breakthroughs.

🔬 Contributions and Research Focus

Chen Bei’s research spans self-powered broadband photodetectors, artificial retina simulation, optically controlled logic, and device integration for defense. Notable among these is his published work in ACS Applied Materials & Interfaces, where he developed a CuInS₂/SnO₂-based detector for encrypted optical communication. His focus on interfacial engineering using TiO₂ layers and metal ion doping shows deep engagement with optimizing device sensitivity and functionality across UV–Vis–NIR bands. These contributions are not only novel but also have tangible technological applications.

🌐 Impact and Influence

Chen Bei’s research has already gained peer recognition, with publications in high-impact journals and ongoing projects that promise cross-disciplinary relevance in biophotonics, optoelectronics, and secure communications. His work on retina-inspired photodetectors and photoelectric logic systems can significantly influence medical imaging, wearable sensors, and neuromorphic computing. Within his research institutions, he is recognized as a bridge between theory and application, contributing meaningfully to team outcomes while enhancing national R&D capabilities in semiconductor optics.

📚 Academic Citations

Chen Bei’s primary publication in ACS Applied Materials & Interfaces has received early attention in the material sciences and applied physics community. His upcoming article in Materials Today Energy a high-impact journal will further solidify his standing in energy-sensitive optoelectronic applications. With growing citation potential and interdisciplinary value, his publications are expected to form reference points for future research in low-power photoelectronic systems and bio-inspired photonic devices.

🧪 Research Skills

Chen Bei possesses strong experimental proficiency, including semiconductor material synthesis (spin-coating, hydrothermal, chemical bath deposition) and advanced characterization (SEM, TRPL, XRD, UV-Vis spectroscopy). His fluency with electronic instrumentation like Keithley source meters, vector network analyzers, and electrochemical workstations enables accurate and nuanced analysis of device behavior. He also designs and fabricates devices independently skills that mark him as a complete researcher from concept to validation. His strong grip on Origin, JADE, and Layout software also facilitates precise data interpretation and device simulation.

👨‍🏫 Teaching Experience

As a graduate teaching assistant at Tianjin University of Technology, Chen Bei supported students in both practical laboratory sessions and coursework in advanced physics topics. His ability to explain complex concepts like semiconductor devices, photonic behavior, and materials characterization reflects his aptitude for mentorship. He played a pivotal role in connecting theoretical learning with lab-based exploration an experience that underlines his capacity to contribute in academic or training-focused environments.

🏅 Awards and Honors

Chen Bei has consistently ranked among the top students, earning Second-Class Scholarships during both his bachelor’s and master’s studies. His selection as Vice Minister of the student organization department reflects strong leadership and organizational abilities. Recognition as a graduate assistant also attests to his teaching competence and trust within the academic community. These accolades, coupled with peer-reviewed publications, position him as a rising talent in applied physics and engineering.

🌟 Legacy and Future Contributions

Chen Bei is positioned to become a thought leader in optoelectronic integration and semiconductor device engineering. His work has the potential to impact military-grade communication, biomimetic sensors, and self-powered IoT technologies. With growing experience in multidisciplinary collaborations, and exposure to real-world implementation scenarios, he is set to define the next wave of photoelectric innovation. As he continues to evolve, his blend of scientific insight, engineering rigor, and innovation-minded focus will be instrumental in shaping future technologies.

Publications Top Notes

UV-Vis-NIR Broad-Band Self-Powered CuInS₂/SnO₂ Photodetectors and the Application in Encrypted Optical Communication
  • Authors: Chen Be
    Journal: ACS Applied Materials & Interfaces
    Year: 2024

Insertion Layer of TiO₂ to Improve the UV−Vis−NIR Photoresponse Characteristics of CuInS₂/SnO₂ Self-Powered Photodetectors and Its Application in Artificial Retinas
  • Authors: Chen Bei
    Journal: Materials Today Energy
    Year: 2024

 

Suresh Kumar | Experimental methods | Best Researcher Award

Dr. Suresh Kumar | Experimental methods | Best Researcher Award

Associate Professor at MMEC, Maharishi Markandeshwar (Deemed to be University) Mullana | India

Dr. Suresh Kumar is an accomplished Associate Professor (Grade-II) at Maharishi Markandeshwar (Deemed to be University), Mullana, Haryana. With over 11 years of post-Ph.D. experience, he is widely recognized for his research in nanomaterials, dilute magnetic semiconductors, and photocatalysis. A prolific researcher and educator, he has authored 51 research publications, holds six patents, and actively supervises PG and Ph.D. research. His academic presence is validated across platforms such as Scopus, Web of Science, Google Scholar, and Vidwan. He is deeply committed to institutional development, student mentorship, and innovative science education in India.

👨‍🎓Profile

Google scholar

Scopus

ORCID

📘 Early Academic Pursuits

Dr. Suresh Kumar’s academic journey began with a B.Sc. in Non-Medical Sciences from Himachal Pradesh University in 1998. He further pursued M.Sc. Physics (2002), followed by B.Ed and M.Ed degrees, reinforcing his strong foundation in both science and education. His interest in research led him to complete an M.Phil in Physics, and later, a Ph.D. in Physics & Materials Science from Jaypee University of Information Technology in 2014. His doctoral work on transition metal-doped CdS nanofilms marked a turning point, setting the stage for a career rooted in cutting-edge nanotechnology and materials research.

💼 Professional Endeavors

Dr. Kumar has held various academic roles, beginning as a Lecturer in 2007, advancing through positions like Teaching Assistant, Assistant Professor, and Associate Professor. Currently serving at MM(DU), Mullana, his journey reflects a steady progression in leadership, teaching, and research responsibility. He has contributed to institutional quality enhancement by coordinating activities such as NAAC Criteria III, FDPs, curriculum revision, and lab management. His previous affiliations include Jaypee University of Information Technology, Kalpi Institute of Technology, and Shivalik Institute of Engineering & Technology, contributing across UG, PG, and Ph.D. levels.

🔬 Contributions and Research Focus

Dr. Suresh Kumar’s research revolves around II-VI semiconductors, dilute magnetic semiconductors (DMS), photovoltaics, and photocatalysis. His work has pioneered advancements in the green synthesis of nanomaterials, particularly using plant extracts for nanoparticle synthesis, and has practical applications in energy and environmental remediation. His six patents include innovations in nanostructured thin films, solar energy tools, and beekeeping equipment, demonstrating a clear alignment with sustainable and applied science. With consistent publications in indexed journals (WOS, Scopus) and supervision of multiple research scholars, Dr. Kumar’s contributions deeply influence emerging material science trends.

🌍 Impact and Influence

Dr. Kumar’s research has made a measurable global impact, evidenced by 665 citations on Google Scholar, 524 on Web of Science, and 471 on Scopus. His h-index ranges from 11 to 14, reflecting both quality and relevance of his work. He has guided multiple dissertations and Ph.D. theses, and his innovations in solar-powered devices and eco-friendly nanoparticle synthesis have real-world value. He is a regular speaker and session chair at international conferences, such as the Halich Congress, Turkey, and his leadership has helped shape young researchers’ careers, affirming his academic and scientific influence both nationally and abroad.

📚 Academic Cites and Recognition

Dr. Kumar’s scholarly visibility is reinforced through profiles on Google Scholar, Scopus, Web of Science, ORCID, ResearchGate, and Vidwan. His 51 peer-reviewed publications span reputed journals with a combined impact factor of 75.74. These platforms showcase his interdisciplinary reach, from nanotechnology and materials characterization to renewable energy innovations. His academic identity is globally recognized, and his works are often referenced in the domains of thin film physics, green nanotechnology, and semiconductors. This strong digital footprint cements his role as a credible and referenced authority in his research areas.

🧪 Research Skills

Dr. Kumar possesses advanced expertise in material synthesis and characterization techniques, including Chemical Bath Deposition (CBD), vacuum and spin coating, and tools such as XRD, SEM, AFM, TEM, UV-Vis-NIR, EDX, FTIR, and VSM. His experimental precision is matched by a theoretical understanding of optical, structural, and magnetic properties of nanomaterials. He has a strong command over green synthesis methods and is skilled at translating laboratory research into patents and prototypes. His versatile research abilities are applied across diverse sectors—energy, healthcare, agriculture, and education technology making him a valuable asset in interdisciplinary scientific exploration.

🎓 Teaching Experience

Dr. Kumar brings 17+ years of teaching experience, including over 11 years post-Ph.D., spanning UG, PG, and Ph.D. programs. At MM(DU), he teaches B.Sc. Physics (Honors), M.Sc. Physics, and Ph.D. coursework, while also mentoring research students. Known for his engaging, student-centered teaching style, he integrates technology (Moodle, Swayam MOOCs) and hands-on lab work to foster experiential learning. As Lab In-charge and academic coordinator, he ensures high standards in curriculum delivery and laboratory safety. His commitment to academic excellence and student mentorship is a hallmark of his teaching legacy.

🏆 Awards and Honors 

Dr. Suresh Kumar has received numerous accolades, such as the Chanakya Award 2024 and Indo-Global Education Excellence Award 2024 from ICERT. He was honored with a session headship at the Halich Congress, Turkey, and received a Teacher Innovation Award during the pandemic from Rakshita Welfare Society. Earlier in his career, he secured a Best Poster Prize at RTMS-2011 and was awarded a Research Assistantship during his Ph.D. His academic diligence also earned him a merit certificate during B.Ed. These recognitions affirm his dedication to innovation, research impact, and educational leadership.

🔮 Legacy and Future Contributions

Dr. Kumar’s legacy lies in his innovative, sustainable, and interdisciplinary research, as well as his devotion to student growth and institutional advancement. Looking ahead, he aims to secure international collaborations, government-funded research projects, and explore technology transfer opportunities for his patented innovations. He envisions contributing to national science missions through eco-friendly materials research, renewable energy systems, and academic policy reform. His future work will likely expand into translational research, benefiting industries and communities alike. Dr. Kumar’s trajectory marks him as a thought leader and changemaker in the realms of science, innovation, and education.

Publications Top Notes

Solvothermal synthesis of PVP-assisted CuS structures for sunlight-driven photocatalytic degradation of organic dyes

  • Authors: Vishal Dhiman, Suresh Kumar, Abhishek Kandwal, Pankaj Sharma, Ankush Thakur, Sanjay Kumar Sharma
    Journal: Physica B: Condensed Matter
    Year: 2025

Enhanced photoconversion efficiency in dye-sensitized solar cells through Ag and La modified ZnO photoanodes

  • Authors: Aman Kumar, Suresh Kumar, Virender Singh Kundu, Kirti Hooda, Anil Vohra, Suresh Kumar, Mohit Podia, Abhishek Kandwal, Praveen Vummadisetty Naidu
    Journal: Physica Scripta
    Year: 2025

Photocatalytic Activity of ZnO Nanostructures

  • Authors: Anu Kapoor, Naveen Kumar, Suresh Kumar
    Journal: Book Chapter – In: Advanced Nanomaterials for Environmental Applications (Taylor & Francis)
    Year: 2025

Green Synthesis of Nanoparticles using Pea Peel Biomass and Their Assessment on Seed Germination of Tomato, Chilli and Brinjal Crop

  • Authors: Anjali Kanwal, Bikram Jit Singh, Suresh Kumar, Rippin Sehgal, Sushil Kumar Upadhyay, Raj Singh
    Journal: Indian Journal of Agricultural Research
    Year: 2025

A comprehensive review of bismuth, lanthanum and strontium based double perovskites − Unravelling structural, magnetic, and dielectric properties

  • Authors: Jagadish Parsad Nayak, Rohit Jasrotia, Avi Kumar Sharma, Abhishek Kandwal, Pratiksha Agnihotri, Mika Sillanpää, Suman, M. Ramya, Vaseem Raja, Suresh Kumar, et al.
    Journal: Inorganic Chemistry Communications
    Year: 2024

 

Marcilei Aparecida Guazzelli | Experimental methods | Women Researcher Award

Prof. Dr. Marcilei Aparecida Guazzelli | Experimental methods | Women Researcher Award

Professor at Centro Universitário FEI | Brazil

Prof. Marcilei Aparecida Guazzelli is a Brazilian physicist and full professor at Centro Universitário FEI, renowned for her research in radiation physics, nuclear structure, and semiconductor devices. With a strong background in experimental nuclear physics and ionizing radiation effects, she has made impactful contributions to both academic science and applied engineering. Her research spans international collaborations, high-impact publications, and scientific leadership. As the head of multiple laboratories and coordinator of national and international projects, she has positioned herself as a leader in radiation tolerance studies and nuclear materials.

👨‍🎓Profile

Google scholar

Scopus

ORCID

📘 Early Academic Pursuits

Prof. Guazzelli’s academic journey began at the Institute of Physics, USP, where she earned her undergraduate degree (1990–1994). She pursued a Master’s degree (1996–1999) focused on the atomic force microscopy of diamond films, and later completed her PhD (2002–2004) with work on the nuclear structure of ⁵⁸Co, an odd-odd nucleus. Her early exposure to experimental physics and critical thinking laid the foundation for her lifelong commitment to the study of ionizing radiation effects, semiconductors, and nuclear materials. Her rigorous academic training shaped her ability to merge fundamental science with technological application.

🧑‍🏫 Professional Endeavors

Prof. Guazzelli has held various academic ranks at Centro Universitário FEI, culminating in her promotion to Full Professor in 2017. Previously, she served at Universidade Metodista de São Paulo and played pivotal roles in research infrastructure, heading both LERI and LAFIR laboratories. Her professional contributions include coordinating major national projects such as INCT_Nuclear Physics and CITAR, and serving on several scientific committees and councils. She actively contributes to policy-making, event organization, and interdisciplinary research, often collaborating with institutions like INFN (Italy), USP, and ITA, while maintaining an active teaching role.

🔬 Contributions and Research Focus

Prof. Guazzelli’s research focuses on the effects of ionizing radiation on materials and semiconductor devices, a field critical to aerospace, nuclear safety, and microelectronics. Her work investigates total ionizing dose, single-event effects, and neutron interactions in materials like GaN HEMTs, SiC, and highly oriented pyrolytic graphite (HOPG). She also collaborates in the NUMEN project, aiming to understand neutrinoless double beta decay through nuclear matrix elements. With 184 peer-reviewed publications, her findings support both scientific understanding and technological innovation, particularly in developing radiation-hardened devices for extreme environments.

🌍 Impact and Influence 

Prof. Guazzelli has established a global impact through her collaborations with European institutions, such as INFN, CNA, and the Polytechnic University of Turin, as well as national partners including FAPESP, CNPq, and USP. Her research findings are widely cited and contribute to international advancements in nuclear physics and electronics. As editor, speaker, and scientific coordinator, she has influenced policies, research priorities, and educational standards. Her participation in projects with CERN, CUBESATS, and LHC demonstrates her integral role in the future of high-energy and applied physics.

📚 Academic Citations

Prof. Guazzelli boasts an H-index of 19, with 1,497 citations listed on Google Scholar—a testament to the influence and relevance of her scholarly output. With over 184 articles in peer-reviewed journals, 7 book chapters, and numerous conference proceedings, her academic presence is substantial. These works are referenced by scholars across nuclear physics, materials science, and radiation effects, indicating her interdisciplinary reach. Her most cited research includes studies on diamond films, GaN HEMTs, neutron interactions, and beta decay. She maintains active profiles on ORCID, ResearchGate, and Publons, making her work accessible and transparent.

🛠️ Research Skills

Prof. Guazzelli demonstrates expertise in nuclear instrumentation, radiation detection, materials testing under irradiation, and semiconductor failure analysis. She is highly proficient in coordinating complex, multi-institutional experimental campaigns, especially at international particle accelerator labs (INFN, GANIL, ALTO). Her skills extend to data analysis, microscopy, Monte Carlo simulations, and collaborative publication writing. She effectively integrates experimental results into both academic discourse and industry-relevant solutions, showcasing her versatility. Her leadership of multi-year grant-funded projects attests to her ability to manage research teams, secure funding, and contribute meaningful advances in applied nuclear physics and radiation engineering.

👩‍🏫 Teaching Experience 

A dedicated educator, Prof. Guazzelli has served as course coordinator for Physics and Modern Physics at Centro Universitário FEI for over a decade. She teaches at the undergraduate and graduate levels, notably in nano-microelectronics and radiation physics, mentoring students in both academic theory and experimental practice. She has supervised numerous master’s and doctoral theses, guided scientific initiation students, and contributed to curriculum development in Engineering and Applied Physics. Her teaching philosophy emphasizes real-world applications, interdisciplinary knowledge, and inclusive education, and she frequently promotes science communication, especially for young women in STEM.

🏆 Awards and Honors 

Prof. Guazzelli has received multiple awards recognizing her commitment to education, research, and gender equality in science. Notably, her students have won Best Presentation at SICFEI (2019, 2020, 2021) and Best Poster at SERESSA (2019, 2020). She has served as Communications Director of the Brazilian Physical Society and as chair/editor of key scientific events such as RTFNB. Her invited talks and public science appearances on TV SEN, Rede Globo, and Canaltech underscore her role in public outreach. Her involvement in events like “Women in Science” showcases her advocacy for inclusion and visibility of women researchers.

🔮 Legacy and Future Contributions

Prof. Guazzelli’s legacy lies in her dedication to scientific excellence, education, and gender equity in physics. She continues to push boundaries in radiation physics, training the next generation of scientists and engineers. Her role in international collaborations like NUMEN, SAFIIRA, and CERN-related projects ensures her influence will persist in shaping nuclear science policy and application. Through ongoing mentorship, leadership in interdisciplinary projects, and contributions to STEM outreach, she exemplifies the transformative potential of science. Her future work will likely focus on next-generation materials, sustainable nuclear technologies, and cross-border knowledge exchange.

Top Noted Publications

📄Effects of neutron radiation on the thermal conductivity of highly oriented pyrolytic graphite
  • Authors: Guazzelli, M. A.; Avanzi, L. H.; Aguiar, V. A. P.; Vilas-Boas, A. C.; Alberton, S. G.; Masunaga, S. H.; Chinaglia, E. F.; Araki, K.; Nakamura, M.; Toyama, M. M. et al.
    Journal: Diamond and Related Materials
    Year: 2025
📄 Single-Event Effects Induced by Monoenergetic Fast Neutrons in Silicon Power UMOSFETs
  • Authors: Saulo G. Alberton; Alexis C. Vilas-Bôas; Marcilei A. Guazzelli; Vitor A. P. Aguiar; Matheus S. Pereira; Nemitala Added; Claudio A. Federico; Tássio C. Cavalcante; Evaldo C. F. Pereira Júnior; Rafael G. Vaz et al.
    Journal: IEEE Transactions on Device and Materials Reliability
    Year: 2025
📄Ion-Induced Charge and Single-Event Burnout in Silicon Power UMOSFETs
  • Authors: Saulo G. Alberton; Vitor A. P. Aguiar; Nemitala Added; Alexis C. Vilas-Bôas; Marcilei A. Guazzelli; Jeffery Wyss; Luca Silvestrin; Serena Mattiazzo; Matheus S. Pereira; Saulo Finco et al.
    Journal: Electronics
    Year: 2025
📄 Evaluation of Funnel Models on Calculation of Ion-Induced Collected Charge
  • Authors: Vitor A. P. Aguiar; Nilberto H. Medina; Nemitala Added; Saulo G. Alberton; Eduardo L. A. Macchione; Marcilei A. Guazzelli; Marco A. A. Melo; Juliano A. Oliveira; Renato C. Giacomini; Fernando R. Aguirre et al.
    Journal: IEEE Transactions on Electron Devices
    Year: 2025
📄 Channel morphology as a key factor to hydrological and sedimentological patterns in the largest fluvial ria lake of Amazonia
  • Authors: João Paulo S. de Cortes; Marcilei A. Guazzelli; Jessica F. Curado; Eliane F. Chinaglia; Wagner Sciani; Fabiano N. Pupim; George Luiz Luvizotto
    Journal: Journal of South American Earth Sciences
    Year: 2023

 

 

Lijun Wang | High energy physics | Best Researcher Award

Dr. Lijun Wang | High energy physics | Best Researcher Award

Changzhou University | China

Dr. Lijun Wang is a dynamic researcher and educator specializing in thermoelectric materials, currently a Research Fellow at the Queensland University of Technology and previously a Lecturer at Changzhou University. With a Ph.D. in Materials Science and Engineering from China University of Petroleum (Beijing) and a visiting Ph.D. experience at The University of Queensland, Dr. Wang brings a global perspective to advanced materials research. His expertise bridges energy materials, nanostructures, and thermal transport, underlined by over 28 peer-reviewed publications, 5 patents, and an impressive academic citation record.

👨‍🎓Profile

Scopus

Google scholar

🎓 Early Academic Pursuits

Dr. Wang began his academic journey with a Bachelor’s degree in Polymer Materials from Liaocheng University, followed by a Master’s in Textile and Material Engineering from Dalian Polytechnic University. His drive for deeper scientific exploration led to a Ph.D. in Materials Science and Engineering at China University of Petroleum-Beijing, supported by the China Scholarship Council. As a Visiting Ph.D. Researcher at The University of Queensland, he honed his skills in nanomaterials and thermoelectrics, laying the foundation for his future contributions in thermal conductivity engineering and energy conversion systems.

🧑‍🔬 Professional Endeavors

Dr. Wang’s professional career features a dual academic appointment—a Lecturer at Changzhou University since 2020 and a Research Fellow at Queensland University of Technology starting in 2024. At Changzhou University, he has taught and developed several key materials science and chemistry courses. His academic leadership also includes supervising Master’s and undergraduate research projects. His international experience and involvement in multi-institutional collaborations highlight his role in advancing research on SnTe-based and flexible thermoelectric systems, contributing to global energy solutions and academic excellence.

🔬 Contributions and Research Focus

Dr. Wang’s research is focused on thermoelectric materials, especially SnTe-based systems, thermal conductivity minimization, and nanostructure engineering. He has significantly contributed to the design of high-performance materials using doping strategies, phonon scattering mechanisms, and solution-based synthesis methods. His work addresses critical needs in flexible electronics, energy harvesting, and battery thermal management. Dr. Wang’s impactful studies have been published in prestigious journals like ACS Applied Materials & Interfaces, Chemical Society Reviews, and Nano Energy, where he frequently serves as first author or co-corresponding author.

🌏 Impact and Influence

Dr. Wang’s research has attracted over 700 Google Scholar citations, demonstrating significant scientific influence. His innovations in SnTe thermoelectric materials have received international recognition, contributing to advancements in green energy technologies and sustainable materials. He has co-authored in high-impact journals such as Advanced Science, ACS Nano, and Acta Materialia, influencing the academic and industrial communities alike. His patented technologies represent tangible outputs of academic research into real-world applications, particularly in energy-efficient electronic systems.

📚 Academic Citations

With 28 publications, including 10 first-author papers, 5 patents, and an H-index of 12, Dr. Wang’s work has achieved 704 citations to date. His most cited work on Se/Cd Co-doped SnTe has been referenced 56 times, highlighting its impact on thermoelectric research. Several of his publications in ACS Applied Materials, Nano Energy, and Chemical Engineering Journal are foundational to lattice thermal conductivity and nanostructuring techniques. His research continues to influence new generations of material scientists, both through citations and collaborative projects.

🛠️ Research Skills

Dr. Wang possesses a strong arsenal of experimental techniques, including microwave solvothermal synthesis, nanostructure design, and high-resolution microscopy. His work involves thermal property measurements, electronic transport analysis, and computational modeling of energy materials. He is skilled in collaborative research, project management, and multidisciplinary problem-solving, especially in the fields of thermoelectrics, photovoltaics, and membrane materials. His ability to translate fundamental science into technological innovation is reflected in both his patented methods and high-impact publications.

🧑‍🏫 Teaching Experience

At Changzhou University, Dr. Wang has taught and developed curriculum for four core undergraduate courses: Material Economy and Management, Organic Membrane Materials, Foundations of Crystallography, and Experimental Chemistry from 2020 to 2023. His innovative teaching approach integrates theoretical grounding with practical applications, inspiring students toward research excellence. As a certified higher education lecturer and Master’s thesis supervisor, he has mentored over 10 undergraduate and graduate students, many of whom have pursued advanced studies and research roles under his guidance.

🏆 Awards and Honors

Dr. Wang has received numerous prestigious awards including the Chinese Government Award for Outstanding Joint PhD Students Abroad (2017) and the National PhD Scholarship. He also won the Outstanding Poster Award at the Chinese Materials Conference 2017. His teaching and academic merits earned him the Higher Education Teaching Qualification Certificate and Master’s Supervisor Certification in China. His early academic excellence was recognized with multiple university scholarships and an Outstanding Graduate Award a testament to his consistent academic dedication and leadership.

🚀 Legacy and Future Contributions

Dr. Wang aims to pioneer the next generation of energy materials through advanced thermoelectric systems, flexible devices, and scalable synthesis methods. With his evolving role at Queensland University of Technology, he is poised to lead international collaborations, contribute to climate-conscious technologies, and mentor a new wave of materials scientists. His growing body of patented inventions and scholarly works will shape the future of energy conversion technologies. Dr. Wang’s legacy lies in his dedication to bridging fundamental research with real-world impact, paving a sustainable path forward.

Top Noted Publications

Zn/In dual doping enhances the thermoelectric performance of SnTe
  • Authors: Lijun Wang, Xiao-Lei Shi, Lvzhou Li, Cuicui Dong, Pengcheng Miao, Ziyi Shen, Ningyi Yuan, Jianning Ding, Shuqi Zheng, Zhi-Gang Chen
    Journal: Journal of Physics: Materials
    Year: 2024

Advances in solid-state and flexible thermoelectric coolers for battery thermal management systems
  • Authors: Lijun Wang, Xiao-Lei Shi, Yicheng Yue, Lvzhou Li, Cuicui Dong, Jianjun Guan, Jianning Ding, Ningyi Yuan, Zhi-Gang Chen
    Journal: Soft Science
    Year: 2024

Advancing flexible thermoelectrics for integrated electronics
  • Authors: Xiao-Lei Shi, Lijun Wang, Wanyu Lyu, Tianyi Cao, Wenyi Chen, Boxuan Hu, Zhi-Gang Chen*
    Journal: Chemical Society Reviews
    Year: 2024

Zinc Doping Induces Enhanced Thermoelectric Performance of Solvothermal SnTe
  • Authors: Lijun Wang, Xiao-Lei Shi*, Lvzhou Li, Min Hong, Bencai Lin, Pengcheng Miao, Jianning Ding, Ningyi Yuan, Shuqi Zheng*, Zhi-Gang Chen*
    Journal: Chemistry – An Asian Journal
    Year: 2024

Hierarchical Structuring to Break the Amorphous Limit of Lattice Thermal Conductivity in High-Performance SnTe-Based Thermoelectrics
  • Authors: Lijun Wang, Min Hong, Qiang Sun, Yuan Wang, Luo Yue, Shuqi Zheng*, Jin Zou*, Zhi-Gang Chen*
    Journal: ACS Applied Materials & Interfaces
    Year: 2020

 

 

 

 

Paolo Valtancoli | Particle physics and cosmology | Best Researcher Award

Dr. Paolo Valtancoli | Particle physics and cosmology | Best Researcher Award

Dipartimento di Fisica e Astronomia | Italy

Paolo Valtancoli is an accomplished physicist whose career has spanned over four decades, focusing on the intersections of gravitational physics, quantum field theory, and noncommutative geometry. He obtained his Laurea in Physics from the University of Florence in 1984 with a thesis on gravitational anomalies and earned his Ph.D. in Pisa in 1989, delving into chiral anomalies within field theory. Since 1991, he has been a researcher at the University of Florence, contributing prolifically with over 60 scientific publications in leading physics journals.

👨‍🎓Profile

Scopus

ORCID

🎓 Early Academic Pursuits

Paolo Valtancoli’s academic journey began in Florence, where he graduated with a degree in Physics in 1984, presenting a thesis on gravitational anomalies a field deeply tied to the foundations of quantum gravity. His intellectual rigor led him to pursue a Ph.D. in Pisa, completed in 1989, with groundbreaking research on chiral anomalies and their interpretation through the vacuum structure of field theory. These formative years were marked by a keen interest in theoretical consistency in quantum field models, laying the groundwork for his lifelong research focus.

🧑‍🔬 Professional Endeavors

Since May 1991, Paolo Valtancoli has served as a permanent researcher at the University of Florence, contributing consistently to the field of theoretical physics. His role includes affiliations with INFN (Istituto Nazionale di Fisica Nucleare), enhancing collaborative research. With over 60 peer-reviewed publications, Valtancoli has explored diverse theoretical domains including gravity in lower dimensions, minimal length theories, noncommutative geometry, and black hole physics. His career reflects a dedication to independent, high-quality scholarship, with a strong presence in both national and international physics communities.

🧠 Contributions and Research Focus

Valtancoli’s research spans several frontier areas in theoretical physics, notably: (2+1)-dimensional gravity, Chern-Simons supergravity, Snyder geometry, and noncommutative space-time models. His work on minimal length frameworks, such as those modifying the Heisenberg uncertainty principle, plays a pivotal role in connecting quantum mechanics and gravity. Publications like “Bumblebee gravity with cosmological constant” and “Dirac oscillator and minimal length” exemplify his ability to tackle complex mathematical structures in a physically meaningful way. His deep engagement with black hole thermodynamics, gravitational waves, and f(R) inflation models further highlight a broad, yet coherent, research trajectory.

🌍 Impact and Influence

Valtancoli’s impact lies in his sustained scholarly output and his early pioneering work on anomalies, which has influenced subsequent developments in quantum gravity. His detailed modeling of (2+1) dimensional systems has contributed to the mathematical understanding of spacetime singularities, especially in topologically nontrivial scenarios. His contributions to fuzzy geometry and noncommutative gauge theory are widely cited by theorists seeking to extend the Standard Model or quantize gravity. By merging rigorous formalism with conceptual depth, he has shaped theoretical directions for young researchers in both Italian and international contexts.

📚 Academic Citations

Across his 60+ works, Valtancoli has accumulated citations across key subfields such as quantum gravity, noncommutative geometry, and black hole physics. His early collaboration with figures like Luca Lusanna and Andrea Cappelli led to widely referenced papers on Dirac observables and topological anomalies. Articles like “Spontaneous symmetry breaking in the nonAbelian anyon fluid” and “Gravity on a fuzzy sphere” remain key references in niche but impactful areas. His citations reveal a consistent thematic alignment with advanced quantum field theories and a lasting presence in scholarly discourse.

🧪 Research Skills

Valtancoli demonstrates exceptional skills in analytical methods, particularly in path integrals, canonical quantization, and field-theoretic anomaly computations. His mathematical fluency extends to differential geometry, Lie algebra analysis, and noncommutative algebraic structures, essential for modeling quantum space-time. His ability to generate exact solutions in modified gravity theories, including f(R) and Bumblebee models, reflects a refined capacity for integrating formal mathematics into physical theory-building. His independence and precision make him a valuable contributor to any theoretical or interdisciplinary physics project.

👨‍🏫 Teaching Experience

Though primarily a researcher, Paolo Valtancoli has also contributed to the education of young physicists through graduate-level mentorship and supervision of theses at the University of Florence. His deep subject matter expertise enhances advanced instruction in general relativity, field theory, and quantum mechanics. By integrating his own research into teaching, he offers students firsthand insights into active research areas like noncommutative geometry and gravity models. His consistent academic presence since 1991 makes him a pillar of continuity for the university’s theoretical physics curriculum.

🏅 Awards and Honors

While no major international prizes are listed, Valtancoli’s career longevity, publication record, and continuous academic appointment since 1991 reflect institutional recognition and respect. His collaborations with prestigious institutions like INFN, CERN, and LBL Berkeley, and contributions to renowned conferences such as Rencontres de Moriond, show a high level of peer acknowledgment. Publishing regularly in journals like Annals of Physics, Nuclear Physics B, and International Journal of Modern Physics A, underscores his scholarly reliability and quality. These are honors earned through sustained academic excellence.

🧭 Legacy and Future Contributions

Paolo Valtancoli’s legacy lies in his rich and consistent body of theoretical work that will remain valuable as physics progresses toward quantum gravity and beyond. His models involving minimal length, noncommutative spaces, and gravitational anomalies anticipate many themes in emerging quantum spacetime theories. As theoretical physics increasingly intersects with mathematical rigor, Valtancoli’s contributions serve as a bridge between classical theory and quantum innovation. Looking ahead, his continued research now entering its fifth decade promises further insights into the foundations of space, time, and matter.

Top Noted Publications

Bumblebee gravity with cosmological constant

  • Author: P. Valtancoli
    Journal: Annals of Physics
    Year: 2025

Euclidean black holes and spin connection

  • Author: P. Valtancoli
    Journal: (Institutional Repository)
    Year: 2024

Translation in momentum space and minimal length

  • Author: P. Valtancoli
    Journal: International Journal of Modern Physics A
    Year: 2022

Generating perfect fluid solutions in isotropic coordinates

  • Author: P. Valtancoli
    Journal: Annals of Physics
    Year: 2020

Exactly solvable f(R) inflation

  • Author: P. Valtancoli
    Journal: International Journal of Modern Physics D
    Year: 2019

 

George Dumitru | Experimental methods | Best Researcher Award

Dr. George Dumitru | Experimental methods | Best Researcher Award

National Institute for Research and Development in Electrical Engineering ICPE-CA | Romania

George Dumitru is a Romanian physicist and electrical engineer, known for his pioneering work in applied superconductivity and cryogenics. With over 15 years of experience, he has significantly contributed to the development of high magnetic field generators and persistent HTS superconducting systems. Holding a PhD in Electrical Engineering from University Politehnica of Bucharest, he currently serves as a Scientific Researcher III and Head of the Applied Superconductivity Laboratory at INCDIE ICPE-CA. His work integrates deep technical insight, innovative thinking, and international collaboration across academic, research, and industrial platforms.

👨‍🎓Profile

Scopus

ORCID

🎓 Early Academic Pursuits

George Dumitru’s academic journey began at the University of Bucharest, where he obtained a degree in Physics (2004–2007), gaining knowledge in electronics, optics, and thermodynamics. He further pursued a Master’s in Electrical Engineering at University Politehnica of Bucharest (2018–2020), focusing on electrical machines and embedded systems. His academic path culminated in a PhD in 2024, specializing in High-Temperature Superconductors (HTS) used in Magnetic Energy Storage Systems (SMES). Throughout his education, Dumitru combined theoretical learning with practical experimentation, laying a strong foundation for a research-focused career.

💼 Professional Endeavors

Starting as a Physicist at InterNET SRL (2009–2017), George gained hands-on experience installing VSM systems, cryostats, and low-temperature test setups. He joined ICPE-CA in 2017 as a Scientific Research Assistant, advancing through ranks to Technological Development Engineer III, and currently Scientific Researcher III and Laboratory Head. His responsibilities included designing cryogenic test benches, developing acquisition systems, and leading prototype execution. George has led key national and European R&D projects, blending scientific curiosity with engineering acumen across fields of electromagnetism, cryogenics, and superconductivity.

🧪 Contributions & Research Focus

George Dumitru’s core research revolves around superconducting magnets, flux pumps, HTS junctions, and thermal control systems. He co-developed cryogenic cooling assemblies and persistent switches for superconducting coils, contributing to next-gen SMES. His contributions include 13+ high-impact papers, multiple IEEE conference participations, and nationally funded innovation projects. Notably, his work on HTS electromagnets generating fields up to 6T has enabled applications in particle physics, medical imaging, and energy distribution systems. His research is both experimental and computational, with simulations augmenting system design.

🌍 Impact & Influence

George’s innovations have practical impact in medical, aerospace, and nuclear instrumentation, leading to collaborations with institutions like ELI-NP and IUCN-Dubna. His HTS systems are integral to magnetic field generation and temperature regulation under extreme conditions. Through 13 co-authored patents, he has bridged the gap between academic innovation and industrial application. His systems have been deployed for positron trapping, cryogenic calibration, and space-grade nanomaterials testing. He is a recognized figure in Romanian superconductivity research, influencing emerging scientists and technologists in energy conversion and storage.

📚 Academic Citations 

George Dumitru’s scientific productivity includes 13+ peer-reviewed publications indexed in WOS and IEEE. His most cited works involve the design of 5T and 6T superconducting magnets, HTS persistent switches, and cooling systems using Peltier modules. His articles span reputable journals like U.P.B. Sci. Bull, Rev. Roum. Sci. Techn., and Electrotehnica, Electronica, Automatica (EEA). His contributions are frequently referenced in superconductivity and cryogenic systems literature, validating their theoretical soundness and practical significance. His publishing record reflects a consistent and impactful academic trajectory, contributing to Romania’s research output.

🛠️ Research Skills

George demonstrates advanced proficiency in experimental setups, numerical modeling, and prototype design for cryogenic and HTS systems. Skilled in software development for data acquisition, thermal simulations, and low-noise electronic design, he has developed systems integrating VSMs, probe stations, and cryocoolers. He applies multi-physics simulation tools and has strong knowledge of electrical measurement techniques under extreme environments. His problem-solving and engineering integration skills are evident in the development of thermostatic enclosures, cryomagnets, and superconducting current limiters.

👨‍🏫 Teaching & Mentorship Experience

Although primarily a researcher, George has mentored junior colleagues and contributed to knowledge transfer within research groups at ICPE-CA. He has participated in university collaborations, conference presentations, and technical workshops, serving as a bridge between academic theory and engineering practice. His lab leadership involves training young engineers, offering guidance in prototype testing, data acquisition, and scientific reporting. His communication skills—developed during equipment installations across Romania and abroad support his ability to educate and inspire emerging researchers.

🏅 Awards & Honors

George’s innovations have earned multiple national and international recognitions. He won the Silver Medal at EuroInvent 2021 for a cryogenic gas condensation system, and the First Prize from IUCN-Dubna for a superconducting magnetic system supporting neutron diffraction. His work has also been honored in IEEE symposiums, Romanian research expos, and academic competitions. These accolades underline the scientific excellence and applied relevance of his inventions, particularly in cryogenics, superconductivity, and electromagnetics. His patents and awards form a solid testament to his innovative spirit.

🔮 Legacy & Future Contributions

George Dumitru is paving the way for future advancements in superconducting energy systems, with goals to develop compact, energy-efficient electromagnets, intelligent cryogenic systems, and modular SMES devices. He is expected to play a central role in Romania’s strategic R&D efforts in green energy and quantum materials. Through ongoing mentorship, collaboration, and innovation, George aims to commercialize HTS technologies and elevate the global visibility of Romanian scientific excellence. His legacy will be marked by a unique blend of technical mastery, visionary projects, and collaborative achievements.

Top Noted Publications

High Temperature Superconducting Magnet System with a High Pressure Chamber at Cryogenic Temperatures for Neutron Scattering Investigations
  • Authors: Chernikov, Aleksandr; Dobrin, Ion; Dumitru, George; Kulikov, Sergey; Culicov, Otilia Ana; Enache, Dan

  • Journal: Cryogenics

  • Year: 2025

Characterization of a Mechanical Antenna Based on Rotating Permanent Magnets
  • Authors: Cristian Morari; Mihai Bădic; Constantin Dumitru; Eros-Alexandru Pătroi; George Dumitru; Cristinel Ioan Ilie; Nicolae Tănase

  • Journal: Applied Sciences

  • Year: 2024

Slow Positrons from a Magnetic Bottle
  • Authors: Djourelov, N.; Serban, A. B.; Craciun, L. S.; Esanu, T. R.; Dobrin, I.; Dumitru, G.; Enache, D.

  • Journal: Nuclear Instruments and Methods in Physics Research Section A

  • Year: 2023

The Design of the Power Supply Current Leads to a High-Temperature Superconducting Electromagnet
  • Authors: Dumitru, George; Morega, Alexandru-Mihail; Dobrin, Ion; Enache, Dan; Dumitru, Constantin

  • Journal: Rev Roumaine des Sciences Techniques – Série Electrotechnique et Energetique

  • Year: 2023

A Measuring System for HTS Wires and Coils Properties at Low Temperatures
  • Authors: Dan Enache; George Dumitru; Ion Dobrin; Mihai Guțu

  • Journal: Electrotehnica, Electronica, Automatica

  • Year: 2023

 

Ravishankar Ambi | High energy physics | Best Researcher Award

Assist. Prof. Dr. Ravishankar Ambi | High energy physics | Best Researcher Award

Assistant Professor at Jaysingpur College, Jaysingpur | India

Dr. Ravishankar Ramesh Ambi is a dedicated physicist specializing in material science and thin film gas sensor technology. Awarded a Ph.D. in Physics from Shivaji University, Kolhapur in July 2024, he has established himself as an emerging researcher focusing on advanced nanomaterials for energy conversion and storage devices. His academic journey reflects a consistent pursuit of knowledge, culminating in innovative research outputs and contributions to both science and education.

👨‍🎓Profile

Scopus

🎓 Early Academic Pursuits

Dr. Ambi’s educational foundation is rooted in physics, starting with a Bachelor of Science (B.Sc.) from Jaysingpur College, followed by a Master of Science (M.Sc.) from Shivaji University, where he secured First Class with a percentage of 55.21%. His academic diligence from the early stages set the stage for his advanced research, culminating in a Ph.D. thesis on “Studies on Metal Oxide NiO coated ZnO thin films for gas sensing application,” showcasing his growing expertise in nanomaterial sciences.

💼 Professional Endeavors

Since July 2024, Dr. Ambi has been contributing as a faculty member in the Department of Physics at Jaysingpur College, engaging in both teaching and research. Alongside his academic duties, he has taken on roles such as Theory Exam Junior Supervisor and Practical Lab Expert, reflecting his commitment to academic integrity and student development. His participation in workshops and seminars further demonstrates his proactive engagement with the evolving educational landscape.

🔬 Contributions and Research Focus

Dr. Ambi’s primary research areas include material science, thin film gas sensors, and energy conversion and storage devices. His significant research work has led to the publication of several papers in reputable international journals, including those with high impact factors (up to 4.1). He holds a patent for vertically aligned ZnO nanorod films aimed at highly sensitive and selective NO2 gas detection, highlighting his contribution to applied science and sensor technology innovation.

🌟 Impact and Influence

Through his research on metal oxide coated ZnO thin films and gas sensors, Dr. Ambi addresses critical challenges in environmental monitoring and energy technologies. His work on NiO nanosheets and hierarchical heterostructures has enhanced the sensitivity and selectivity of gas sensors, contributing to improved air quality detection methods. His active participation in international conferences and national workshops amplifies his influence in the scientific community.

📚 Academic Cites and Publications

Dr. Ambi has published at least five significant research papers, including contributions in Applied Physics A, Materials Science & Engineering B, and Sensors and Actuators A: Physical, journals recognized for their academic rigor and impact. His papers focus on novel nanostructures for gas sensing, reflecting both theoretical insight and practical applications. These publications contribute to his growing academic reputation and serve as references for ongoing research in the field.

🧰 Research Skills

Dr. Ambi exhibits strong competencies in thin film deposition techniques, chemical synthesis of nanomaterials, and characterization methods such as spectroscopy and microscopy. His expertise extends to fabricating nanostructured sensors with enhanced performance, and he has experience managing funded research projects, including a notable project with IIT Bombay’s Centre of Excellence in Nano-electronics. These skills position him as a valuable asset for both academic and applied research.

👨‍🏫 Teaching Experience

Since his appointment in July 2024, Dr. Ambi has actively contributed to the academic growth of physics students at Jaysingpur College. He has taught undergraduate courses aligned with the new NEP-2020 curriculum, participated in curriculum workshops, and overseen laboratory practicals. His role extends beyond teaching, including organizing examinations and serving on committees, showcasing a holistic approach to education.

🏆 Awards and Honors

Dr. Ambi’s notable achievement includes the award of his Ph.D. in 2024 and securing research grants for projects on ZnO thin films. His published patent further emphasizes his innovative capabilities. Though early in his career, his consistent research output and academic contributions position him well for future awards and recognitions.

🌱 Legacy and Future Contributions

With a strong foundation in nanomaterials and sensor technology, Dr. Ambi is poised to make significant contributions to environmental monitoring and sustainable energy solutions. His dedication to research, combined with his active teaching role, suggests a promising future as both a scientist and educator. Continuing to expand his research network and international collaborations will further enhance his impact and legacy in the scientific community.

Top Noted Publications

NiO nanosheet-assembled chemiresistive for NO2 detection

  • Authors: R. R. Ambi, R. A. Mali, A. B. Pawar, M. G. Mulla, R. K. Pittala
    Journal: Applied Physics A (Appl. Phys A)
    Year: 2025

Highly porous hierarchical NiO coated ZnO p-n heterostructure for NO2 detection

  • Authors: R. R. Ambi, A. A. Mane, V. B. Patil, R. D. Mane
    Journal: Materials Science & Engineering B
    Year: 2024

Highly porous NiO microstructure for NO2 detection

  • Authors: R. R. Ambi, A. A. Mane, R. D. Tasgaonkar, R. D. Mane
    Journal: Physica B: Condensed Matter
    Year: 2024

NO2 Sensing properties of chemically deposited vertically aligned flowerlike hexagonal ZnO nanorods

  • Authors: R. R. Ambi, M. G. Mulla, R. J. Pittala
    Journal: Sensors and Actuators A: Physical (Sens. Actuators: A Phys.)
    Year: 2024

Synthesis and Characterization of CdO Thin Films by Spray Pyrolysis Method

  • Authors: R. D. Mane, A. B. Patil, R. R. Ambi, U.E. Mote, R. D. Tasgaonkar
    Journal: Research Journal of Life Science, Bioinformatics, Pharmaceutical and Chemical Science
    Year: 2022

 

Madeha Awad | Experimental methods | Best Researcher Award

Assoc. Prof. Dr. Madeha Awad | Experimental methods | Best Researcher Award

Sohag university  | Egypt

Dr. Madeha Ahmed Aboelfadl Awad is an Associate Professor in the Physics Department at the Faculty of Science, Sohag University, Egypt. With a career spanning nearly two decades in materials science and nanotechnology, she has become a prominent figure in the synthesis and characterization of advanced nanostructured materials for industrial and environmental applications. Dr. Awad is recognized for her dedication to both scientific research and academic development, contributing significantly to the Egyptian scientific community.

👨‍🎓Profile

Google scholar

Scopus

🎓 Early Academic Pursuits

Dr. Awad began her academic journey with a B.Sc. in Physics from Sohag University in 2003, graduating with a very good grade. She went on to earn an M.Sc. in Solid State Physics in 2008, where she investigated chalcogenide systems a foundation that set the stage for her specialization in material sciences. Her academic excellence continued with a Ph.D. in Nanomaterials Physics in 2015, focusing on the growth and characterization of ZnO-based nanomaterials, a vital material in modern optoelectronic and energy applications.

🧪 Professional Endeavors

Since joining the Sohag University faculty in 2004 as a demonstrator, Dr. Awad has steadily progressed through academic ranks, becoming an Assistant Lecturer (2013), Lecturer (2015), and finally Associate Professor (2020). Her career reflects a sustained commitment to both academic excellence and institutional service. In addition to her teaching and research, she has held leadership roles, including Director of the Credibility and Intellectual Property Unit, playing a vital part in raising awareness about intellectual property rights and research ethics.

🔬 Contributions and Research Focus

Dr. Awad’s primary research is rooted in the synthesis of nanomaterials across various dimensions 0D, 1D, 2D, and 3D using advanced techniques like sputtering, physical vapor deposition (PVD), chemical vapor deposition (CVD), and electron beam evaporation. Her work emphasizes characterization using state-of-the-art tools such as XRD, XPS, SEM, TEM, AFM, DSC, and TGA, making her a versatile experimental physicist. Her research outcomes are directly applied to real-world challenges in solar energy, water purification, and biomedicine.

🌍 Impact and Influence

Dr. Awad’s contributions are particularly relevant to sustainable development and clean energy. Her research on photocatalytic materials, metal oxides, and optoelectronic devices supports the transition to greener technologies. As a result, her work has an evident impact on addressing climate change, environmental pollution, and public health challenges.

📚 Academic Publications

She has authored multiple peer-reviewed publications in international scientific journals, including Physica Scripta and the Journal of Sustainable Food, Water, Energy and Environment. Her recent works in 2025 reflect continued scholarly productivity and a commitment to interdisciplinary research. These publications highlight the practical application of her materials in pollution degradation, photodetectors, and biological growth studies.

🧠 Research Skills

Dr. Awad demonstrates exceptional skills in materials characterization, experimental design, and project management. She is adept at conducting analytical tests using complex laboratory equipment and integrates findings across multiple techniques to evaluate material performance. Her ability to write and manage research projects related to energy and water positions her as a key contributor in applied research arenas.

👩‍🏫 Teaching Experience

Beyond the lab, Dr. Awad is a dedicated educator, delivering theoretical physics courses to undergraduate students and supervising graduate theses and senior projects. She also plays an instrumental role in developing laboratory infrastructure, guiding demonstrators, and innovating undergraduate experiments, reflecting her strong commitment to academic excellence and mentorship.

🏆 Awards and Honors

Dr. Awad has earned respect not only through research but also through her administrative and academic service. She was appointed to the Scientific Committee of the Faculty of Science, where she helped establish a scientific journal for the Physics Department an initiative considered pioneering within her institution. While specific awards are not listed, her appointments and leadership roles signify a high level of institutional trust and recognition.

🚀 Legacy and Future Contributions

As a leader in nanomaterials research in Upper Egypt, Dr. Awad is shaping the future of industrially relevant and sustainable materials. Her contributions to intellectual property awareness, research capacity-building, and student mentorship lay a strong foundation for future generations of scientists. With continued focus on international collaboration, patentable innovations, and expanded research funding, her work is poised to achieve greater global impact in the years ahead.

Top Noted Publications

Photocatalytic characteristics of indium oxide, copper oxide and indium oxide/copper oxide thin films on plastic waste substrates for organic pollutants degradation

  • Authors: M. Mohery, S. H. Mohamed, K. A. Hamam, A. Mindil, S. Landsberger, M. A. Awad
    Journal: Physica Scripta
    Year: 2025

Influence of oxygen flow rates on the optoelectronic properties SnO₂ thin films

  • Authors: M. A. Awad, Eman R. Abaza, Essam R. Shaaban
    Journal: Sohag Journal of Science
    Year: 2025

A comparison between the effect of zinc oxide and zinc oxide nanoparticles on the growth and some metabolic processes of Cosmarium sp

  • Authors: Asmaa Bakr, M. A. Awad
    Journal: Journal of Sustainable Food, Water, Energy and Environment
    Year: 2025

Highly sensitive TiO₂ based photodetector for environmental sensing applications

  • Authors: S. H. Mohamed, Mohamed Rabia, M. A. Awad, Mohamed Asran Hassan
    Journal: Journal of Sustainable Food, Water, Energy and Environment
    Year: 2025

Optoelectronic characteristics of In₂O₃/CuO thin films for enhanced vis‑light photodetector

  • Authors: A. M. Abd El‑Rahman, S. H. Mohamed, A. Ibrahim, Ali A. Alhazime, M. A. Awad
    Journal: Journal of Materials Science: Materials in Electronics
    Year: 2024