Jerzy Dryzek | The matter particles | Excellence in Research Award

Prof. Dr. Jerzy Dryzek | The matter particles | Excellence in Research Award

Professor at Institute of Nuclear Physics PAS | Poland

Prof. Jerzy Dryzek is a renowned physicist specializing in solid state physics and positron annihilation spectroscopy, with over four decades of academic and research experience. A pioneer in experimental physics in Poland, he has played a central role in developing advanced laboratory techniques in the field, particularly at the Institute of Nuclear Physics PAN in KrakĂłw. His extensive international collaborations and leadership in scientific projects underscore his lasting influence in materials science and nuclear physics.

👨‍🎓Profile

Scopus

ORCID

📚 Early Academic Pursuits

Dr. Dryzek embarked on his academic journey with a Master’s degree from the Academy of Mining and Metallurgy in Kraków (1975–1980), where he focused on the “Technology of thin films.” He simultaneously pursued another Master’s in Nuclear Physics from the Jagiellonian University in Kraków (1977–1981), conducting a thesis on the “Measurement of the positron lifetime in silver films.” His deep interest in positron-related phenomena led to his Ph.D. (1981–1986) in Solid State Physics, with a dissertation titled “Electrical conductivity and electrical properties of thin metallic films (Au, Ag, Cu).”

đź§Ş Professional Endeavors

Since 1987, Dr. Dryzek has held a permanent position at the Institute of Nuclear Physics in Kraków, where he has been instrumental in establishing and expanding the positron annihilation laboratory. His international exposure includes scientific visits to Münster University, Germany, Helsinki University of Technology, Finland, Texas Christian University, USA, and collaborative research at Chalmers University of Technology, Sweden, and KEK in Tsukuba, Japan. He also served as Professor at the University of Zielona Góra (2005–2009) and Opole University (2009–2014).

🔬 Contributions and Research Focus

Dr. Dryzek’s research focus lies in positron annihilation spectroscopy, with special emphasis on pulsed positron beams, two-dimensional Doppler broadening, and positron annihilation in flight. He has led multiple national and international research projects, exploring grain boundaries, resonance trapping, and nonhomogeneous systems. His innovative work includes the construction of Doppler broadening spectrometers and advancing methods of studying subsurface zones in metallic alloys.

🌍 Impact and Influence

Dr. Dryzek’s impact extends beyond laboratory research. Through his leadership in the Centre of Excellence ADREM, he contributes to applying physics to human health and environmental safety. His collaborative initiatives have fostered German-Polish scientific cooperation, and his lectures and research work have enriched institutions in Europe, the USA, and Japan. His influence is particularly notable in shaping positron annihilation research infrastructure in Poland.

đź“– Academic Cites

Dr. Dryzek’s work has been widely cited in peer-reviewed journals and international conferences, especially in the context of tribology, surface studies, and positron annihilation in condensed matter. His habilitation thesis in 2001, titled “Positron annihilation characteristics in condensed matter,” laid the foundation for his recognition as an Assistant Professor and later Full Professor in 2012.

🛠️ Research Skills

Dr. Dryzek demonstrates expertise in experimental physics, with deep proficiency in positron annihilation techniques, Doppler spectroscopy, and positron beam construction. He is also skilled in research project management, having led numerous scientific grants, coordinated interdisciplinary networks such as POSMAT, and conducted technology-based studies on materials like polymers, metals, and minerals.

👨‍🏫 Teaching Experience

Alongside research, Dr. Dryzek has actively contributed to academic teaching, notably as a lecturer in physics at the Pedagogical University in Kraków (1990–1992) and as a visiting professor at international institutions. He played a significant role in educating students from Münster University, fostering cross-border scientific knowledge exchange under the German-Polish Collaboration framework.

🏆 Awards and Honors

Among his recognitions are several competitive research grants awarded by the Committee of Scientific Research in Poland, European Commission (COST Programs), and German-Polish Foundations. His leadership in teaching grants, instrument development, and joint international projects reflects the high regard of his contributions to science and education.

đź”® Legacy and Future Contributions

With a legacy rooted in scientific innovation, academic mentorship, and international collaboration, Dr. Dryzek has established himself as a pioneer in positron physics. His work continues to inspire future generations, and his efforts in network coordination, grant acquisition, and technical development ensure ongoing contributions to the fields of solid-state physics and material science. His vision for advancing positron annihilation studies remains a guiding light for both theoretical and applied physics communities.

Publications Top Notes

Superior barrier performance, mechanical properties and compostability in relation to supramolecular structure of renewable based poly(trimethylene furanoate) modified with suberic acid

  • Authors: A. Zubkiewicz, A. Szymczyk, J. Dryzek, V.M. Siracusa, N. Lotti
    Journal: European Polymer Journal
    Year: 2025

Positronium Formation on the Rhenium Surface Studied by Slow Positron Measurements

  • Authors: J. Dryzek, M.O. Liedke, M. Butterling, E. Dryzek
    Journal: Physica Status Solidi (B) Basic Research
    Year: 2025

Influence of flexible segment length on the phase structure and properties of poly(hexamethylene 2,5-furandicarboxylate)-block-biopolytetrahydrofuran copolymers

  • Authors: S. Paszkiewicz, K. Walkowiak, I. Irska, Z.J. Rozwadowski, J. Dryzek
    Journal: Journal of Applied Polymer Science
    Year: 2024

Positron Annihilation and EBSD Studies of Subsurface Zone Created During Friction in Vanadium

  • Authors: J. Dryzek, M.X. WrĂłbel
    Journal: Journal of Tribology
    Year: 2023

Influence of the positron implantation profile on the study of the defect depth distribution by the positron annihilation technique

  • Authors: J. Dryzek
    Journal: Journal of Applied Physics
    Year: 2023

 

 

SHARJEEL AHMED | Particle Experiments | Best Researcher Award

Dr. SHARJEEL AHMED | Particle Experiments | Best Researcher Award

PhD Researcher at University of Science and Technology China (USTC), Chinese Academy of Science,Institute of Metal Research (CAS, IMR) | China

Dr. Sharjeel Ahmed is a PhD Researcher at the University of Science and Technology China (USTC), Chinese Academy of Science, Institute of Metal Research (CAS, IMR), China. He completed his master’s degree from Donghua University (DHU), China, and earned his PhD from USTC. His research specializes in photoresponsive nanomaterials and smart fluorescence coatings, focusing on oxygen-deficient nanomaterials for photocolorswitching properties and early-stage corrosion detection.

👨‍🎓Profile

Scopus

ORCID

Early Academic Pursuits 🎓

Dr. Ahmed’s academic journey began at Donghua University (DHU), where he obtained his master’s degree. Building on this foundation, he continued his research at USTC, a leading institution in nanotechnology and materials science. His early academic work laid the groundwork for his specialization in nanomaterials and coating technologies that can respond to environmental triggers like light, opening new avenues in corrosion detection and smart materials.

Professional Endeavors 🏢

Throughout his professional career, Dr. Ahmed has collaborated with eminent scholars, such as Prof. Liu Fuchun from Northwestern Polytechnical University, and has contributed significantly to research projects focused on the preparation technology of micro-nano structures and self-repair mechanisms for coatings. His work bridges academic research and industry applications, ensuring his contributions are impactful both in laboratories and in practical solutions.

Contributions and Research Focus 🔬

Dr. Ahmed’s main research interests lie in photoresponsive nanomaterials, particularly in smart fluorescence coatings and early-stage corrosion detection. He has developed oxygen-deficient nanomaterials for photocolorswitching properties, which react to light stimuli to produce fluorescent signals when exposed to corrosive environments. These innovations have been pivotal in solving the limitations of traditional coatings, which lack intelligent early-warning systems.

He has authored 21 research articles in high-impact journals, including top publications like Chemical Engineering Journal, Nanoscale, and Colloids and Surfaces A. Additionally, he holds a patent (CN111394094-A; CN111394094-B) for a dual-band light-responsive reversible color solution, showcasing his innovative contributions to smart materials.

Impact and Influence 🌍

Dr. Ahmed’s research has had a substantial impact on materials science, especially in the development of smart coatings for corrosion detection. His fluorescent smart coatings are expected to revolutionize industries such as aerospace, automotive, and marine engineering, where early detection of corrosion can prevent extensive damage and improve material longevity. His work has been widely cited and continues to influence both academic research and practical applications in coatings technology.

Academic Cites 📚

With 422 citations and an h-index of 10, Dr. Ahmed has garnered recognition for his influential contributions to the field of nanomaterials and coatings technology. His papers, particularly as the first author, in journals such as Materials Chemistry and Physics and Journal of Materials Science and Technology, reflect the significant impact of his work within the scientific community.

Research Skills 🛠️

Dr. Ahmed has mastered several advanced techniques in nanomaterials preparation, including synthesis of oxygen-deficient materials, fluorescence analysis, and computational modeling. His research is not only grounded in experimental work but also utilizes computational science to predict the behavior of materials under various environmental conditions. His ability to combine both experimental and computational approaches gives his work a robust scientific foundation.

Teaching Experience 👨‍🏫

Though primarily a researcher, Dr. Ahmed’s teaching experience is an integral part of his professional journey. At USTC, he has contributed to educating the next generation of materials scientists, particularly in the area of nanomaterials and smart coatings. He mentors students and provides them with invaluable guidance on research methodology and cutting-edge technologies in nanotechnology.

Awards and Honors 🏅

Dr. Ahmed’s excellence in research has earned him recognition in the form of publications in top-tier journals and inclusion in major collaborative projects. Although specific awards are not listed, his patent and high citation index suggest that his work is highly respected within the scientific community. His ongoing research and contributions place him in a strong position to receive further academic and professional accolades.

Legacy and Future Contributions đź”®

Dr. Sharjeel Ahmed is paving the way for future innovations in smart materials, particularly in nanomaterials that are both responsive and intelligent. As his work continues to evolve, it will likely contribute to environmentally sustainable and cost-effective solutions for industries ranging from coatings and corrosion detection to advanced textiles. His future endeavors may include expanding his patent portfolio, collaborating with industries, and broadening his research into emerging areas such as energy storage materials or biodegradable coatings.

Publications Top Notes

  • A review of advancement in fluorescence-based corrosion detection for metals and future prospects
    Authors: Sharjeel Ahmed, Hongwei Shi, Mustehsin Ali, Imran Ali, Fuchun Liu, En-Hou Han
    Journal: Journal of Materials Science & Technology
    Year: 2025

  • Epoxy coating containing CoMOF@MBT metal-organic framework for active protection of aluminum alloy
    Authors: Nwokolo, Izuchukwu K.; Shi, Hongwei; Ikeuba, Alexander I.; Liu, Fuchun; Ahmed, Sharjeel; Zhang, Wanyu
    Journal: Surface and Coatings Technology
    Year: 2024

  • Modified Graphene Micropillar Array Superhydrophobic Coating with Strong Anti-Icing Properties and Corrosion Resistance
    Authors: Zhang, Wanyu; Liu, Fuchun; Li, Yushan; Chen, Tao; Nwokolo, Izuchukwu Kenneth; Ahmed, Sharjeel; Han, En-Hou
    Journal: Coatings
    Year: 2024

  • UV light-triggered fluorescence corrosion sensing coatings for AA2024-T3 based on 8-hydroxyquinline loaded vanadium oxide nanorods
    Authors: Sharjeel Ahmed
    Journal: Colloids and Surfaces A: Physicochemical and Engineering Aspects
    Year: 2024

  • Catalytic degradability and anti-permeability of peelable coating based on organophosphate nerve agent simulants
    Authors: Gao, Ningjie; Ahmed, Sharjeel; Zhang, Wanyu; Li, Jiwen; Liu, Fuchun
    Journal: Colloids and Surfaces A: Physicochemical and Engineering Aspects
    Year: 2023

 

Emmanuel Adeyefa | Theoretical Physics | Member

Assoc Prof Dr. Emmanuel Adeyefa | Theoretical Physics | Member

PHD at University of Ilorin, Nigeria

Dr. Emmanuel Oluseye Adeyefa is a distinguished mathematician and academic leader from Nigeria. With a Ph.D. in Mathematics from the University of Ilorin, he currently serves as a Reader at the Department of Mathematics, Federal University Oye-Ekiti. His administrative roles include acting as Head of Department and Postgraduate Coordinator. With a passion for teaching, he has instructed various courses and supervised numerous undergraduate and postgraduate projects. A committed scholar, he actively participates in conferences and workshops, contributing to advancements in mathematics and cryptography. Beyond academia, he engages in community service and enjoys activities such as reading, football, and music.

Professional Profiles:

Education

Ph.D. in Mathematics, University of Ilorin, 2014 M.Sc. in Mathematics, University of Ilorin, 2007 B.Sc. in Mathematics, University of Ilorin, 2003 PGD in Education, Obafemi Awolowo University, 2014

Administrative Experience

Acting Head, Department of Mathematics Postgraduate Coordinator University Examination Committee Member Level Adviser/Coordinator Departmental Seminar Coordinator Staff Secretary Various Committee Memberships and Chairmanships. Federal University Wukari, Taraba State Oduduwa University, Osun State Southern Institute of Innovative Technology (SNIIT Polytechnic), Osun State

Teaching Experience

Various courses in Mathematics including Linear Algebra, Mathematical Packages, Vector and Tensor Analysis, Real Analysis, Mathematical Methods, Analytical Dynamics, Fluid Dynamics, and Numerical Analysis.

Awards

Recipient of various awards including Departmental Best Graduating Student and Best Lecturer of the year.

Research Focus:

Dr. Emmanuel Oluseye Adeyefa’s research focus primarily revolves around the development and application of advanced numerical methods for solving various classes of ordinary and partial differential equations. His work spans topics such as direct integration methods, orthogonal basis function formulations, hybrid block methods, and collocation approaches. Additionally, he explores the use of polynomial and orthogonal basis functions, particularly Chebyshev polynomials, in continuous formulations of numerical solvers. Adeyefa’s contributions bridge mathematical theory with practical applications, showcasing his expertise in computational mathematics and algorithm development, with potential applications in cryptography and queueing systems.

Publications

  1. Error estimation of the integral tau method for fourth order overdetermined ODES, Publication: 2023.
  2. Integral tau Method for Certain Over-determined Fourth-Order Ordinary Differential Equations., Publication: 2023.
  3. A Generalized Series Solution of đť’Źđť’•đť’‰ Order Ordinary Differential Equations, Publication: 2023.
  4. Improved 2-Point Hybrid Block Model for Direct Integration of Third and Fourth-Order Initial Value Problems, Publication: 2023.
  5. Algebraic characterization of Ifa main divination codes, Publication: 2023.
  6. Ninth-order Multistep Collocation Formulas for Solving Models of PDEs Arising in Fluid Dynamics: Design and Implementation Strategies, Publication: 2023.
  7. Hybrid block methods with constructed orthogonal basis for solution of third-order ordinary differential equations, Publication: 2023.
  8. A continuous five-step implicit block unification method for numerical solution of second-order elliptic partial differential equations, Publication: 2023.
  9. Implicit hybrid block methods for solving second, third and fourth orders ordinary differential equations directly, Publication: 2022.
  10. New developed numerical formula for solution of first and higher order ordinary differential equations, Publication: 2022.
.