Zhen-hua Zhao | Particle Physics and Cosmology | Best Researcher Award

Prof. Dr. Zhen-hua Zhao | Particle Physics and Cosmology | Best Researcher Award

Vice President at Liaoning Normal University | China

Zhen-hua Zhao is a distinguished Professor, Vice Dean, and Doctoral Supervisor at the School of Physics and Electronic Technology, Liaoning Normal University. With a strong academic background, he holds a Master’s and Doctoral degree from the Institute of Theoretical Physics, Chinese Academy of Sciences and completed his postdoctoral research at the Institute of High Energy Physics, Chinese Academy of Sciences. Over the years, he has built a reputation in the field of neutrino physics and cosmology.

👨‍🎓Profile

Scopus

ORCID

Early Academic Pursuits 🎓

Zhao’s academic journey began with his master’s and doctoral studies in Theoretical Physics at two of China’s top institutions the Institute of Theoretical Physics and the Institute of High Energy Physics at the Chinese Academy of Sciences. These early academic foundations equipped him with a solid understanding of particle physics and cosmology, areas which he has continued to focus on in his career. His doctoral research laid the groundwork for his later work in neutrino physics and the matter-antimatter asymmetry in the universe.

Professional Endeavors 🚀

As a Vice Dean, Professor, and Doctoral Supervisor at Liaoning Normal University, Zhao has been at the forefront of research and education in the field of Physics. His leadership extends beyond the classroom, where he has also been a mentor to future scientists in the field. Zhao is deeply involved in managing research projects, contributing to the development of new talent, and fostering an environment of academic excellence at his university.

Contributions and Research Focus 🔬

Zhao has made substantial contributions to neutrino physics, particularly in neutrino flavor physics and asymmetry in the universe. His research addresses some of the most pressing issues in cosmology, including the origin of matter-antimatter asymmetry. His expertise in high-energy physics has led to significant advancements in neutrino phenomenology, which has direct implications for our understanding of the universe’s evolution. Notable projects include his leadership in studies of neutrinoless double beta decay and other aspects of neutrino interactions.

Impact and Influence 🌍

Zhao’s work has had a far-reaching impact on the field of high-energy physics, with over 40 SCI papers published in top journals like JHEP, PRD, EPJC, and PLB. His research has provided key insights into the flavor physics of neutrinos and contributed to theoretical models addressing the matter-antimatter imbalance in the cosmos. In addition to his publications, Zhao has served as a reviewer for nine prominent journals, playing a pivotal role in shaping scientific discourse in neutrino physics.

Academic Citations 📚

Zhao has been recognized for his impactful work, with 35 of his 40 papers authored as first author or corresponding author. This includes 11 independent author papers, indicating his leadership in the scientific community. Two of his papers were published in the prestigious Reports on Progress in Physics, one of which earned him the 2019 China Top Cited Author Award by IOP Publishing. His work in neutrino physics has received extensive academic attention, with his citations reflecting the influence and relevance of his research.

🧪 Research Skills

Dr. Zhao possesses a comprehensive skill set in theoretical modeling, particle phenomenology, and cosmological simulation, with specialized competence in neutrino oscillation theory, flavor mixing, and CP violation studies. His interdisciplinary approach integrates quantum field theory, cosmological observations, and data-driven theoretical predictions.

👨‍🏫 Teaching Experience

As a Doctoral Supervisor, Dr. Zhao has mentored numerous graduate students and postdoctoral researchers. He has also delivered lectures at graduate summer schools, providing in-depth reviews of current developments in neutrino physics. His role in academia includes developing curricula and promoting cutting-edge research training at the university level.

🏅 Awards and Honors

Dr. Zhao has led three National Natural Science Foundation of China (NSFC) projects and has been recognized as a Top Young Talent under the “Xingliao Talent Plan” in Liaoning Province. In 2024, he was selected as an Outstanding Reviewer for the journal Chinese Physics C, reflecting his commitment to maintaining scientific integrity and rigor in the field.

🌟Legacy and Future Contributions 

Zhao’s future contributions are poised to shape the next frontier in high-energy physics and neutrino studies. His continued leadership in neutrino phenomenology and cosmology will likely yield breakthroughs that further our understanding of the fundamental forces of nature. His ongoing participation in major international projects, including the JUNO experiment and neutrinoless double beta decay experiments, suggests that his influence on both academic research and scientific policy will only grow. His legacy will not only impact the academic world but will also contribute to global scientific collaborations and innovation in high-energy physics.

Publications Top Notes

Low scale leptogenesis under neutrino μ-τ Reflection symmetry

  • Authors: Yan Shao, Zhenhua Zhao
    Journal: Physical Review D, 2025

Complete study of RG evolution induced leptogenesis in flavor symmetry scenarios

  • Authors: Zhenhua Zhao, Xiangyi Wu, Jing Zhang
    Journal: Physical Review D, 2024

Purely flavored leptogenesis from a sudden mass gain of right-handed neutrinos

  • Authors: Zhenhua Zhao, Jing Zhang, Xiangyi Wu
    Journal: Journal of High Energy Physics, 2024

Leptogenesis consequences of trimaximal mixing and μ-τ reflection symmetry in the most minimal seesaw model

  • Authors: Zhenhua Zhao, Hongyu Shi, Yan Shao
    Journal: Physical Review D, 2024

 

 

Ngangkham Nimai Singh | High energy physics | Distinguished Scientist Award

Prof. Dr. Ngangkham Nimai Singh | High energy physics | Distinguished Scientist Award

Professor at Manipur University | India

Dr. Ngangkham Nimai Singh is a distinguished Theoretical Physicist and the current Director of the Research Institute of Science and Technology (RIST) in Manipur. With an academic career spanning over 30 years, Dr. Singh has made remarkable contributions to High Energy Physics (HEP) and is an influential figure in scientific research and education. His expertise in Grand Unified Theories (GUTs), Neutrino Physics, and QCD-oriented hadronic models makes him a globally recognized scientist.

👨‍🎓Profile

Google scholar

Scopus

Early Academic Pursuits 🎓

Dr. Singh’s educational journey began in Manipur, where he completed his early schooling before moving to Delhi University. There, he earned a B.Sc. in Physics (Hons.) in 1979, followed by an M.Sc. in Physics in 1981. His pursuit of higher knowledge led to an M.Phil. (1984) and a Ph.D. in Physics (1989), both from Delhi University, under the mentorship of the esteemed Prof. A. N. Mitra. Dr. Singh’s early academic training laid the foundation for his later contributions to theoretical physics.

Professional Endeavors 🌍

Dr. Singh’s professional career includes over 22 years of service at Gauhati University, where he held the positions of Lecturer, Reader, and eventually Professor. As Head of the Department of Physics (2010–2013), he played a crucial role in the department’s development. From 2013–2014, he served as a Professor and Head at Manipur University. Additionally, Dr. Singh has held various important positions such as Controller of Examination (I/C) at Manipur University and a PAC Member for International Cooperation/Physics at DST, New Delhi. His leadership extends to scientific bodies like PANE, NEAS, and MAPS.

Contributions and Research Focus 🔬

Dr. Singh’s research has had a transformational impact in the field of Theoretical High Energy Physics (HEP). His research interests include:

  • Grand Unified Theories (GUTs) such as SU(5) and SO(10), exploring the unification of the fundamental forces of nature.

  • Neutrino Physics, focusing on the origin of neutrino masses and mixings.

  • Baryogenesis through Leptogenesis, aiming to understand the matter-antimatter asymmetry in the universe.

  • Higgs Physics and Proton Decay, investigating the fundamental particles and forces.

  • Relativistic Few-Quark Dynamics and Quark Confinement, including QCD-oriented hadronic models and Bethe Salpeter Dynamics.

His research has contributed significantly to the understanding of the standard model of particle physics and beyond, particularly in the areas of neutrino masses, Higgs boson properties, and proton decay.

Impact and Influence 🌐

Dr. Singh’s impact extends far beyond his research. His role as a founding member of numerous scientific organizations, including the North East Academy of Sciences (NEAS), Physics Academy of North East (PANE), and Manipur Centre of Scientific Culture, highlights his dedication to the promotion of science in the northeastern region of India. Dr. Singh has also served as a visiting associate at prestigious institutions like PRL Ahmedabad and ICTP Trieste, fostering global collaborations. As President of PANE, he has worked tirelessly to advance scientific education and promote collaboration among physicists in the region, shaping the future of Physics in Northeast India.

Academic Cites 📚

Dr. Singh’s work has been cited in numerous academic papers and has contributed to the development of Grand Unified Theories (GUTs) and Neutrino Physics. His research on quark dynamics and light-cone physics has helped refine QCD models and deepen the scientific understanding of hadronic structures. His findings in Higgs physics, Baryogenesis, and Proton Decay continue to be foundational for researchers in particle physics worldwide.

Research Skills 🔍

Dr. Singh is highly skilled in theoretical modeling and quantitative analysis, focusing on complex phenomena in high-energy physics. His ability to formulate and solve problems in quantum chromodynamics (QCD), neutrino mass models, and baryogenesis is unmatched. Furthermore, his interdisciplinary approach, combining elements of quantum mechanics, relativistic dynamics, and cosmology, sets him apart as a pioneering researcher in his field.

Teaching Experience 🍎

With three decades of experience in academia, Dr. Singh has mentored and guided numerous graduate and postgraduate students. His role as a Professor and Head of the Department of Physics at Gauhati University and Manipur University allowed him to impart valuable knowledge on high-energy physics, theoretical models, and advanced quantum mechanics. He is also a respected research supervisor, helping students push the boundaries of particle physics.

Awards and Honors 🏅

Dr. Singh’s contributions have been widely recognized throughout his career:

  • Commonwealth Fellowship (1999-2000) at Southampton University, UK.

  • Visiting Associate at the Physical Research Laboratory (PRL), Ahmedabad.

  • Regular Associate at the ICTP, Trieste.

  • Member of the All India Theoretical Physics Seminar Circuit (2004-2005).

These accolades, along with his research collaborations and leadership in scientific societies, underscore his global recognition and influence in the scientific community.

Legacy and Future Contributions 🌱

Dr. Singh’s legacy is defined by his dedication to scientific progress and his mentorship of future generations of physicists. His involvement in founding scientific organizations in the Northeast has created lasting structures for the promotion of physics in the region. In the future, Dr. Singh’s research on neutrino physics, proton decay, and quark confinement is likely to continue influencing the field of high-energy physics. As a leader, educator, and researcher, he will undoubtedly leave an enduring mark on the scientific community, especially in advancing particle physics and cosmological theories.

Publications Top Notes

A5 symmetry and deviation from golden ratio mixing with charged lepton flavor violation

  • Authors: V. Puyam, Ngangkham Nimai Singh
    Journal: Nuclear Physics, Section B
    Year: 2025

Perturbation to μ -τ symmetry using type I and type II seesaw mechanisms under SU(2)L × Δ (27) × Z2 flavor symmetry

  • Authors: P. Wilina, Ngangkham Nimai Singh
    Journal: Modern Physics Letters A
    Year: 2025

Modular A4 symmetry in 3 + 1 active-sterile neutrino masses and mixings

  • Authors: Mayengbam Kishan Singh, Soram Robertson Singh, Ngangkham Nimai Singh
    Journal: International Journal of Modern Physics A
    Year: 2024

A randomly generated Majorana neutrino mass matrix using adaptive Monte Carlo method

  • Authors: Yuvraj Monitar Singh, Mayengbam Kishan Singh, Ngangkham Nimai Singh
    Journal: International Journal of Modern Physics A
    Year: 2024

Comparative analysis on the validity of golden ratio, tri-bimaximal, hexagonal and bimaximal neutrino mixing patterns under the radiative corrections

  • Authors: Yuvraj Monitar Singh, Moirangthem Shubhakanta Singh, Ngangkham Nimai Singh
    Journal: Physica Scripta
    Year: 2024

Ujjal Kumar Dey | Particle physics and cosmology | Best Researcher Award

Dr. Ujjal Kumar Dey | Particle physics and cosmology | Best Researcher Award

Assistant Professor at IISER Berhampur | India

Dr. Ujjal Kumar Dey is an Assistant Professor at IISER Berhampur, Odisha, India, specializing in High Energy Physics with a focus on Beyond the Standard Model (BSM) Physics, Neutrino Physics, Dark Matter, Gravitational Waves, and the Particle Physics interface. With an extensive academic background in theoretical physics, he has made significant strides in the areas of gravitational wave astronomy and neutrino physics. His research is deeply rooted in fundamental questions regarding the universe’s unseen components, such as dark matter and cosmic neutrinos.

👨‍🎓Profile

Google scholar

Scopus

ORCID

📚 Early Academic Pursuits

Dr. Dey’s academic journey began with his Integrated M.Sc.-Ph.D. in Physics at Harish-Chandra Research Institute (2008-2014), where he specialized in Minimal and Non-minimal Universal Extra Dimensions under the supervision of renowned physicists Amitava Raychaudhuri and Biswarup Mukhopadhyaya. His thesis, “Some Studies on Minimal and Non-minimal Universal Extra Dimension”, focused on extra-dimensional theories, setting the stage for his research into higher-dimensional models and their implications in particle physics. His strong academic performance has been evident throughout, achieving first class honors in both his M.Sc. and B.Sc. degrees.

Professional Endeavors 🏫

Since 2019, Ujjal Kumar Dey has served as an Assistant Professor at IISER Berhampur, where he continues to explore the frontiers of High Energy Physics. Prior to this, he gained invaluable experience through Post-Doctoral Fellowships at esteemed institutions across South Korea, Taiwan, and India. He has made substantial contributions to neutrino physics, dark matter studies, and gravitational wave research. His collaborations with international researchers have significantly expanded his research network and elevated his profile in the global scientific community.

Contributions and Research Focus🔬

Ujjal’s research focuses on understanding phenomena beyond the Standard Model, particularly Minimal and Non-minimal Universal Extra Dimensions, dark matter, and gravitational waves. He is also involved in neutrino physics and superradiance. Ujjal has authored numerous publications, including works on ultra-light bosons, primordial black holes, and cosmic neutrino backgrounds. His work bridges astrophysics and particle physics, with implications for understanding the early universe and cosmic evolution.

Impact and Influence 🌍

Ujjal Kumar Dey’s work is widely recognized for its impact on theoretical physics. His contributions to the understanding of light dark matter, quark mixing, and extra dimensions have advanced the global discourse in High Energy Physics. Through international collaborations and speaking engagements at leading conferences like WHEPP and SUSY, Ujjal has influenced the direction of research in BSM physics. His work on gravitational waves and primordial black holes has also opened new avenues for astrophysical research.

Academic Citations & Research Skills 📑

Ujjal Kumar Dey’s academic output has been cited in leading physics journals, including Physics Letters B, Physical Review Letters, and Nuclear Physics B. His research is highly regarded in the areas of neutrino physics and dark matter. His expertise in theoretical analysis, computational techniques, and data interpretation makes him a sought-after collaborator and reviewer. He has contributed significantly to peer-reviewed publications and is known for his rigorous approach to complex theoretical problems.

Teaching Experience 🎓

Ujjal Kumar Dey is an accomplished educator. He teaches graduate-level courses at IISER Berhampur in subjects like Quantum Mechanics, Statistical Mechanics, General Relativity, and Quantum Field Theory. His ability to simplify advanced topics and foster critical thinking among students has earned him recognition both within IISER Berhampur and at international platforms. In 2024, he taught Advanced Quantum Mechanics at the Arab Physical Society Summer School in Cairo, Egypt. His mentorship extends to PhD students, post-doctoral researchers, and MS thesis students, providing them with the guidance to excel in theoretical physics.

Awards and Honors 🏆

Ujjal’s contributions to science have been recognized through several prestigious awards:

  • Core Research Grant (CRG) from SERB, Government of India (2024)

  • Start-up Research Grant (SRG) from SERB, Government of India (2020)

  • Marie Sklodowska-Curie Actions Seal of Excellence (2017)

  • National Post-Doctoral Fellowship (NPDF) (2016)
    He has also been recognized for his reviewing contributions in journals such as Physics Letters B, where he received a Certificate of Outstanding Contribution in Reviewing (2017).

Legacy and Future Contributions 🔮

Ujjal Kumar Dey’s legacy in the field of High Energy Physics is still evolving. With ongoing research in gravitational waves, dark matter, and neutrino physics, he is poised to make significant contributions to the understanding of the universe’s most fundamental questions. His future work will likely lead to new insights in gravitational wave detection, dark matter particle candidates, and early universe cosmology. Ujjal’s dedication to teaching and mentoring will continue to inspire the next generation of physicists. His influence will grow as he plays an integral role in shaping high-energy physics in the coming years.

Publications Top Notes

Primordial Black Holes and Gravitational Waves in the U(1)B−L extended inert doublet model: a first-order phase transition perspective
  • Authors: Indra Kumar Banerjee, Ujjal Kumar Dey, Shaaban S. Khalil

  • Journal: Journal of High Energy Physics

  • Year: 2024

Spinning primordial black holes from first order phase transition
  • Authors: Indra Kumar Banerjee, Ujjal Kumar Dey

  • Journal: Journal of High Energy Physics

  • Year: 2024

Gravitational wave probe of primordial black hole origin via superradiance
  • Authors: Indra Kumar Banerjee, Ujjal Kumar Dey

  • Journal: JCAP

  • Year: 2024

Probing the origin of primordial black holes through novel gravitational wave spectrum
  • Authors: Indra Kumar Banerjee, Ujjal Kumar Dey

  • Journal: JCAP

  • Year: 2023

Neutrino decoherence from generalised uncertainty
  • Authors: Indra Kumar Banerjee, Ujjal Kumar Dey

  • Journal: European Physical Journal C

  • Year: 2023

 

Hector Perez de-Tejada | Particle physics and cosmology | Best Faculty Award

Prof. Hector Perez de-Tejada | Particle physics and cosmology | Best Faculty Award

National University of Mexico | Mexico

Dr. Héctor Pérez-de-Tejada is an esteemed researcher and professor at the Institute of Geophysics, UNAM, Mexico. He holds a Doctorate in Space Sciences from the University of Colorado, Boulder and has been a faculty member at UNAM since 1970. As the first Ph.D. in Space Physics at UNAM, he has played a pioneering role in the development of space science research in Mexico.

👨‍🎓Profile

Scopus

Early Academic Pursuits 🎓

Dr. Pérez-de-Tejada’s academic journey began at the National University of Mexico (UNAM), where he completed his undergraduate studies at the School of Sciences. He furthered his education at the University of Colorado, where he obtained his Doctorate in Space Sciences. His early academic experiences set the foundation for his lifelong passion for planetary science and space physics, leading him to specialize in the interaction of the solar wind with planetary ionospheres.

Professional Endeavors 🌍

Since 1970, Dr. Pérez-de-Tejada has dedicated his career to research and education. He became a faculty member in Space Sciences at UNAM and also contributed to the University of Baja California in Ensenada. Throughout his career, he has been involved in cutting-edge space missions, including working as a guest investigator on NASA’s Pioneer Venus Orbiter and contributing to data analysis from the Venus Express spacecraft of the European Space Agency (ESA). His pioneering work in solar wind momentum transport and plasma dynamics has greatly advanced our understanding of planetary atmospheres.

Contributions and Research Focus 🔬

Dr. Pérez-de-Tejada has made over 100 significant publications, focusing on the interaction of solar wind with planetary ionospheres such as those of Venus, Mars, and comets. His work on the viscous transport of solar wind momentum in the Venus ionosheath and the discovery of plasma vortices in the Venus wake, over 40 years ago, have made a lasting impact in the field. He also proposed the theory of plasma channels over the magnetic poles of Venus, driven by the fluid dynamic Magnus force.

Impact and Influence 🌟

Dr. Pérez-de-Tejada’s work has had a transformative impact on the field of space science, particularly in the study of planetary ionospheres and solar wind interactions. His discoveries, such as the existence of plasma vortices and ionospheric holes on Venus, have influenced both contemporary studies and space mission design. His involvement in NASA and ESA missions reflects the international recognition of his work. He has also been a strong advocate for the development of space science infrastructure in Mexico, enhancing its visibility and global standing.

Academic Cites 📚

Dr. Pérez-de-Tejada’s publications have been widely cited in the field of space physics, with references in over 100 academic articles that build upon his theories of plasma dynamics and solar wind interaction. His work remains foundational for ongoing research on planetary atmospheres, especially with regard to Venus and Mars.

Research Skills 🧑‍🔬

Dr. Pérez-de-Tejada’s research is marked by advanced data analysis and theoretical modeling in space sciences. His extensive experience in using data from spacecraft missions such as the Pioneer Venus Orbiter and Venus Express has refined his ability to interpret complex plasma data. His research into the fluid dynamics and Magnus forces on planetary ionospheres demonstrates a deep understanding of both theoretical physics and practical spacecraft data collection.

Teaching Experience 🏫

A dedicated educator, Dr. Pérez-de-Tejada has mentored 15 students in undergraduate, Master’s, and PhD programs at UNAM and the University of Baja California. His students have gone on to make their own contributions in space science, a testament to his ability to inspire and guide the next generation of scientists and researchers. He has also taught and published two academic books, providing invaluable resources for those studying space sciences.

Awards and Honors 🏅

Dr. Pérez-de-Tejada has received numerous accolades in recognition of his work, including a celebration of his 50th anniversary of academic activities at UNAM and being distinguished at the National Workshop in Astrophysics in Mexico, which was named in his honor. His longstanding commitment to space science has been acknowledged both nationally and internationally, further solidifying his status as a leader in the field.

Legacy and Future Contributions 🌱

Dr. Pérez-de-Tejada’s legacy extends beyond his academic publications and mentorship. He was instrumental in the creation of the first ionospheric sounder in Mexico and the acquisition of a planetarium at UNAM. These contributions have helped raise the profile of space sciences in Mexico and contributed to public engagement with astronomy. His future work will likely continue to inspire young scientists while enhancing our understanding of planetary atmospheres and the broader universe.

Publications Top Notes

Wave-Particle Interactions in Astrophysical Plasmas

  • Authors: H. Pérez-De-Tejada, Héctor
    Journal: Galaxies
    Year: 2024

Measurement of plasma channels in the Venus wake

  • Authors: H. Pérez-De-Tejada, Héctor; R.N. Lundin, Rickard N.; Y. Futaana, Yoshifumi; T. Zhang, Tielong
    Journal: Icarus
    Year: 2019

Pluto’s plasma wake oriented away from the ecliptic plane

  • Authors: H. Pérez-De-Tejada, Héctor; H.J. Durand-Manterola, Héctor Javier; M. Reyes-Ruiz, Mauricio; R.N. Lundin, Rickard N.
    Journal: Icarus
    Year: 2015

A large-scale flow vortex in the Venus plasma tail and its fluid dynamic interpretation

  • Authors: R.N. Lundin, Rickard N.; S.V. Barabash, Stanislav V.; Y. Futaana, Yoshifumi; H. Pérez-De-Tejada, Héctor; J.A. Sauvaud, Jean André
    Journal: Geophysical Research Letters
    Year: 2013

Solar wind-driven plasma fluxes from the Venus ionosphere

  • Authors: H. Pérez-De-Tejada, Héctor; R.N. Lundin, Rickard N.; H.J. Durand-Manterola, Héctor Javier; J.A. Sauvaud, Jean André; M. Reyes-Ruiz, Mauricio
    Journal: Journal of Geophysical Research: Space Physics
    Year: 2013