Jia Zhang | Theoretical Advances | Best Researcher Award

Assoc. Prof. Dr. Jia Zhang | Theoretical Advances | Best Researcher Award

Associate professor at Shenyang University of Technology | China

Dr. Zhang Jia is an accomplished Associate Professor at the School of Information Science and Engineering at Shenyang University of Technology. With a Ph.D. in Instrument Science and Technology, she specializes in Non-destructive Testing (NDT), particularly focusing on electromagnetic and piezoelectric ultrasonic testing technologies. Over the years, Dr. Zhang has gained recognition for her research in measurement and control technologies, and her innovations in electromagnetic ultrasonic testing have significantly advanced industrial safety and inspection systems.

👨‍🎓Profile

Scopus

ORCID

Early Academic Pursuits 📚

Dr. Zhang began her academic journey by pursuing a Ph.D. in Instrument Science and Technology, diving deep into the theoretical and practical aspects of non-destructive testing. She has built a solid foundation in ultrasonic testing technologies, specifically electromagnetic acoustic testing (EMAT), an area that combines electromagnetic fields with ultrasonic waves to inspect materials without causing damage. Her early academic pursuits led her to develop innovative models and transducer technologies, which have set the stage for her future breakthroughs.

Professional Endeavors 💼

Dr. Zhang is not only a leading researcher but also an active participant in educational reforms. She has led significant projects funded by prestigious institutions like the National Natural Science Foundation of China, the Liaoning Province Science and Technology Department, and China Aerospace Science and Technology Corporation. Dr. Zhang has managed over 9 research projects, with a total cost of $963,900, and collaborated on cutting-edge technologies that improve industrial inspection methods. She has also supervised graduate students, guiding them to success in both academic and professional arenas.

Contributions and Research Focus 🔬

Dr. Zhang’s main focus is on improving the detection sensitivity of electromagnetic ultrasonic transducers. By optimizing structural parameters and energy conversion efficiency, she has developed new methodologies to overcome sensitivity bottlenecks in conventional ultrasonic testing systems. Her research explores the multi-field conversion mechanisms of electricity, magnetism, force, and sound, resulting in high-sensitivity transducers with electrically controlled dynamic compensation. This innovative approach holds great promise for safety applications in industries such as steel production, high-speed rail, shipbuilding, and pressure pipelines.

Impact and Influence 🌍

Dr. Zhang’s research has had a profound impact on the field of non-destructive testing. Her work in electromagnetic ultrasonic testing has resulted in the development of next-generation inspection technologies, significantly improving the accuracy and reliability of defect detection in critical infrastructure. The practical applications of her research have already contributed to the safety and efficiency of industries worldwide, and the commercial potential of her innovations is immense. She has published more than 20 SCI/EI-indexed papers and 13 patents, reflecting her strong research influence in the global scientific community.

Academic Cites 📈

With a cumulative impact factor of 10.6 over the last three years and an H-index of 2, Dr. Zhang’s work has been recognized in international scientific communities. Her research papers have garnered 12 citations in Scopus/Web of Science and are regularly cited by peers in the field of NDT and material inspection technologies.

Research Skills 🧪

Dr. Zhang is highly skilled in advanced research methodologies, including electromagnetic simulation, data processing, and modeling of multi-field interactions. Her expertise extends to guided wave propagation, signal decoupling, and the optimization of ultrasonic transducer designs. These skills have been crucial in addressing complex challenges in material inspection and safety monitoring across various sectors, making her an expert in the innovation of non-destructive testing technologies.

Teaching Experience 🍎

As an Associate Professor and Master Supervisor, Dr. Zhang has been deeply involved in educational reforms and has mentored numerous students in the fields of NDT and instrumentation. She has contributed to undergraduate and postgraduate teaching reforms in Liaoning Province, fostering a new generation of scientists and engineers who are equipped with the knowledge and skills to tackle real-world challenges in materials inspection. Through her guidance, many of her students have won provincial awards and participated in national innovation competitions.

Awards and Honors 🏆

Dr. Zhang’s academic excellence and significant contributions to research and development have earned her 15 awards and recognitions, including provincial honors and national research grants. Her success in leading industry-sponsored projects and her innovations in ultrasonic testing technologies have been widely celebrated, positioning her as a leader in the field of non-destructive testing.

Legacy and Future Contributions 🔮

Dr. Zhang’s work has already left a lasting impact on the non-destructive testing field, particularly through her development of high-sensitivity transducers and novel testing methods. Looking to the future, she aims to continue pushing the boundaries of her research, particularly in the areas of multi-field physical coupling and advanced ultrasonic testing techniques. Dr. Zhang’s legacy will be defined by her innovative contributions to industrial safety and the advancement of non-destructive testing technologies, which will undoubtedly shape the future of material inspection and quality control across numerous industries

Publications Top Notes

Mechanistic analysis of electromagnetic ultrasonic transverse wave detection of steel plates in high-temperature multi-physical environments

  • Authors: Jia Zhang, Haibo Pang, Yanhao Xing
    Journal: Measurement
    Year: 202

Improved singular spectrum decomposition method for resonance recognition of air-coupled ultrasonic signals in through-transmission steel plate detection

  • Authors: Rongxue Li, Lijian Yang, Jia Zhang, Zheng Lian
    Journal: Measurement Science and Technology
    Year: 2025

Research on the electromagnetic ultrasonic detection method of initiation crack based on multi-acoustic coefficients fusion

  • Authors: Yanhao Xing, Xiaohui Zhang, Jia Zhang, Haiyu Jin, Hongwei Lin
    Journal: Measurement Science and Technology
    Year: 2025

Research on the mechanism of electromagnetic ultrasonic energy transfer based on dynamic multi-magnetic vector coupling

  • Authors: Jia Zhang, Yan-hao Xing, Hai-bo Pang
    Journal: Measurement Science and Technology
    Year: 2024

Development of a biaxial grid-coil-type electromagnetic acoustic transducer

  • Authors: Li-Jian Yang, Jia Zhang, Yan-Hao Xing, Song-Wei Gao, Zhe Xie, Hong-Wen Fu
    Journal: Measurement Science and Technology
    Year: 2021

Hoc Nguyen | Computational Methods | Best Researcher Award

Assoc. Prof. Dr. Hoc Nguyen | Computational Methods | Best Researcher Award

Senior Lecturer at Hanoi National University of Education | Vietnam

Nguyen Quang Hoc D, Assoc. Prof. PhD, is a distinguished academic and researcher in the field of Theoretical Physics. He currently holds the position of High-ranking Lecturer at the Department of Theoretical Physics, Faculty of Physics, at the Hanoi National University of Education, where he has contributed extensively to both teaching and research since 2009. His academic journey reflects a deep commitment to physics, spanning over decades of study and experience in solid-state physics, theoretical physics, and mechanical properties of materials.

👨‍🎓Profile

ORCID

Early Academic Pursuits 🎓

Nguyen Quang Hoc D embarked on his academic career with a solid foundation in solid-state physics, earning his Engineer degree from Hanoi University of Technology in 1982. His deep interest in theoretical physics led him to pursue advanced studies at the Hanoi National University of Education, where he completed his Master’s degree in Theoretical Physics in 1989 and later achieved his PhD in 1994, further honing his expertise in the field.

Professional Endeavors 💼

His professional career began in 1983 at the College of Teacher Training (now Haiphong University), where he served as a Lecturer and Head of the Physical Laboratory until 1994. Later, he joined the Institute of Nuclear Science and Technique, VINATOM in 1994, contributing as a Researcher. In 1997, he transitioned to the Department of Scientific Management, Faculty of Physics at Hanoi National University of Education, where he took on roles as an Expert and Principal Lecturer until he became an Associate Professor in 2009. Since 2016, he has remained in his current capacity as a High-ranking Lecturer at the university.

Contributions and Research Focus 🔬

Prof. Nguyen Quang Hoc D has focused much of his research on mechanical and thermodynamic properties of metals and interstitial alloys, particularly through the statistical moment method. His work has provided valuable insights into the transport properties of superconductors and how artificial nanostructures can influence these properties. His research has significant implications in materials science, particularly in understanding how nanostructures can improve the performance of superconductors in real-world applications.

Impact and Influence 🌍

With a career spanning more than three decades, Assoc. Prof. Nguyen Quang Hoc D has made lasting contributions to both academic research and teaching. His work on superconductors and nanostructure materials has advanced our understanding of the mechanical and thermodynamic properties of advanced materials. His findings have opened the door for further studies in nanotechnology and material science, positioning him as a leading figure in the development of advanced materials in the Vietnamese academic community.

Academic Citations 📚

Prof. Nguyen Quang Hoc D has earned recognition for his work, resulting in numerous academic citations and publications in international journals related to materials physics. His contributions to the field of theoretical physics have significantly impacted the understanding of interstitial alloys, superconductivity, and the behavior of metals under extreme conditions, making him a respected authority in his field.

Research Skills 🧠

Assoc. Prof. Nguyen Quang Hoc D possesses advanced research skills in statistical methods, materials characterization, and nanotechnology. His expertise includes the application of the statistical moment method to study the thermodynamic behavior of materials, allowing him to analyze and predict the mechanical properties of metals and alloys under various conditions. He has also worked on superconductivity, making contributions to transport properties and the influence of nanostructure pinning on type-II superconductors.

Teaching Experience 👨‍🏫

Assoc. Prof. Nguyen Quang Hoc D has a wealth of teaching experience, spanning over two decades at the Hanoi National University of Education. He has taught a range of undergraduate and graduate courses in theoretical physics and solid-state physics, providing students with foundational knowledge while also challenging them with cutting-edge concepts in the field. His role as a mentor and principal lecturer has helped shape the next generation of physicists and scientists in Vietnam.

Awards and Honors 🏅

Throughout his career, Assoc. Prof. Nguyen Quang Hoc D has been the recipient of various awards and honors in recognition of his contributions to the field of physics. His dedication to both research and teaching has earned him respect within the academic community, and he continues to inspire those around him with his innovative research and commitment to excellence.

Legacy and Future Contributions 🌱

As Assoc. Prof. Nguyen Quang Hoc D continues his work at Hanoi National University of Education, his legacy remains rooted in his innovative research, teaching dedication, and academic leadership. Moving forward, he is expected to continue influencing the field of material science, particularly in the realms of superconductivity and nanotechnology. His future contributions will undoubtedly lead to advancements in the understanding of metals, alloys, and superconductive materials, strengthening the scientific community in Vietnam and beyond.

Publications Top Notes

On the Melting of Crystal Under Compression: SMM Fundamental Theory and its Application to Laser Materials Processing

  • Authors: Nguyen Quang Hoc, Le Hong Viet
    Journal: Transactions of the Indian Institute of Metals
    Year: 2025

Theoretical predictions of thermodynamic properties, elastic deformation, HCP-FCC structural phase transition and melting of iron at high temperatures up to 18000 K and high pressures up to 4000 GPa

  • Authors: Nguyen Quang Hoc, Nguyen Duc Trung, Hua Xuan Dat, Le Thu Lam
    Journal: Physics Letters A
    Year: 2025

Correction: Thermodynamic properties of perovskite MgSiO3 with cubic structure under extreme conditions

  • Authors: Quang Hoc Nguyen, Nhi Quynh Ngo, Thi Mai Dao, Cong Vien Tran, Thi Thu Tra Lai, Thi Van Anh Le, Thi Thuy An Nguyen
    Journal: The European Physical Journal B
    Year: 2024

Thermodynamic properties of perovskite MgSiO3 with cubic structure under extreme conditions

  • Authors: Hoc Quang Nguyen, Nhi Quynh Ngo, Mai Thi Dao, Vien Cong Tran, Tra Thi Thu Lai, Anh Thi Van Le, An Thi Thuy Nguyen
    Journal: The European Physical Journal B
    Year: 2024

Study on Remelting of Crystal Under Extreme Conditions

  • Authors: Hoc Quang Nguyen, Huyen Thanh Thi Tran, Nhi Quynh Ngo, Mai Thi Dao, Phong Khac Nguyen
    Journal: Transactions of the Indian Institute of Metals
    Year: 2024

 

 

Muhammad Yar Khan | Computational Methods | Best Researcher Award

Assoc. Prof. Dr. Muhammad Yar Khan | Computational Methods | Best Researcher Award

Associate Professor at Qilu institute of Technology | China

Dr. Hafiz Muhammad Yar Khan is an accomplished Materials Scientist and Associate Professor in Physics, with an extensive background in Density Functional Theory (DFT) Materials Modeling. He completed his Ph.D. in Materials Science Engineering at Zhejiang University, China (2023), which is ranked 41st in the QS World University Rankings (2022). His research is focused on novel 2D materials, energy storage materials, and the optical and magnetic properties of advanced materials, with significant contributions to the fields of spintronics, energy storage, and 2D magnetic materials.

👨‍🎓Profile

Google scholar

Scopus

ORCID

Early Academic Pursuits 🎓

Dr. Khan’s academic journey began with a Master of Science in Physics (M. Phil) from Hazara University Mansehra, Pakistan, in 2011, where he developed his passion for solid-state physics and computational material science. His dissertation focused on the first-principles study of perovskite-type oxides, laying the foundation for his later work in computational materials research. His focus on quantum mechanics, electrodynamics, and applied research techniques during his M.S. equipped him with a solid theoretical and experimental base.

Professional Endeavors 💼

Dr. Khan has held various teaching and administrative roles across prominent institutions in both Pakistan and China. His career includes serving as Lecturer in Physics at Kohat University of Science and Technology and The University of Haripur, Pakistan. His current position as Associate Professor at Qilu Institute of Technology, China, reflects his rising prominence in academia. Dr. Khan has also contributed to academic committees, such as being a member of the Academic Council at Kohat University and organizing events like sports day and international cultural day, showing his leadership in academic and extracurricular spheres.

Contributions and Research Focus 🔬

Dr. Khan’s research spans several cutting-edge areas in materials science. His Ph.D. dissertation on “First-Principles Study of Tuning Magnetic and Optical Properties of Novel 2D-Materials” focuses on materials such as transition metal carbon trichalcogenides and 2D magnetic materials. He has also explored energy storage technologies, such as Na and Li-ion batteries, providing insights into anode and cathode materials. His work also delves into optoelectronics and spintronics devices, underscoring his interdisciplinary approach.

Notable research topics include:

  • Magnetic and optical properties of 2D materials.

  • Energy storage materials (batteries, cathodes, and anodes).

  • Spintronics and optoelectronics for device applications.

Impact and Influence 🌍

Dr. Khan’s research has had significant implications in both academia and industry, especially in 2D materials and energy storage technologies. His publications in prestigious journals like Journal of Superconductivity and Novel Magnetism, Physics Letter A, and Nanoscale demonstrate his ability to contribute to high-impact research. His work is highly regarded in the scientific community, and he has collaborated with leading universities and institutions such as the New Jersey Institute of Technology (NJIT), Quaid-i-Azam University, University of Ulsan, and King Saud University.

His influence extends beyond materials science into academic collaboration, where he serves as a bridge between global research hubs in Pakistan, China, South Korea, and Saudi Arabia.

Research Skills 🧠

Dr. Khan is proficient in various computational software critical to materials science research, including:

  • WIEN2K

  • VASP

  • FLAPW

His ability to independently formulate research questions, conduct empirical research, and analyze data systematically has been key to his success. His first-principles approach has made him a leading figure in DFT-based materials modeling and theoretical materials science.

Teaching Experience 🍎

Dr. Khan has taught a variety of physics courses at undergraduate and postgraduate levels. He has mentored students in subjects such as Quantum Mechanics, Solid-State Physics, and Electrodynamics. He has also demonstrated his administrative skills in his role as Assistant Manager ORIC and member of the departmental admission committee, helping shape the academic landscape at institutions like Kohat University of Science and Technology and The University of Haripur. His teaching philosophy emphasizes the importance of research-driven education, encouraging students to engage with cutting-edge topics in material science and computational physics.

Awards and Honors 🏅

Dr. Khan has been recognized for his academic achievements with prestigious scholarships and fellowships, including:

  • Chinese Government Scholarship for his Ph.D. studies.

  • Brain Korea 21 (BK21) Fellowship by the Korean Government.

  • Pioneer Research Center Program through the National Research Foundation of Korea.

These awards underscore his commitment to academic excellence and his ability to secure competitive funding for his research endeavors.

Legacy and Future Contributions 🌟

Dr. Khan’s legacy is built on a solid foundation of innovative research, interdisciplinary collaborations, and a commitment to teaching. His future contributions are poised to make an impact not only in materials science but also in the energy sector, with further exploration into battery technologies, spintronics, and 2D materials. His ongoing work on defect-engineered materials and multiferroic hetero-structures is expected to push the boundaries of materials science in the coming years.

Publications Top Notes

“Computational insights into optoelectronic and magnetic properties of V(III)-doped GaN”

  • Authors: Muhammad Sheraz Khan, Muhammad Ikram, Li-Jie Shi, Bingsuo Zou, Hamid Ullah, Muhammad Yar Khan
    Journal: Journal of Solid-State Chemistry
    Year: 2021

“A highly selective nickel-aluminum layered double hydroxide nanostructures based electrochemical sensor for detection of pentachlorophenol”

  • Authors: Khan, Mir Mehran, Huma Shaikh, Abdullah Al Souwaileh, Muhammad Yar Khan, Madeeha Batool, Saima Q. Memon, and Amber R. Solangi
    Journal: Arabian Journal of Chemistry
    Year: 2024

“Exploring the structural stability of 1T-PdO2 and the Interface Properties of 1T-PdO2/Graphene Heterojunction”

  • Authors: Muhammad Yar Khan, Arzoo Hassan, Xiao-Qing Kelvin Tian, Abdus Samad
    Journal: ACS OMEGA
    Year: 2024

“Experimental Investigation of the Structural, Electrical, and Magnetic Properties of AgNbO3 Silver Nanobytes”

  • Authors: Junaid Khan, Shah Khalid, Pagunda3, Farhan Ahmad, Abdul Jabbar5, Rabah Khenata, Muhammad Yar Khan, and Heba G. Mohamed
    Journal: Journal of Materials Science

“Fabrication of nanofiltration membrane with enhanced water permeability and dyes removal efficiency using tetramethyl thiourea-doped reduced graphene oxide”

  • Authors: Sehrish Qazi, Huma Shaikh, Amber R. Solangi, Madeeha Batool, Muhammad Yar Khan, Nawal D. Alqarni, Sarah Alharthi, and Nora Hamad Al-Shaalan
    Journal: Journal of Materials Science

Sanae ZRIOUEL | Computational Particle Physics | Women Researcher Award

Prof. Dr. Sanae ZRIOUEL | Computational Particle Physics | Women Researcher Award

Cadi Ayyad university | Morocco

Professor Dr. Sanae Zriouel is an esteemed Associate Professor of Physics at the Faculty of Sciences and Technology, Cadi Ayyad University in Marrakech, Morocco. With a deep passion for Mathematical Physics and cutting-edge research in nanomaterials, Dr. Zriouel has made significant contributions in various areas of condensed matter physics. Her academic journey spans multiple prestigious institutions in Morocco, and she has established herself as a key figure in the academic and scientific communities.

👨‍🎓Profile

Google scholar

Scopus

Early Academic Pursuits 📚

Dr. Zriouel’s journey began with a Bachelor’s degree in Physical Science from Ibn Tofail University, Morocco, followed by a Master’s degree in Mathematical Physics at Mohammed V University, Morocco. Her academic prowess was evident from early on, as she earned the highest distinctions in her Master’s and later in her PhD in Mathematical Physics from the same institution. She furthered her education with an Engineer’s degree in Electro-mechanics from ENSMR, Rabat, Morocco.

Professional Endeavors 🌍

Dr. Zriouel’s career in academia includes various teaching and research roles. She is currently an Associate Professor at Cadi Ayyad University, where she has been since 2022. Prior to this, she held positions as an Assistant Professor at Sultan Moulay Slimane University, Beni Mellal, and worked as a Dr. Researcher at Mohammed V University, where she developed a profound interest in nanomaterials and theoretical physics. Her roles are not limited to academia; she has been actively involved in multiple administrative responsibilities, serving as an elected member of university councils and commissions that contribute to the growth and development of scientific research and academic programs.

Contributions and Research Focus 🔬

Dr. Zriouel’s research interests include Graphene and related materials, the physics of 2D nanostructures, topological insulators, and chalcopyrite semiconductors. She has worked extensively on quantum dots, ab-initio calculations, and Monte Carlo simulations. Her work on spintronic properties, magnetocaloric effects, and the phase transitions of new materials has been instrumental in advancing our understanding of the physical properties of materials at the nano-scale. She has authored over 10 impactful scientific papers, contributing significant knowledge to materials science and theoretical physics.

Impact and Influence 🌟

Dr. Zriouel has had a far-reaching impact on both research and education. Her work has influenced various collaborations with institutions such as the Institut Néel, CNRS, Yildiz Technical University, and Abdus Salam International Centre for Theoretical Physics. Additionally, she has received recognition as a scientific visitor to prestigious institutions across the globe, including in Turkey, Italy, and France. Her leadership roles, including coordinating projects like the Extended African Network for Advanced 2D Materials, demonstrate her commitment to scientific collaboration and her efforts to foster an international exchange of ideas.

Academic Cites 📑

Dr. Zriouel’s research papers have been widely cited in the scientific community. Her work on half-metallic ferromagnetic properties, phase transitions in graphene, and DFT-based materials simulations has paved the way for significant advancements in spintronics and quantum materials. Notable publications include her contributions to Computational Condensed Matter and Modern Physics Letters. Her research continues to be cited globally, influencing the fields of nanotechnology, magnetism, and advanced materials.

Research Skills 🧠

Dr. Zriouel possesses a remarkable set of research skills that span theoretical physics and computational simulations. She is proficient in C++, Fortran, MATLAB, and other programming languages used for numerical simulations and ab-initio calculations. Her expertise includes tools like Quantum Espresso, LAMMPS, Wien2k, and SPRKKR, which she uses to explore the properties of advanced graphene-based materials, quantum dots, and other nanomaterials.

Teaching Experience 🎓

Dr. Zriouel is a dedicated educator, teaching a wide array of courses in physics at both the undergraduate and graduate levels. She teaches courses such as Quantum Mechanics, Electromagnetism, and Thermodynamics. Over the years, she has supervised more than 30 students, including Bachelor’s, Master’s, and PhD candidates. Her mentorship extends beyond coursework, as she is involved in guiding students in their research projects and helping them navigate the world of theoretical physics and computational modeling.

Awards and Honors 🏆

Dr. Zriouel has been recognized for her academic excellence with several prestigious awards. Notable honors include being awarded Full Membership of the Organization for Women in Science for the Developing World (OWSD) in 2020, and receiving the Award of Excellence from the National Center of Scientific Research of Morocco in 2014. In addition, she was the Valedictorian of both her Engineering program and her Physics graduate program. These accolades underline her exceptional academic achievements and her dedication to the advancement of science.

Legacy and Future Contributions 🔮

Dr. Zriouel’s legacy lies not only in her groundbreaking research but also in the impact she has had on the next generation of scientists. She has inspired and mentored numerous students, guiding them toward their own successful academic and research careers. Her contributions to the field of nanomaterials and quantum physics are set to influence future developments in green energy, quantum computing, and material science.

Publications Top Notes

In-depth study of double perovskite Sr₂NiTaO₆: Structural, electronic, thermoelectric, and spintronic properties for sustainable and high-performance applications

  • Authors: JU Ahsan, MR Rather, K Sultan, S Zriouel, E Hlil
    Journal: Computational Condensed Matter
    Year: 2025

Investigating thermodynamic and magnetic behavior of graphullerene-like nanostructure using Monte Carlo techniques

  • Authors: S Zriouel, A Mhirech, B Kabouchi, L Bahmad, Z Fadil, FM Husain
    Journal: Philosophical Magazine
    Year: 2025

Magnetic properties and magnetocaloric effects of the graphullerene-like 4-(Mg₄C) nanostructure: A Monte Carlo study

  • Authors: N Saber, S Zriouel, A Mhirech, B Kabouchi, L Bahmad, Z Fadil
    Journal: Modern Physics Letters B
    Year: 2024

Phase transitions and critical dielectric phenomena of janus transition metal oxides

  • Authors: S Zriouel
    Journal: Materials Science and Engineering: B
    Year: 2021

Effect of p–d hybridization on half metallic properties of some diluted II–IV–V₂ chalcopyrites for spintronic applications

  • Authors: S Zriouel, B Taychour, B Drissi
    Journal: Physica Scripta
    Year: 2020

 

 

Ali Zaoui | Computational Methods | Computational Science Excellence Award

Prof. Ali Zaoui | Computational Methods | Computational Science Excellence Award

Djillali Liabes University of SIDI BELI ABBES | Algeria

Ali Zaoui is a Professor and Team Leader at the Physics Computational Materials Laboratory at the University of Sidi Bel Abbes, Algeria. With a distinguished career spanning several decades, he has made significant contributions to the field of computational materials science. Zaoui holds a PhD in Material Sciences and has taught in various capacities, progressing from General Physics to Nanotechnology at the University of Sidi Bel Abbes.

👨‍🎓Profile

Google scholar

Scopus

Early Academic Pursuits 🎓

Zaoui’s academic journey began with a B.Sc. in Physics from the University of Sidi Bel Abbes (1991-1996). He then pursued a M.Sc. in Solid State Physics (1998-2000), focusing on the electronic structure of BSb compounds using the FP-LAPW method. Zaoui continued his academic pursuit with a Ph.D. in Material Sciences (2000-2005), conducting groundbreaking research on TiCxN1−x, ZrxNb1−xC, and HfCxN1−x alloys through first-principles calculations. His early work established a foundation in ab-initio methods for studying the electronic structures of complex materials.

Professional Endeavors 🧑‍💼

Zaoui’s professional career includes roles as a Professor at the University of Sidi Bel Abbes, where he has been an influential faculty member since 2005. Additionally, he has held leadership roles, such as Team Leader and Director of various computational material science laboratories. His contributions extend beyond teaching, as he has also served in prominent positions such as Dean of the Faculty of Exact Sciences at the Djillali Liabes University and President of the Doctoral Formation Committee.

Contributions and Research Focus 🔬

Zaoui’s research focus spans a range of topics, with particular emphasis on computational physics, material science modeling, and condensed matter physics. His expertise lies in studying strongly correlated systems, magnetism, and superconductivity in atomic and condensed matter physics. His contributions in first-principles calculations have advanced the understanding of alloy properties, nanostructures, and electronic behaviors of various materials. Notable works include research on Hf3N4 and Zr3N4 compounds, as well as RE2Ni2Pb (R=Er, Ho), contributing to the advancement of material science through simulation and modeling techniques.

Impact and Influence 🌐

Zaoui’s impact in the field of computational material science is substantial, with significant influence in educating future generations of physicists. As a team leader, he has guided a range of research projects that continue to shape the field. His involvement in summer schools, conferences, and workshops on DFT, simulation methods, and materials modeling has contributed to international collaborations and the sharing of knowledge on an international scale. His research has shaped the academic landscape of materials science, particularly in Algeria and North Africa.

Academic Cites 📚

Zaoui’s academic works have gained significant recognition and have been cited in a wide array of material science journals. His research on Hf3N4 and Zr3N4 compounds, along with his contributions to optical properties of semiconductors and first-principles simulations, has been referenced widely in the scientific community. His work is highly regarded for its accuracy, innovation, and practical application in understanding the electronic structures of materials.

Research Skills 🧑‍🔬

Zaoui’s research is known for the depth of computational analysis and precision in applying first-principles calculations. He is highly skilled in using DFT, LDA+U methods, and ab-initio techniques to model complex material properties, from magnetism to superconductivity. His computational techniques allow for predictive modeling of material behaviors, an essential aspect in the development of new materials for various applications. Zaoui’s research is marked by his ability to bridge theory with practical outcomes, bringing computational insights into real-world scenarios.

Teaching Experience 📖

Zaoui has a rich and diverse teaching experience, spanning from general physics to specialized subjects like magnetism, thermodynamics, and nanotechnology. He has taught at both undergraduate and graduate levels, including at institutions like the Higher School of Computer Science of Sidi Bel Abbes. His teaching extends beyond the classroom, having led seminars, summer schools, and research conferences. His commitment to educating the next generation of physicists has made a lasting impact on the scientific community in Algeria.

Awards and Honors 🏆

While detailed awards are not listed in the provided information, Zaoui’s significant contributions to computational material science, his leadership in education, and his influential research undoubtedly position him for recognition in various academic circles. His leadership role in organizing scientific committees and overseeing doctoral training programs reflects his contribution to the academic excellence in material science.

Legacy and Future Contributions 🌱

Zaoui’s legacy is deeply rooted in his research, teaching, and leadership in computational materials science. His future contributions are expected to continue influencing the advancement of computational tools and material science innovations. With his focus on nanotechnology, superconductivity, and magnetism, Zaoui is well-positioned to make future breakthroughs in the understanding of next-generation materials. As his work continues to inspire the global research community, Zaoui’s legacy will likely shape the future of computational materials science and nanotechnology for many years to come.

Publications Top Notes

Impact of polymer binders on the aggregation modes of two-pieces CSH composites

  • Authors: J., Jia, Jiwei; A., Zaoui, Ali; W., Sekkal, Wassila
    Journal: Cement and Concrete Research, Year: 2025

Molecular modeling of clay minerals: A thirty-year journey and future perspectives

  • Authors: A., Zhou, Annan; J., Du, Jiapei; A., Zaoui, Ali; W., Sekkal, Wassila; M.S., Sahimi, Muhammad Syamim
    Journal: Coordination Chemistry Reviews, Year: 2025

Crystal structure and magnetic properties of lithium nitridoferrate: Density functional theory calculations

  • Authors: M.R., Aced, Mohammed Reda; N., Benayad, Nawel; F., Drief, F.; S., Kacimi, Salima; M., Djermouni, Mostefa
    Journal: Journal of Magnetism and Magnetic Materials, Year: 2025

Exploring superconducting signatures in high-pressure hydride compounds: An electronic-structure analysis

  • Authors: C., Mohammed Krarroubi; N., Benayad, Nawel; F., Benosman, Fayssal; S., Kacimi, Salima; A., Zaoui, Ali
    Journal: Physica C: Superconductivity and its Applications, Year: 2025

Influence of particle size distribution and normal pressure on railway ballast: A DEM approach

  • Authors: Z., Yan, Zhu; A., Zaoui, Ali; W., Sekkal, Wassila
    Journal: High-speed Railway, Year: 2025

Discrete-Element Method Study of the Effect of Ballast Layer Depth on the Performance of Railway Ballast Bed

  • Authors: Z., Yan, Zhu; A., Zaoui, Ali; W., Sekkal, Wassila
    Journal: International Journal of Geomechanics, Year: 2025

 

 

 

Chuhui Zhang | Machine Learning in Physics | Best Researcher Award

Mr. Chuhui Zhang | Machine Learning in Physics | Best Researcher Award

Nanjing University of Information Science and Technology | China

Chuhui Zhang is a master’s degree candidate at Nanjing University of Information Science & Technology, where he studies Big Data Science and Technology in a Sino-foreign collaboration program. His research focuses on laser system development and intelligent control, specifically in laser system design and control algorithm development. Originally from Wuxi, Jiangsu, he has consistently demonstrated an aptitude for both academic and practical contributions in the field of optical systems.

👨‍🎓Profile

ORCID

🎓 Early Academic Pursuits

Zhang’s academic journey began at Jiangsu University, where he earned his Bachelor’s degree in Software Engineering. During his undergraduate years, he distinguished himself with his exceptional leadership and academic achievements, earning accolades such as Three Good Students, Outstanding Student Cadre, and the Outstanding Graduate recognition. He also obtained the CET-6 certification, marking his proficiency in the English language. These early years were formative in shaping his technical skills and research interests in fields such as control algorithms and optical systems.

🛠️ Professional Endeavors

Since 2023, Zhang has been engaged in cutting-edge laser technology projects through his work on the National Natural Science Foundation of China project. His work on high-repetition rate, high-energy mid-infrared picosecond lasers focuses on laser design, time-frequency domain stability control, and ultrafast process measurement. He has also worked on green pulsed laser development and picosecond laser advancements, demonstrating a wide range of expertise across laser systems and optical technologies. Zhang’s technical contributions are evident in his work developing mode-locked fiber lasers, self-starting erbium-doped lasers, and hollow-core anti-resonant fibers.

🔬 Contributions and Research Focus

Zhang’s research focus is primarily on laser system development and intelligent control. His notable contributions include:

  • Developing advanced laser systems such as passively mode-locked ultrafast fiber lasers based on nonlinear polarization rotation.
  • Designing innovative fibers like hollow-core anti-resonant fibers, with a focus on mid-infrared applications.
  • Implementing machine learning algorithms like Particle Swarm Optimization and BFGS optimization to improve mode-locking and control.
  • Utilizing deep learning frameworks such as Pytorch, TensorFlow, and Sklearn to optimize and control ultrafast laser systems.

These projects aim to address some of the most challenging technological gaps in laser science, with an emphasis on achieving higher energy outputs and improved laser performance.

🌍 Impact and Influence

Zhang’s work in the field of laser technology has the potential to impact multiple industries, including medical imaging, communications, and scientific research. His development of high-power green pulsed lasers and mode-locked fiber lasers has the ability to transform applications in microscopy, biomedical imaging, and optical communications. The invention patents and published research in respected journals, such as Infrared Physics & Technology, showcase Zhang’s growing influence in the laser community and his contributions to cutting-edge innovations in optical technology.

🧑‍🏫 Research Skills

Zhang has developed a comprehensive skill set in:

  • Optical system design, including system construction and optical path debugging.
  • Advanced simulation tools, including COMSOL, Matlab, and SolidWorks for fiber laser design.
  • Deep learning and machine learning skills with Pytorch, TensorFlow, and Sklearn.
  • Practical laboratory experience with instruments such as laser pump sources, spectrometers, and oscilloscopes.

These technical skills equip Zhang to independently handle complex laser system development and research experimentation.

🏆 Awards and Honors

Zhang’s exceptional academic performance has been recognized through various honors, including:

  • Outstanding Freshman Scholarship and Third-class Scholarship at Nanjing University of Information Science & Technology.
  • Gold Award in the Mathematical Modeling Competition.
  • Gold Medal in the National International College Student Innovation Competition (2024).
  • Outstanding Graduate recognition at Jiangsu University. These awards underscore his academic excellence and research potential.

🏅 Legacy and Future Contributions

Looking forward, Zhang’s research legacy is set to further impact the field of laser system development. His focus on intelligent control algorithms and high-performance lasers offers promising solutions to high-energy laser applications and optical communication systems. In the future, Zhang is expected to continue pushing the boundaries of laser technology, with the potential to influence not only academic and research sectors but also industry applications. With an increasing number of patents and publications, Zhang’s future contributions are likely to shape the trajectory of optical sciences and laser engineering.

Publications Top Notes

Intelligent controllable ultrafast fiber laser via deep learning and adaptive optimization algorithm

  • Authors: Chuhui Zhang, Pengfei Xiang, Wei Zhu, Chen Chen, Xueming Liu
  • Journal: Infrared Physics & Technology
  • Year: 2024

 

Quynh Anh Thi Nguyen | Computational Methods | Best Researcher Award

Dr. Quynh Anh Thi Nguyen | Computational Methods | Best Researcher Award

Researcher at University of Ulsan | South Korea

Quynh Anh Thi Nguyen is a doctoral researcher at the University of Ulsan (UOU), South Korea, where she is pursuing a Ph.D. in physics under the supervision of Prof. Sung Hyon “Sonny” Rhim. Her research primarily focuses on spintronics and first-principles calculations in tungsten (W) alloys. With a strong academic background, she has excelled in her field, maintaining a GPA of 4.17/4.5 during her doctoral studies and a similar academic achievement in her undergraduate studies.

👨‍🎓Profile

Google scholar

Scopus

🎓 Early Academic Pursuits

Nguyen’s academic journey began at Hanoi National University of Education (HNUE), Vietnam, where she completed her Bachelor’s degree in Physics with a thesis on the melting behavior of substitution alloys under pressure. During her undergraduate years (2013-2017), she was consistently ranked as an excellent student and earned recognition in scientific conferences. Her academic foundation set the stage for her future exploration in computational physics and materials science.

💼 Professional Endeavors

Since 2017, Nguyen has been pursuing her Doctoral degree at the University of Ulsan (UOU), South Korea. Under the mentorship of Prof. Sung Hyon Rhim, her research is centered on the study of spintronics in W alloys and the magnetic properties of Heusler compounds. She has delved into critical aspects of spin Hall conductivity, orbital Hall conductivity, and magnetism, contributing to the understanding of materials used in next-generation electronic devices like spintronic sensors and memory devices.

Contributions and Research Focus 🔬

Quynh Anh’s research mainly explores the Spin Hall conductivity and orbital Hall effects in various materials, including transition metals, Heusler compounds, and tetragonal alloys. Her work on spintronics—specifically related to the spin-orbit torque efficiency of materials like β-W heterojunctions—has led to several high-impact publications. One of her major contributions is the study of the spin Hall conductivity in W-Si alloys, which has significant implications for spintronic devices and energy-efficient electronics.

Her current research includes W-N alloys, and the impact of Ti substitution on β-W, both of which are preparing for publication.

Impact and Influence 🌍

Quynh Anh’s work is making a significant impact on the field of spintronics and material physics, especially with her first-principles calculations on the properties of W alloys. By exploring magnetism and conductivity in alloys, she is contributing to the development of advanced materials with better performance in electronics and magnetic devices. Her research aids in the creation of energy-efficient technologies and high-performance electronic components, positioning her as a leading researcher in her field.

Research Skills 💻

Quynh Anh possesses a strong set of technical skills that aid her research, including expertise in software such as Photoshop, Origin, Matlab, Python, and advanced tools like VASP, Wannier90, and OpenMx for computational physics. These skills have enabled her to conduct first-principles calculations and detailed simulations, giving her a deep understanding of material properties and quantum phenomena.

Awards and Honors 🏆

Quynh Anh’s work has been widely recognized:

  • Best Poster Award at the International Conference on Magnetic and Superconducting Materials (2018) in Seoul, Korea.
  • Multiple Excellent Student awards during her undergraduate years.
  • Third Prize at the Student Conference Science Research (2017).

These honors underscore her exceptional academic performance and research contributions.

Legacy and Future Contributions 🌟

With her expertise in spintronics and material physics, Quynh Anh is set to continue making groundbreaking contributions to the field of advanced materials. Her research on spin Hall conductivity, orbital Hall effects, and magnetism will likely pave the way for future innovations in energy-efficient electronics and next-generation magnetic devices. Quynh Anh’s legacy will undoubtedly inspire future scientists to explore the untapped potentials of transition metal alloys and spintronic materials, ensuring her lasting impact in the world of physics and material science.

Publications Top Notes

Ti-alloyed β-W heterojunctions exhibiting spin-orbit torque switching at a wide operating temperature range

  • Authors: J. Lee, Q. A. T. Nguyen, D. Kim, S. H. Rhim, Y. K. Kim
    Journal: Applied Surface Science
    Year: 2025

Synergetic Modulation of Electronic Properties of Cobalt Oxide via “Tb” Single Atom for Uphill Urea and Water Electrolysis

  • Authors: S. Ajmal, A. Rasheed, W. Sheng, G. Dastgeer, Q. A. T. Nguyen, P. Wang, …
    Journal: Advanced Materials
    Year: 2025

Unlocking electrocatalytic dynamics with anti-MXene borides monolayers for nitrate reduction

  • Authors: T. H. Ho, Q. A. T. Nguyen, B. T. T. Le, S. G. Kim, W. Q. Bui
    Journal: Applied Surface Science
    Year: 2024

Spin Hall Conductivity of W100-xSix Alloys in A15 Structure: A Comprehensive Study

  • Authors: Q. A. T. Nguyen, S. H. Rhim
    Journal: Journal of Magnetics
    Year: 2024

Orbital-engineered anomalous Hall conductivity in stable full Heusler compounds: a pathway to optimized spintronics

  • Authors: Q. A. T. Nguyen, T. H. Ho, S. G. Kim, A. Kumar, V. Q. Bui
    Journal: Journal of Materials Chemistry C
    Year: 2024

 

 

 

Shuxia Zhao | Theoretical Advances | Best Researcher Award

Assoc. Prof. Dr. Shuxia Zhao | Theoretical Advances | Best Researcher Award

Associate Professor at Dalian University of Technology, China

Dr. Shuxia Zhao is an Associate Professor at the Dalian University of Technology, with a specialization in electronegative and inductively coupled plasmas. She has an extensive academic background, with degrees in Physics, Materials Science, and Plasma Physics from Hebei Normal University and Dalian University of Technology, followed by Postdoctoral Research at the University of Antwerp. Dr. Zhao’s expertise lies in exploring the complex discharge structures of plasma and establishing interdisciplinary links across various fields of plasma physics.

👨‍🎓Profile

Early Academic Pursuits 🎓

Dr. Zhao began her academic journey at Hebei Normal University in 2000, where she completed her Bachelor’s degree in Physics. She continued her studies at the same institution, earning her Master’s degree in Physics and Chemistry of Material in 2007. Further refining her expertise, she pursued her Doctorate at Dalian University of Technology, specializing in Plasma Physics. Dr. Zhao also enriched her research experience as a Postdoctoral Researcher at the University of Antwerp, focusing on fluorocarbon inductively coupled plasmas.

Professional Endeavors 💼

Dr. Zhao has contributed to various significant research projects funded by the National Natural Science Foundation of China. In her current role as Associate Professor at DUT since 2013, she continues to advance knowledge in electronegative plasmas and inductively coupled plasmas. Dr. Zhao has led industry collaborations, notably with North microelectronics base, enhancing plasma source technologies.

Contributions and Research Focus 🔬

Dr. Zhao’s research explores the discharge mechanism and etching processes of fluorocarbon plasmas, as well as the complex discharge structures of electronegative plasmas. She is particularly interested in low-temperature plasmas and their potential connections with high-temperature fusion plasmas and astrophysical plasmas. Her work on mode transition and hysteresis in inductively coupled plasma sources has provided critical insights into plasma behavior and interactions.

Impact and Influence 🌍

Dr. Zhao’s groundbreaking work in plasma science has impacted both the academic community and the industry. Her research has provided important theories and models that enhance the understanding of plasma behaviors and their applications in various fields, including microelectronics and fusion energy. Her published books and articles have been well-cited, showcasing her role in advancing plasma physics.

Academic Citations 📊

Dr. Zhao’s research contributions are widely recognized, with a Web of Science ResearcherID of AFT-8684-2022. She has published 39 journals in renowned international databases like SCI and Scopus. Her work is highly cited and continues to shape plasma science research globally.

Research Skills 🧑‍🔬

Dr. Zhao is skilled in fluid modeling, plasma diagnostics, and theoretical plasma physics. She has developed innovative software for modeling argon inductively coupled plasmas and ionic species transport coefficients in low-pressure RF plasmas, securing patents for these developments. Her expertise extends to data analysis, numerical simulations, and plasma characterization.

Teaching Experience 🍎

Dr. Zhao has been an educator at Dalian University of Technology for over a decade. She is deeply invested in nurturing the next generation of plasma scientists and engineers. Dr. Zhao’s commitment to teaching and mentoring extends beyond the classroom, as she actively supervises graduate students and postdoctoral researchers in their own academic pursuits.

Legacy and Future Contributions 🌱

As Dr. Zhao continues to explore the complexities of inductively coupled plasmas, her future work will likely further advance the field of plasma physics, especially in the context of microelectronics and fusion energy. Her research legacy is one of interdisciplinary collaboration, innovative discoveries, and educational excellence, contributing to both scientific advancements and technological applications.

Publications Top Notes

Simulation of mode transitions in capacitively coupled Ar/O2 plasmas

  • Authors: X. Liu, S. Zhang, S. Zhao, H. Li, X. Ren
    Journal: Plasma Science and Technology
    Year: 2024

Self-Coagulation Theory and Related Comet- and Semi-Circle-Shaped Structures in Electronegative and Gaseous Discharging Plasmas in the Laboratory

  • Authors: Y. Tian, S. Zhao
    Journal: Applied Sciences (Switzerland)
    Year: 2024

Effect of gas flow on the nanoparticles transport in dusty acetylene plasmas

  • Authors: X. Liu, W. Liu, X. Zhang, X. Dong, S. Zhao
    Journal: Plasma Science and Technology
    Year: 2023

 

 

Radomira Lozeva | Computational Methods | Best Researcher Award-3369

Dr.Radomira Lozeva| Computational Methods | Best Researcher Award

Dr Radomira Lozeva CNRS

Professional Profiles

Publications

Conclusion

Given her extensive research experience, significant contributions to nuclear physics, leadership in experiments, successful mentorship, and active engagement in the scientific community, Radomira Lozeva is highly suitable for both the Research for Community Impact Award and the Best Research Award. Her innovative work and dedication to advancing the field make her a strong contender for these prestigious recognitions.

Al-Hattab Mohamed | Physics | Member

Dr. Al-Hattab Mohamed | Physics | Member

PHD at Sultan Moulay Slimane University, Morocco

Mohamed Al-Hattab is a dedicated researcher specializing in Physics of Materials and Energy. He completed his Ph.D. at Sultan Moulay Slimane University, focusing on the properties of the semiconductor GaSe. With expertise in scanning electron microscopy, X-ray crystallography, and spectroscopy, Mohamed has contributed to various publications in prestigious journals like Solar Energy and Nanoparticle Research. He actively engages in educational activities, supervising students and presenting at international conferences. As a reviewer for prominent journals, Mohamed continues to advance research in his field, affiliated with the Research Laboratory in Physics and Sciences for Engineers at Sultan Moulay Slimane University.

Professional Profiles:

Education

Ph.D. in Physics of Materials and Energies Sultan Moulay Slimane University, Beni Mellal, Morocco (2018 – 2022) Advisor: Khalid Rahmani Dissertation: Study of the structural, electronic, optical, and elastic properties of the lamellar semiconductor (GaSe) Master in Advanced Materials Sultan Moulay Slimane University, Beni Mellal, Morocco (2015 – 2018) Bachelor’s degree in Physical Sciences, Electronics option Cadi Ayyad University, Marrakech, Morocco (2011 – 2015) Advisor: Amal Rajirae Dissertation: Study of the properties of the lamellar material GaSe used as an absorber in photovoltaic cells

Skills

Scanning Electron Microscope X-ray Crystallography UV-Visible Spectroscopy and Raman Spectroscopy Simulation (Biovia Material Studio 2017, SCAPS-1D, MATLAB, Silvako

Research Focus:

Mohamed Al-Hattab is a versatile researcher with a primary focus on materials science and renewable energy technologies. His contributions span various aspects of solar cell design and optimization, including numerical modeling, density functional theory (DFT) investigations, and experimental studies. With expertise in tandem solar cells, perovskite materials, and semiconductor physics, Mohamed’s research aligns with advancing eco-friendly and efficient photovoltaic devices. He collaborates extensively with multidisciplinary teams, emphasizing the integration of theoretical insights with practical applications. Through his work, Mohamed strives to enhance the performance and sustainability of solar energy technologies for a greener future. Physics

Publications 

  1. Experimental and numerical study of the CIGS/CdS heterojunction solar cell,  Publication date: 2023.
  2. Novel Simulation and Efficiency Enhancement of Eco-friendly Cu2FeSnS4/c-Silicon Tandem Solar Device, cited by: 4, Publication date: 2023.
  3. Ab Initio Investigation for Solar Technology on the Optical and Electronic Properties of Double Perovskites Cs2AgBiX6(X=Cl, Br, I), Publication date: 2023.
  4. Thermodynamic, optical, and morphological studies of the Cs2AgBiX6 double perovskites (X = Cl, Br, and I): Insights from DFT study, cited by: 16, Publication date: 2023.
  5. Ag2BeSnX4(S, Se,Te)-based kesterite solar cell modeling: A DFT investigation and Scaps-1 danalysis,Publication date: 2023.
  6. Numerical Simulation of CdS/GaSe Solar Cell Using SCAPs Simulation Software, Publication date: 2022.
  7. Density Functional Theory Study on the Electronic and Optical Properties of Graphene, Single-Walled Carbon Nanotube and C60, Publication date: 2022.
  8. Quantum confinement in GaN/AlInN asymmetric quantum wells for terahertz emission and field of optical fiber telecommunications, Publication date: 2024.
  9. Cu2BaSnS4/Cu2FeSnS4 combination for a good light absorption in thin-film solar cells—a numerical model, Publication date: 2024.
  10. Performance assessment of an eco-friendly tandem solar cell based on double perovskite Cs2AgBiBr6Publication date: 2024.

 

.