Arunima Singh | Computational Methods | Best Researcher Award

Prof. Arunima Singh | Computational Methods | Best Researcher Award

Assistant Professor at Arizona State University | United States

Dr. Arunima K. Singh is an Assistant Professor in the Department of Physics at Arizona State University (ASU) and a graduate faculty member in Materials Science and Engineering. Her research bridges computational materials science, applied physics, and machine learning, focusing on discovering novel materials for energy and electronic applications. She holds a Ph.D. from Cornell University and has conducted postdoctoral research at both NIST and Lawrence Berkeley National Lab. With over 57 publications, her work is highly regarded in the scientific community, earning prestigious awards, editorial roles, and invitations to speak globally on advanced materials research.

👨‍🎓Profile

Google scholar

Scopus

ORCID

🎓 Early Academic Pursuits

Dr. Singh’s academic journey began with a B.Tech. (Honors) in Metallurgical and Materials Engineering from IIT Kharagpur, where she earned multiple academic awards and graduated with a departmental silver medal. She pursued graduate studies at Cornell University, receiving both M.S. and Ph.D. degrees in Materials Science and Engineering, with a minor in Applied Physics. Under the guidance of Prof. Richard G. Hennig, her doctoral work focused on theoretical materials design. Her education was supported by prestigious fellowships including the McMullen Fellowship and Dow Chemical Fellowship, laying a strong foundation for her future research career.

💼 Professional Endeavors

Dr. Singh’s professional experience spans national labs and academia. Following her Ph.D., she held postdoctoral appointments at the National Institute of Standards and Technology (NIST) and Lawrence Berkeley National Lab (LBNL), collaborating with leaders like Dr. Francesca Tavazza and Prof. Kristin Persson. Since 2018, she has been a faculty member at ASU, where she also contributes as a graduate mentor and research leader. Beyond teaching and research, she serves on editorial boards, national committees, and plays an active role in shaping research programs in the DOE Energy Frontier Research Center and TMS divisions.

🔬 Contributions and Research Focus

Dr. Singh specializes in computational materials discovery, leveraging density functional theory (DFT), GW-BSE methods, and machine learning to uncover materials for photocatalysis, solar energy, and 2D electronics. She has developed high-throughput workflows like pyGWBSE, enabling scalable simulations for optoelectronic properties. Her notable contributions include predictive models for nanoscroll formation, ultra-wide band gap semiconductors, and surface film protectiveness. She is a pioneer in integrating AI techniques with first-principles simulations, pushing the boundaries of how materials are discovered and optimized for real-world applications, with her work often featured in high-impact journals like npj Computational Materials and Advanced Functional Materials.

🌍 Impact and Influence

With over 4,300 citations, an h-index of 25, and continuous recognition in global venues, Dr. Singh’s influence is widespread. Her research has made foundational contributions to photocatalytic energy materials, grain boundary physics, and 2D nanomaterials. She has mentored students who have gone on to win prestigious poster and research awards, reflecting her impact as an educator and scientist. Invited to give keynote speeches and colloquia across institutions, from Caltech to international webinars, she is recognized as a thought leader in her field. She plays a key role in shaping policy and research strategy through MaRDA, DOE, and TMS platforms.

📊 Academic Cites

Dr. Singh’s work has been published in top-tier journals like npj 2D Materials & Applications, Nano Letters, and Annual Review of Condensed Matter Physics. Her publications are frequently cited, reflecting both depth and breadth of research impact across fields including computational materials science, nanotechnology, and machine learning in physics. Her most cited works address CO₂ reduction photocatalysts, vibrational EELS theory, and strain-induced nanoscrolls. As of March 2025, her Google Scholar profile records 4,396 citations, a 25 h-index, and 35 i10-index, a clear testament to the lasting relevance and utility of her contributions in cutting-edge research.

🧪 Research Skills

Dr. Singh brings expertise in first-principles simulations, high-throughput computing, and machine learning for materials design. She has built custom computational workflows like pyGWBSE and developed data-driven algorithms for stability and performance prediction. Her skillset includes GW-BSE optical simulations, phonon and defect state analysis, and interface science. She collaborates with both theory and experiment teams, enhancing the real-world applicability of her computational models. Proficient in Python, VASP, Quantum ESPRESSO, and emerging AI frameworks, her skills position her at the frontier of materials informatics, enabling novel discoveries in photocatalysis, electronics, and energy storage.

👩‍🏫 Teaching Experience

As an Assistant Professor at ASU, Dr. Singh has taught and mentored students in Physics and Materials Science, often integrating cutting-edge research topics into her coursework. Her mentorship has led to student-led publications, poster awards, and graduate research accolades. She actively supervises Ph.D. students, guiding them through interdisciplinary research spanning condensed matter physics, AI in materials, and 2D materials design. Beyond classroom teaching, she regularly delivers technical workshops, participates in graduate admissions, and contributes to curriculum development. Her commitment to fostering the next generation of scientists is evident in her consistent student-centered approach.

🏆 Awards and Honors

Dr. Singh has earned numerous national and institutional accolades, including the 2023 DOE Early Career Research Award, the 2024 TMS Young Leaders Professional Development Award, and several graduate fellowships from Cornell and Dow Chemical. She has been recognized for her contributions to women in applied physics, being featured in special issues and highlighted by AIP. Her students have also received competitive honors, reflecting her impact as a mentor. These awards underscore her leadership, innovation, and dedication to excellence in research and education, solidifying her status as a standout researcher in materials physics and computational science.

🔮 Legacy and Future Contributions

Dr. Singh is on a trajectory to become a defining voice in AI-enabled materials design and computational physics. Her legacy will likely include tools and frameworks that democratize high-performance computing for materials discovery. As she continues to shape research agendas at DOE centers and through editorial influence, her work will foster sustainable energy solutions, new semiconductor technologies, and broader STEM participation. With a proven record of mentoring, publishing, and innovating, Dr. Singh is building a future where data, physics, and computation converge to revolutionize how materials power the world.

Top Noted Publications

Many-body physics and machine learning enabled discovery of promising solar materials
  • Authors: T. Biswas, A. Gupta, and A. K. Singh*
    Journal: RSC Advances
    Year: 2025
Predicting the structure and stability of oxide nanoscrolls from dichalcogenide precursors
  • Authors: A. Gupta, and A. K. Singh*
    Journal: APL Materials
    Year: 2025
Atomic-Resolution Mapping of Localized Phonon Modes at Grain Boundaries
  • Authors: B. Haas, T. M. Boland, C. Elsasser, A. K. Singh, K. March, J. Barthel, C. T. Koch, and P. Rez
    Journal: Nano Letters
    Year: 2023
Ab Initio-Based Metric for Predicting the Protectiveness of Surface Films in Aqueous Media
  • Authors: R. Gorelik, and A. K. Singh*
    Journal: npj Materials Degradation
    Year: 2023
pyGWBSE: A High Throughput Workflow Package for GW-BSE Calculations
  • Authors: T. Biswas, and A. K. Singh*
    Journal: npj Computational Materials
    Year: 2023

 

 

Vivek Kumar Jain | Computational Methods | Best Researcher Award

Assoc. Prof. Dr. Vivek Kumar Jain | Computational Methods | Best Researcher Award

Associate Professor at Career Point University Kota | India

Dr. Vivek Kumar Jain is an accomplished Associate Professor of Physics at the School of Basic and Applied Sciences, Career Point University, Kota, Rajasthan. With a Ph.D. from Mohanlal Sukhadia University, he specializes in electronic structure, magnetic properties, and material science. He actively participates in academic committees including IQAC, NAAC, and IPR Cell. Dr. Jain’s academic journey reflects dedication to both teaching and research, contributing significantly to physics education and innovative materials research.

👨‍🎓Profile

Google scholar

Scopus

ORCID

📚 Early Academic Pursuits

Dr. Jain’s academic foundation was laid in Rajasthan, completing his B.Sc. and M.Sc. in Physics from Dayanand Saraswati University, Ajmer. He earned his Ph.D. in 2018 focusing on the electronic and magnetic properties of intermetallic alloys. Alongside physics, he gained certifications in Information Technology (RSCIT) and a Diploma in IT, showcasing a versatile skill set. His early accolades in science and cultural competitions highlight a strong academic and extracurricular background from school through college.

💼 Professional Endeavors

Dr. Jain has over 15 years of teaching experience, beginning as an assistant professor at premier institutes like Poornima College of Engineering and Swami Keshwanand Institute. He currently serves as an Associate Professor at Career Point University since 2022. Throughout his career, he has held roles such as admission counselor, examination coordinator, and committee member for NAAC and BOS, reflecting his deep engagement in academic governance and student mentoring.

🔬 Contributions and Research Focus

His research primarily focuses on the first-principles computational studies of Heusler alloys and spintronic materials, investigating their structural, magnetic, elastic, and optical properties. Dr. Jain has authored numerous publications in prestigious journals like Journal of Electronic Materials and Journal of Superconductivity and Novel Magnetism. He has also contributed to studies on nanomaterials and electronic devices, further enriching materials science research.

🌟 Impact and Influence

Dr. Jain’s work has made significant strides in advancing the understanding of spin gapless semiconductors and half-metallic materials vital for spintronics and electronic applications. His research outputs have influenced both theoretical frameworks and experimental approaches in the field. Additionally, his active participation in patent publications demonstrates his commitment to applied sciences and innovation, bridging academic research with practical technologies.

📈 Academic Cites

With numerous publications in renowned international journals by publishers such as Springer and Elsevier, Dr. Jain’s research has garnered wide academic recognition. His collaborative work with experts and students has resulted in over 20 impactful journal papers and several conference proceedings. This body of work has contributed to the scientific community’s knowledge on electronic materials and inspired ongoing research in magnetism and material science.

🛠️ Research Skills

Dr. Jain excels in first-principles calculations, density functional theory (DFT), and computational material science. His expertise includes electronic structure analysis, magnetic property evaluation, and optical behavior studies of intermetallic and Heusler alloys. Complementing his theoretical skills, he is proficient in academic writing, data analysis, and research supervision, mentoring Ph.D. scholars in cutting-edge materials research.

👩‍🏫 Teaching Experience

With over 15 years as a dedicated physics educator, Dr. Jain has taught undergraduate and postgraduate students across multiple institutions. His roles span laboratory coordination, admission counseling, and academic mentorship, fostering student engagement in science. He emphasizes a practical and research-oriented approach to teaching, integrating his research insights into the curriculum to enhance learning outcomes in material physics and computational methods.

🏆 Awards and Honors

Dr. Jain has earned multiple accolades from early schooling days, including first positions in science and essay competitions at district and college levels. He was awarded the prestigious UGC Basic Science Research Fellowship (BSR), reflecting his academic excellence. His recognition spans debate competitions and research fellowships, underpinning a well-rounded profile of scholarly achievements and extracurricular distinction.

🔮 Legacy and Future Contributions

Dr. Vivek Kumar Jain continues to impact the scientific community through cutting-edge research, academic leadership, and innovative teaching. His future plans include expanding work on spintronic devices, nanomaterials applications, and fostering interdisciplinary collaborations. With ongoing patents and book publications, he is poised to contribute significantly to next-generation materials science and physics education, inspiring future researchers and students.

Top Noted Publications

  • First principles investigations of Fe₂CrSi Heusler alloys by substitution of Co at Fe site
    Authors: Rakesh Jain, N. Lakshmi, Vivek Kumar Jain, Aarti R. Chandra
    Journal: AIP Conference Proceedings
    Year: 2018

  • Study of the electronic structure properties in Co₂NbIn/Sn Heusler alloys
    Authors: Aarti R. Chandra, Vishal Jain, N. Lakshmi, Rakesh Jain, Vivek Kumar Jain
    Journal: AIP Conference Proceedings
    Year: 2018

  • Structural, Electronic and Optical Properties of ZnO material using first principle calculation
    Authors: Jaiveer Singh, Vivek Kumar Jain
    Journal: Journal of Polymer and Composites
    Year: 2023

  • Effects of channel length and gate dielectric material on electrical properties of an IGZO TFT
    Authors: Archana Jain, Vivek Kumar Jain, Lalit Kumar Lata, Abhinandan Jain
    Journal: Materials Today: Proceedings
    Year: 2022

  • Effect of temperature and Co-addition on phase stability, magnetic and electronic properties of Fe₂₋ₓCoₓMnAl quaternary Heusler alloys for spintronics devices
    Authors: Ashok Yadav, Vivek Kumar Jain, Vinesh Attatappa, N. Lakshmi, Arun Sharma, Sarvesh Kumar Pandey, Shikha Awasthi
    Journal: Journal of Alloys and Compounds
    Year: 2025

 

 

Hoc Nguyen | Computational Methods | Best Researcher Award

Assoc. Prof. Dr. Hoc Nguyen | Computational Methods | Best Researcher Award

Senior Lecturer at Hanoi National University of Education | Vietnam

Nguyen Quang Hoc D, Assoc. Prof. PhD, is a distinguished academic and researcher in the field of Theoretical Physics. He currently holds the position of High-ranking Lecturer at the Department of Theoretical Physics, Faculty of Physics, at the Hanoi National University of Education, where he has contributed extensively to both teaching and research since 2009. His academic journey reflects a deep commitment to physics, spanning over decades of study and experience in solid-state physics, theoretical physics, and mechanical properties of materials.

👨‍🎓Profile

ORCID

Early Academic Pursuits 🎓

Nguyen Quang Hoc D embarked on his academic career with a solid foundation in solid-state physics, earning his Engineer degree from Hanoi University of Technology in 1982. His deep interest in theoretical physics led him to pursue advanced studies at the Hanoi National University of Education, where he completed his Master’s degree in Theoretical Physics in 1989 and later achieved his PhD in 1994, further honing his expertise in the field.

Professional Endeavors 💼

His professional career began in 1983 at the College of Teacher Training (now Haiphong University), where he served as a Lecturer and Head of the Physical Laboratory until 1994. Later, he joined the Institute of Nuclear Science and Technique, VINATOM in 1994, contributing as a Researcher. In 1997, he transitioned to the Department of Scientific Management, Faculty of Physics at Hanoi National University of Education, where he took on roles as an Expert and Principal Lecturer until he became an Associate Professor in 2009. Since 2016, he has remained in his current capacity as a High-ranking Lecturer at the university.

Contributions and Research Focus 🔬

Prof. Nguyen Quang Hoc D has focused much of his research on mechanical and thermodynamic properties of metals and interstitial alloys, particularly through the statistical moment method. His work has provided valuable insights into the transport properties of superconductors and how artificial nanostructures can influence these properties. His research has significant implications in materials science, particularly in understanding how nanostructures can improve the performance of superconductors in real-world applications.

Impact and Influence 🌍

With a career spanning more than three decades, Assoc. Prof. Nguyen Quang Hoc D has made lasting contributions to both academic research and teaching. His work on superconductors and nanostructure materials has advanced our understanding of the mechanical and thermodynamic properties of advanced materials. His findings have opened the door for further studies in nanotechnology and material science, positioning him as a leading figure in the development of advanced materials in the Vietnamese academic community.

Academic Citations 📚

Prof. Nguyen Quang Hoc D has earned recognition for his work, resulting in numerous academic citations and publications in international journals related to materials physics. His contributions to the field of theoretical physics have significantly impacted the understanding of interstitial alloys, superconductivity, and the behavior of metals under extreme conditions, making him a respected authority in his field.

Research Skills 🧠

Assoc. Prof. Nguyen Quang Hoc D possesses advanced research skills in statistical methods, materials characterization, and nanotechnology. His expertise includes the application of the statistical moment method to study the thermodynamic behavior of materials, allowing him to analyze and predict the mechanical properties of metals and alloys under various conditions. He has also worked on superconductivity, making contributions to transport properties and the influence of nanostructure pinning on type-II superconductors.

Teaching Experience 👨‍🏫

Assoc. Prof. Nguyen Quang Hoc D has a wealth of teaching experience, spanning over two decades at the Hanoi National University of Education. He has taught a range of undergraduate and graduate courses in theoretical physics and solid-state physics, providing students with foundational knowledge while also challenging them with cutting-edge concepts in the field. His role as a mentor and principal lecturer has helped shape the next generation of physicists and scientists in Vietnam.

Awards and Honors 🏅

Throughout his career, Assoc. Prof. Nguyen Quang Hoc D has been the recipient of various awards and honors in recognition of his contributions to the field of physics. His dedication to both research and teaching has earned him respect within the academic community, and he continues to inspire those around him with his innovative research and commitment to excellence.

Legacy and Future Contributions 🌱

As Assoc. Prof. Nguyen Quang Hoc D continues his work at Hanoi National University of Education, his legacy remains rooted in his innovative research, teaching dedication, and academic leadership. Moving forward, he is expected to continue influencing the field of material science, particularly in the realms of superconductivity and nanotechnology. His future contributions will undoubtedly lead to advancements in the understanding of metals, alloys, and superconductive materials, strengthening the scientific community in Vietnam and beyond.

Publications Top Notes

On the Melting of Crystal Under Compression: SMM Fundamental Theory and its Application to Laser Materials Processing

  • Authors: Nguyen Quang Hoc, Le Hong Viet
    Journal: Transactions of the Indian Institute of Metals
    Year: 2025

Theoretical predictions of thermodynamic properties, elastic deformation, HCP-FCC structural phase transition and melting of iron at high temperatures up to 18000 K and high pressures up to 4000 GPa

  • Authors: Nguyen Quang Hoc, Nguyen Duc Trung, Hua Xuan Dat, Le Thu Lam
    Journal: Physics Letters A
    Year: 2025

Correction: Thermodynamic properties of perovskite MgSiO3 with cubic structure under extreme conditions

  • Authors: Quang Hoc Nguyen, Nhi Quynh Ngo, Thi Mai Dao, Cong Vien Tran, Thi Thu Tra Lai, Thi Van Anh Le, Thi Thuy An Nguyen
    Journal: The European Physical Journal B
    Year: 2024

Thermodynamic properties of perovskite MgSiO3 with cubic structure under extreme conditions

  • Authors: Hoc Quang Nguyen, Nhi Quynh Ngo, Mai Thi Dao, Vien Cong Tran, Tra Thi Thu Lai, Anh Thi Van Le, An Thi Thuy Nguyen
    Journal: The European Physical Journal B
    Year: 2024

Study on Remelting of Crystal Under Extreme Conditions

  • Authors: Hoc Quang Nguyen, Huyen Thanh Thi Tran, Nhi Quynh Ngo, Mai Thi Dao, Phong Khac Nguyen
    Journal: Transactions of the Indian Institute of Metals
    Year: 2024

 

 

Quynh Anh Thi Nguyen | Computational Methods | Best Researcher Award

Dr. Quynh Anh Thi Nguyen | Computational Methods | Best Researcher Award

Researcher at University of Ulsan | South Korea

Quynh Anh Thi Nguyen is a doctoral researcher at the University of Ulsan (UOU), South Korea, where she is pursuing a Ph.D. in physics under the supervision of Prof. Sung Hyon “Sonny” Rhim. Her research primarily focuses on spintronics and first-principles calculations in tungsten (W) alloys. With a strong academic background, she has excelled in her field, maintaining a GPA of 4.17/4.5 during her doctoral studies and a similar academic achievement in her undergraduate studies.

👨‍🎓Profile

Google scholar

Scopus

🎓 Early Academic Pursuits

Nguyen’s academic journey began at Hanoi National University of Education (HNUE), Vietnam, where she completed her Bachelor’s degree in Physics with a thesis on the melting behavior of substitution alloys under pressure. During her undergraduate years (2013-2017), she was consistently ranked as an excellent student and earned recognition in scientific conferences. Her academic foundation set the stage for her future exploration in computational physics and materials science.

💼 Professional Endeavors

Since 2017, Nguyen has been pursuing her Doctoral degree at the University of Ulsan (UOU), South Korea. Under the mentorship of Prof. Sung Hyon Rhim, her research is centered on the study of spintronics in W alloys and the magnetic properties of Heusler compounds. She has delved into critical aspects of spin Hall conductivity, orbital Hall conductivity, and magnetism, contributing to the understanding of materials used in next-generation electronic devices like spintronic sensors and memory devices.

Contributions and Research Focus 🔬

Quynh Anh’s research mainly explores the Spin Hall conductivity and orbital Hall effects in various materials, including transition metals, Heusler compounds, and tetragonal alloys. Her work on spintronics—specifically related to the spin-orbit torque efficiency of materials like β-W heterojunctions—has led to several high-impact publications. One of her major contributions is the study of the spin Hall conductivity in W-Si alloys, which has significant implications for spintronic devices and energy-efficient electronics.

Her current research includes W-N alloys, and the impact of Ti substitution on β-W, both of which are preparing for publication.

Impact and Influence 🌍

Quynh Anh’s work is making a significant impact on the field of spintronics and material physics, especially with her first-principles calculations on the properties of W alloys. By exploring magnetism and conductivity in alloys, she is contributing to the development of advanced materials with better performance in electronics and magnetic devices. Her research aids in the creation of energy-efficient technologies and high-performance electronic components, positioning her as a leading researcher in her field.

Research Skills 💻

Quynh Anh possesses a strong set of technical skills that aid her research, including expertise in software such as Photoshop, Origin, Matlab, Python, and advanced tools like VASP, Wannier90, and OpenMx for computational physics. These skills have enabled her to conduct first-principles calculations and detailed simulations, giving her a deep understanding of material properties and quantum phenomena.

Awards and Honors 🏆

Quynh Anh’s work has been widely recognized:

  • Best Poster Award at the International Conference on Magnetic and Superconducting Materials (2018) in Seoul, Korea.
  • Multiple Excellent Student awards during her undergraduate years.
  • Third Prize at the Student Conference Science Research (2017).

These honors underscore her exceptional academic performance and research contributions.

Legacy and Future Contributions 🌟

With her expertise in spintronics and material physics, Quynh Anh is set to continue making groundbreaking contributions to the field of advanced materials. Her research on spin Hall conductivity, orbital Hall effects, and magnetism will likely pave the way for future innovations in energy-efficient electronics and next-generation magnetic devices. Quynh Anh’s legacy will undoubtedly inspire future scientists to explore the untapped potentials of transition metal alloys and spintronic materials, ensuring her lasting impact in the world of physics and material science.

Publications Top Notes

Ti-alloyed β-W heterojunctions exhibiting spin-orbit torque switching at a wide operating temperature range

  • Authors: J. Lee, Q. A. T. Nguyen, D. Kim, S. H. Rhim, Y. K. Kim
    Journal: Applied Surface Science
    Year: 2025

Synergetic Modulation of Electronic Properties of Cobalt Oxide via “Tb” Single Atom for Uphill Urea and Water Electrolysis

  • Authors: S. Ajmal, A. Rasheed, W. Sheng, G. Dastgeer, Q. A. T. Nguyen, P. Wang, …
    Journal: Advanced Materials
    Year: 2025

Unlocking electrocatalytic dynamics with anti-MXene borides monolayers for nitrate reduction

  • Authors: T. H. Ho, Q. A. T. Nguyen, B. T. T. Le, S. G. Kim, W. Q. Bui
    Journal: Applied Surface Science
    Year: 2024

Spin Hall Conductivity of W100-xSix Alloys in A15 Structure: A Comprehensive Study

  • Authors: Q. A. T. Nguyen, S. H. Rhim
    Journal: Journal of Magnetics
    Year: 2024

Orbital-engineered anomalous Hall conductivity in stable full Heusler compounds: a pathway to optimized spintronics

  • Authors: Q. A. T. Nguyen, T. H. Ho, S. G. Kim, A. Kumar, V. Q. Bui
    Journal: Journal of Materials Chemistry C
    Year: 2024

 

 

 

Hosam M Gomaa | Material Science | Member

Dr. Hosam M Gomaa | Material Science | Member

PHD at Faculty of Science, Al-Azhar University, Cairo, Egypt

Dr. Hosam M. Gomaa, based in Giza, Egypt, is an accomplished physicist specializing in Solid State Physics. With a background from Al-Azhar University, Cairo, he has lectured extensively in Libya and Egypt, covering diverse topics from General Physics to Optics. Currently affiliated with the Pharaohs Higher Institute, his research spans Materials, Optics, and Physics, focusing on areas like Oxide Glasses and Nanomaterials. Dr. Gomaa is known for his expertise in Thermal Analysis and Spectral Techniques. He has been an integral part of prestigious scientific teams, contributing significantly to Mossbauer Effect and Nanoscience research labs.

Professional Profiles:

Educational Qualifications

B. Sc. of Physics, Physics Department, Faculty of Science, Al-Azhar University, Cairo, Egypt, 1999/2000 M. Sc. of Solid State Physics, Department of Physics, Faculty of Science, Al-Azhar University, Cairo, Egypt, 2005 Ph. D. of Solid State Physics, Department of Physics, Faculty of Science, Al-Azhar University, Cairo, Egypt, 2008

Statement of Previous Experience:

Formal Lecturer (Assistant Professor) of Physics, Department of Physics, Faculty of Arts and Sciences, Sert University, Libya, 2009-2015 Lecturer (Assistant Professor) of Engineering Physics, Department of Physics, Faculty of Engineering Technology, Sert University, Libya, 2009-2015 Formal Tutor (Assistant Professor) of Basic Sciences (Physics, Electrical Engineering, Fundamentals of Electronics, Optics), Optical Branch, High Institute of Optical Technology, Cairo, Egypt, 2016-2020

Research Focus:

Dr. Hosam M. Gomaa’s research primarily focuses on the optical and structural properties of various glass systems, with a particular emphasis on bismuth borate glasses. His work encompasses the investigation of dopants like zinc, calcium, and niobium, and their effects on linear and nonlinear optical parameters. Additionally, he explores the structural modifications induced by the inclusion of different metal oxides, such as vanadium, copper, and titanium. Dr. Gomaa’s research contributes significantly to the understanding of glass materials for optoelectronic applications and radiation shielding. His studies offer valuable insights into the development of novel glass compositions with tailored optical and functional properties.

Publications

  1. Non-zero θ13 and δCP phase with A4 flavor symmetry and deviations to tri-bi-maximal mixing via Z2 × Z2 invariant perturbations in the neutrino sector, Publication: 2024.
  2. Effect of replacing B2O3 with Dy2O3 on the structural, physical, and radiation shielding properties of sodium boroaluminate glass, Publication: 2024.
  3. Investigating La2O3-enriched glass compositions: thermal, optical, structural properties and Gamma-Ray shielding efficiency, Publication: 2024.
  4. Photoimpedance spectroscopy of ZnTe/ZnMnTe heterojunction for photodetector devices using Cole–Cole diagrams and relaxation time processPublication: 2023.
  5. Effect of BaO doping on the structural and optical properties of some cerium-copper sodium borate glasses, Publication: 2023.
  6. Estimate of the effect of adding CoCl 2 in different amounts on the structural, optical properties, and the radiation shielding ability of arsenic borate glasses containing Na+, Ca++, and Pb++ cations, Publication: 2023.
  7. New mathematical formulas for more accurate physical descriptions of the optical and optoelectric conductivities of an optical medium, Publication: 2023.
  8. Effect of Graphene Nanopowder on the Structural and Optical Characteristics of Lead Borovanadate Glass Containing Ca2+ and Na+ Cations, Publication: 2023.
  9. Structural properties, linear, and non-linear optical parameters of ternary Se80Te(20−x)Inx chalcogenide glass systemsAnálisis estructural y parámetros ópticos lineales y no lineales de sistemas ternarios de vidrio de calcogenuro de composición Se80Te(20-x)Inx, Publication: 2023.
  10. Toward a novel and accurate relationship between electrical and optical conductivity in opto-material sciences: New strategyPublication: 2022.

 

.

Houda Jebari | Materials Science | Member

Mrs. Houda Jebari | Materials Science | Member

PHD at Mohammed V University of Rabat, Morocco

Houda Jebari is a Ph.D. student in Physics specializing in Condensed Matter and Modeling of Systems at the Laboratory of Condensed Matter and Interdisciplinary Sciences (LaMCSci) at Mohammed V University of Rabat, Morocco. Her research focuses on experimental studies and theoretical calculations using Density Functional Theory (DFT) and Monte Carlo simulation. She investigates the structural, electronic, transport, mechanical, optical, and magnetic properties of various materials and 2D-materials for applications in spintronics, photovoltaics, optoelectronics, batteries, magnetic fields, photocatalysis, and magnetocalorics, with a long-term interest in environmental applications of multiferroic materials and 2D-materials.

Professional Profiles:

Education and Diploma:

Ph.D. in Physics (Condensed Matter and Modeling of Systems) Master’s degree in Computational Physics Bachelor’s degree in Physics General University Study’s degree in Physics (DEUG) High school degree in Mathematical Sciences A option

Professional Experiences:

Research internship at the LPCMIO Laboratory, Ecole Normal Supérieure Rabat Substitute professor of practical works at the Faculty of Sciences Rabat, Morocco

Scientific Communications:

Presented at various conferences including the LaMCScI Meeting and EURO-MEDITERRANEAN CONFERENCE ON MATERIALS AND RENEWABLE ENERGIES Oral and poster communications at international conferences Multiple articles submitted for publication in scientific journals

Skills

Computer Skills: Proficient in programming languages (C/C++/C#/FORTRAN), DFT codes (Akai-KKR, WIEN2K, QUANTUM ESPRESSO, CASTEP), operating systems (Windows, Linux), and other software such as 3DS Max and Unity. Soft Skills: Strong teamwork, motivation, flexibility, and time management. Experimental Skills: Experience in synthesis methods and characterization techniques including FT-IR spectroscopy, DSC, and dielectric measurement.

Research Focus:

Houda Jebari’s research focuses on theoretical investigations of various materials, particularly exploring their electronic, optical, and thermoelectric properties. She has contributed significantly to the study of halide perovskite compounds, such as AGeI2Br, for photovoltaic applications. Additionally, her work extends to the exploration of magnetocaloric properties in compounds like Bi25FeO40 and EuCrO3. Jebari’s research also encompasses the analysis of novel materials like MoS2 for hydrogen production and CsGeI2Br for optoelectronic applications. Through her studies, she aims to advance understanding and facilitate the practical applications of these materials in renewable energy and environmental technologies.

Publications 

  1. The investigation of the electronic, optical, and thermoelectric properties of the Ge‐based halide perovskite AGeI2Br (a = K, Rb, Cs) compound for a photovoltaic …, cited by: 26, Publication date: 2022.
  2. Theoretical investigation of electronic, magnetic and magnetocaloric properties of Bi25FeO40 compoundcited by: 12, Publication date: 2021.
  3. Structural, optical, dielectric, and magnetic properties of iron-sillenite Bi25FeO, cited by: 8, Publication date: 2022.
  4. First-principles calculations to investigate structural, electronic, optical, thermoelectric, magnetic, and magnetocaloric properties of the orthochromite EuCrO3, cited by: 4, Publication date: 2023.
  5. Tensile effect on photocatalytic and optoelectronic properties of MoS2 for hydrogen production: DFT study, cited by: 1, Publication date: 2024.
  6. Structural, Infrared and Raman Spectroscopy Reinvestigation, and Theoretical Optoelectronic Properties of Hydrazinium (1+) Hexafluorosilicate (N2H5) 2SiF6, Publication date: 2023.
  7. Insights into optoelectronic behaviors of novel double halide perovskites Cs2KInX6 (X= Br, Cl, I) for energy harvesting: First principal calculation, Publication date: 2024.
  8. First principal calculation of the physical proprieties of the ternary intermetallic compound Gd2Cu2Cd for magnetic refrigeration applications, Publication date: 2024.
  9. Analysis of the structural, electronic, optical and mechanical properties of CsGeI2Br under tensile and compressive strain for optoelectronic applications: A DFT computational …, Publication date: 2024.
  10. Photovoltaic and thermoelectric properties of Ag2MnGeS4_Kesterite: First-principal investigations, Publication date: 2023.

 

.