Hayriye SUNDU | High energy physics | Best Researcher Award

Prof. Hayriye SUNDU | High energy physics | Best Researcher Award

Professor at ISTANBUL MEDENIYET UNIVERSITY | Turkey

Assoc. Prof. Dr. Hayriye Sundu Pamuk is a seasoned theoretical physicist specializing in high energy physics and QCD sum rules, currently serving at Istanbul Medeniyet University. With over two decades of academic experience, she has made impactful contributions to the field of exotic hadrons, publishing extensively in high-impact journals. Her work spans theoretical predictions of heavy tetraquark states, hybrid mesons, and thermal properties of hadronic matter. She is recognized for her rigorous research, effective mentorship, and leadership roles in academia.

👨‍🎓Profile

Google scholar

Scopus

📘 Early Academic Pursuits

Dr. Hayriye Sundu Pamuk began her academic journey with a B.Sc. in Physics Education from Balıkesir University in 1998. Her passion for particle physics led her to Middle East Technical University (METU), where she completed both her M.Sc. and Ph.D. in High Energy Physics under the supervision of Prof. Dr. Erhan Onur İltan. Her graduate research focused on the Two Higgs Doublet Model (2HDM), addressing phenomena such as lepton flavor violation and the muon anomalous magnetic moment. These early explorations laid the theoretical groundwork for her future contributions in particle phenomenology and quantum field theory.

🧑‍🔬 Professional Endeavors

Her professional academic path includes notable roles at top institutions. From 2000 to 2007, she served as a research and teaching assistant at METU. In 2007, she joined Kocaeli University as a faculty member, advancing from Dr. Assistant to Associate Professor. Her tenure there spanned 16 years, enriched by administrative leadership and mentorship of graduate theses. In 2023, she transitioned to the Faculty of Engineering and Natural Sciences at Istanbul Medeniyet University, where she continues to lead innovative research and graduate instruction in advanced theoretical physics topics.

🔬 Contributions and Research Focus 

Dr. Sundu Pamuk’s primary research lies in the phenomenology of exotic hadrons, particularly tetraquarks and hybrid mesons, explored through QCD sum rules and thermal field theory. Her studies contribute to understanding the non-perturbative aspects of QCD, and she is often cited for theoretical analyses of fully-heavy quark systems such as bbcc and bcbc states. Her recent works  appearing in journals like Phys. Rev. D, Eur. Phys. J. C, and Phys. Lett. B are instrumental in predicting the mass spectra, decay constants, and thermal behaviors of these particles, bridging theory with potential experimental discovery.

🌍 Impact and Influence

Dr. Sundu Pamuk’s influence in high-energy physics is reflected in her collaborations across multiple institutions and countries, especially with leading researchers like K. Azizi and S.S. Agaev. Her papers are widely downloaded, cited, and reviewed within the theoretical particle physics community. As a graduate mentor, she has produced scholars contributing to academia and research. Her investigations are especially relevant in the era of LHC upgrades and heavy ion collisions, where her predictions guide experimental searches. Her administrative roles demonstrate her strategic vision for academic excellence and her commitment to building research capacity.

📈 Academic Citations

With more than 20 SCI-indexed publications in a short period (2023–2025), Dr. Sundu Pamuk has maintained a high publication density. Her articles in reputable journals such as Phys. Rev. D and Eur. Phys. J. C have garnered significant citations, particularly in areas involving exotic quark configurations. Her collaborative works on thermal properties of tetraquarks and decay mechanisms of hybrid mesons are frequently referenced by fellow theorists and computational physicists. Her academic footprint is steadily growing, with Google Scholar and ResearchGate profiles that reflect her influence, consistency, and scientific originality.

🛠️ Research Skills 

Dr. Sundu Pamuk demonstrates proficiency in computational techniques, particularly QCD sum rules, operator product expansion, and thermal field theory. She is adept at performing analytical derivations and numerical modeling, frequently applying them to predict hadron spectra, leptonic decay constants, and transition amplitudes. Her ability to bridge theoretical frameworks with real-world particle behavior makes her a sought-after collaborator. She also employs tools such as Mathematica, Maple, and other symbolic computation platforms. Her focus on rigor, reproducibility, and mathematical consistency has earned her strong credibility in quantum field theory and particle phenomenology.

👩‍🏫 Teaching Experience

An accomplished educator, Dr. Sundu Pamuk has taught a wide range of graduate and undergraduate courses, including Advanced Quantum Physics, Statistical Physics, Thermodynamics, and Electromagnetic Theory. She is noted for her clarity of explanation, student mentorship, and the ability to simplify complex physical concepts. At both Kocaeli University and Istanbul Medeniyet University, she has introduced innovative approaches in courses such as Numerical Methods in High Energy Physics. Her consistent engagement with students beyond lectures through thesis advising, research projects, and workshops reflects her commitment to fostering scientific curiosity and critical thinking.

🏆 Awards and Honors

Dr. Sundu Pamuk’s academic excellence has been formally recognized with multiple Scientific Achievement Prizes from Kocaeli University (2011, 2012, 2016, 2017, 2019, 2021). She also received the Honour Students Prize during her doctoral studies at METU in 2004, highlighting early promise. Her repeated honors reflect sustained research output, dedication to teaching, and service to the academic community. These accolades serve as evidence of institutional and peer recognition, affirming her status as a leading scholar in particle physics and a role model for younger scientists in Turkey and beyond.

🌟 Legacy and Future Contributions

As a leading figure in exotic hadron physics, Dr. Sundu Pamuk is poised to make lasting contributions to quantum chromodynamics and beyond-standard-model physics. Her future work is expected to delve into multi-quark dynamics at extreme conditions, relevant for astrophysical phenomena and collider experiments. Her legacy will also include her influence on physics education, as her former students continue to shape research in Turkey and globally. With a strong foundation and growing international collaborations, she is well-positioned to lead interdisciplinary initiatives, contribute to policy in science education, and inspire the next generation of physicists.

Top Noted Publications

Fully heavy asymmetric scalar tetraquarks

  • Authors: S.S. Agaev, K. Azizi, H. Sundu
    Journal: European Physical Journal A
    Year: 2025

Scalar fully-charm and bottom tetraquarks under extreme temperatures

  • Authors: A. Aydın, H. Sundu, J.Y. Süngü, E. Veli Veliev
    Journal: European Physical Journal C
    Year: 2025

Hidden charm-bottom structures bcb̄c̄: Axial-vector case

  • Authors: S.S. Agaev, K. Azizi, H. Sundu
    Journal: Physics Letters B
    Year: 2025

Properties of the tensor state bc b̄ c̄

  • Authors: S.S. Agaev, K. Azizi, H. Sundu
    Journal: Physical Review D
    Year: 2025

Decays of the light hybrid meson 1⁻⁺

  • Authors: G.D. Esmer, K. Azizi, H. Sundu, S. Türkmen
    Journal: Physical Review D
    Year: 2025

 

WAEL CHOUK | High energy physics | Young Scientist Award

Dr. WAEL CHOUK | High energy physics | Young Scientist Award

Post-Doc at Faculty of Sciences of Bizerte | Tunisia

Dr. Wael Chouk is a dedicated Tunisian physicist specializing in materials physics, particularly in the field of dielectric and superconducting materials. With a PhD earned from the Faculty of Sciences of Bizerte, University of Carthage, he has demonstrated a consistent track record of academic excellence, international research experience, and pedagogical commitment. His profile reflects a unique blend of technical expertise, research passion, and community involvement.

👨‍🎓Profile

Scopus

📘 Early Academic Pursuits

Dr. Chouk began his academic journey with a preparatory cycle in engineering (Math-Physics) from 2012 to 2015 at the Preparatory Institute for Engineering Studies, Nabeul. He then pursued a Fundamental Physics degree (2015–2017) and a Master’s in Physics (2017–2020), graduating with honors. His early research centered on materials structure and properties, laying the foundation for his future in high-impact experimental physics.

🧑‍🏫 Professional Endeavors

Wael’s career is marked by consistent involvement in academic teaching and research supervision. As a part-time lecturer at the Faculty of Sciences of Bizerte (2021–2022), he taught practical physics and later co-supervised Master’s research projects in 2023 and 2024. His teaching was not just instructional but also developmental, helping students build critical skills in dielectric materials and experimental analysis.

🔬 Contributions and Research Focus

His PhD work (2021–2024) explores the superconducting-supercapacitance transition in the complex ceramic YBa₂₋ₓCaₓCuβOδ, synthesized using the sol-gel method. His research involves advanced characterization techniques such as XRD, SEM, TEM, XPS, PPMS, and VSM, highlighting his expertise in materials synthesis and structural/magnetic analysis. His contributions to the field include two co-authored scientific papers on phase transitions and intrinsic permittivity in ceramic compounds.

🌍 Impact and Influence

Dr. Chouk has enhanced his research impact through international internships a two-month stay at BAU University in Turkey and a three-month program at ICMM in Madrid, part of CSIC. He has also presented at prestigious events like SMS’2024 and AdAMFM 2022, and showcased his work at the Innovation Fair by the ANPR, where his stand on electro-ceramics for high-energy-density capacitors demonstrated both academic relevance and real-world application.

📊 Academic Citations and Publications

Dr. Wael Chouk has authored notable publications including “Study of phase transition behavior and high dielectric properties in YBa₂₋ₓCaₓCu₃Oδ ceramics” and “Novel high intrinsic permittivity in new perovskite ceramic GdCa₂Cu₃Oδ”. These studies significantly contribute to the scientific understanding of ceramic-based high-performance materials, with impactful applications in electronics, energy storage, and superconductivity. His research enhances the academic literature and reflects a growing influence in the field of materials physics.

🧪 Research Skills

Dr. Wael Chouk demonstrates strong experimental and analytical skills, especially in material synthesis (sol-gel, ceramic fabrication) and advanced characterization techniques such as XRD, TEM, SEM, XPS, and EPR. He is also proficient in simulation and analysis tools including MATLAB, Origin, and Gaussian. His expertise in laboratory instrumentation and data interpretation equips him to contribute effectively to cross-disciplinary research and lead complex experimental projects, reflecting a robust and versatile research capability.

🧑‍🏫 Teaching Experience

His years as a part-time teacher and student supervisor reveal a solid commitment to academic mentorship. He has taught practical physics to undergraduate students and supported Master’s candidates in achieving their academic goals, especially in materials physics and dielectric behavior analysis.

🏅 Awards and Honors

While formal award titles are not specified, Dr. Wael Chouk’s participation in international conferences, prestigious research internships, and representation at innovation fairs reflect peer recognition and academic credibility. He holds valuable certifications in ISO 9001, ISO 50001, X-ray diffraction, project management, stress management, public speaking, and first aid. These accomplishments highlight his professional competence, leadership potential, and strong alignment with high research standards and institutional trust.

🌱 Legacy and Future Contributions

Dr. Wael Chouk is poised to leave a lasting impact on the field of applied materials physics. His future contributions are likely to lie at the intersection of ceramic materials, energy storage technologies, and magnetic-electrical coupling. With a strong foundation in both academic teaching and experimental research, he is a promising candidate for collaborative international projects, postdoctoral fellowships, and innovative research leadership.

Publications Top Notes

Study of phase transition behavior and high dielectric properties in YBa₂₋ₓCaₓCu₃Oδ ceramics

  • Authors: Wael Chouk, Khouloud Moualhi, Abdelhak Othmani, Mouldi Zouaoui
    Journal: Materials Chemistry and Physics
    Year: 2023

Novel high intrinsic permittivity in new perovskite ceramic GdCa₂Cu₃Oδ

  • Authors: Khouloud Moualhi, Wael Chouk, Youssef Moualhi, Abdelhak Othmani, Mouldi Zouaoui
    Journal: Materials chemistry and physics
    Year: 2024

Multifunctional chitosan/montmorillonite/TiO₂ nanocomposites: Correlating microstructure with dielectric and photocatalytic properties

  • Authors: Lahbib M., Mejri C., Bejaoui M., Chadha C., Oueslati A., Oueslati W.
    Journal: Journal of the Indian Chemical Society
    Year: 2025

Conduction mechanism investigation in YCa₂Cu₃Oδ colossal permittivity ceramics

  • Authors: Wael Chouk, Mohamed Annabi, Mouldi Zouaoui
    Journal: Results in Physics
    Year:2025

 

 

Yang Lei | High energy physics | Best Researcher Award

Prof. Yang Lei | High energy physics | Best Researcher Award

Associate Professor at Soochow University | China

Prof. Yang Lei is a distinguished theoretical physicist at the Institute of Advanced Study, Soochow University, specializing in black hole physics, holography, and quantum field theory. With extensive training and research experience from world-renowned institutions such as Peking University, Durham University, and Niels Bohr Institute, Prof. Lei is recognized for his cutting-edge work on AdS/CFT correspondence and non-relativistic holography, making him a rising voice in the global high-energy physics community.

👨‍🎓Profile

Scopus

ORCID

🎓 Early Academic Pursuits

Prof. Lei began his academic journey at the prestigious Yuanpei College, Peking University, earning his Bachelor’s degree in 2011, with a second major in Mathematics a testament to his foundational strength in formal theoretical reasoning. He pursued his MSc in Particles, Strings, and Cosmology at Durham University, supervised by Simon Ross, followed by a PhD in Mathematics, with a focus on Singularities in holographic non-relativistic spacetimes an area of deep relevance in modern quantum gravity.

👨‍🔬 Professional Endeavors

Following his PhD, Prof. Yang Lei embarked on an impressive journey through several prestigious postdoctoral positions at top-tier institutions including the Institute of Theoretical Physics, CAS, University of the Witwatersrand, Niels Bohr Institute, and Kavli Institute of Theoretical Science (KITS), UCAS. In 2022, he was appointed as an Associate Professor at Soochow University, where he continues to lead cutting-edge research and mentor young physicists, contributing meaningfully to the field of theoretical high-energy physics.

🔬 Contributions and Research Focus

Prof. Lei’s research is centered on black holes, holography, AdS/CFT duality, non-relativistic limits of field theories, and quantum gravity. His studies on spin matrix theory, EVH (Extremal Vanishing Horizon) black holes, and modular factorization in superconformal indices showcase his theoretical versatility and original insights into foundational questions of physics.

🌍 Impact and Influence

Prof. Lei has delivered more than 20 invited talks at prestigious international conferences, including String 2016, Tsinghua University, and Joburg Workshop on String Theory. His presence at academic forums and black hole workshops affirms his growing influence in the global theoretical physics community. He also demonstrates leadership in academic outreach through organizing workshops like the SUIAS HEP Workshop and KITS Summer School, promoting collaborative learning in high-energy physics.

📈 Academic Citations

While specific citation metrics were not detailed in the current profile, Prof. Lei’s consistent conference participation, grants awarded, and long-term collaborations with major institutions indicate a highly regarded academic presence, especially within holography and black hole research circles.

🛠️ Research Skills

Prof. Yang Lei possesses a sophisticated toolkit of theoretical and mathematical techniques, including AdS/CFT duality calculations, non-relativistic quantum field theory, spin matrix theory analysis, black hole thermodynamics, modular invariance, and superconformal indices, as well as advanced perturbation theory and resurgence. These research capabilities enable him to tackle some of the most complex and unsolved problems in quantum gravity and holographic dualities, reinforcing his role as a leading thinker in high-energy theoretical physics.

👨‍🏫 Teaching Experience

Prof. Yang Lei is a highly engaged educator, teaching core physics courses in English at Soochow University, such as Quantum Mechanics (Autumn 2023) and Solid State Physics (Spring 2023). He also contributed to the KITS Summer School, guiding students on black hole microstates and the information paradox. During his PhD, he served as a Teaching Assistant at Durham University, showcasing his well-rounded dedication to both academic instruction and research mentorship in theoretical physics.

🏅 Awards and Honors

Prof. Yang Lei‘s exceptional contributions have earned him prestigious awards and competitive grants, such as the National Natural Science Foundation of China Young Researcher Grant (2024–2026), the China Postdoc Surface Grant (2021–2022), and the Overseas Postdoc Introduction and Communication Grant (2016–2018). He also received the Peter Rowe Memorial Postgraduate Prize (2012) and the Durham Teaching and Learning Award (UK HEA Associate Fellowship, 2016). These accolades highlight his scholarly excellence, peer recognition, and international collaboration.

🌟 Legacy and Future Contributions

With a solid academic foundation, global collaborations, and an ever-expanding research portfolio, Prof. Yang Lei is on a trajectory to become a leading voice in quantum gravity and holography. His future contributions are expected to shape our understanding of black hole dynamics, non-AdS holography, and quantum field theories under extreme conditions. He is well-positioned to continue his impactful journey as a scholar, educator, and thought leader in modern theoretical physics.

Publications Top Notes

Conformal mapping of non-Lorentzian geometries in SU(1, 2) Conformal Field Theory

  • Authors: Stefano Baiguera, Troels Harmark, Yang Lei, Ziqi Yan
    Journal: Journal of High Energy Physics
    Year: 2025

Modularity in d > 2 free conformal field theory

  • Authors: Yang Lei, Sam van Leuven
    Journal: Journal of High Energy Physics
    Year: 2024

Quasinormal modes of C-metric from SCFTs

  • Authors: Yang Lei, Hongfei Shu, Kilar Zhang, Ruidong Zhu
    Journal: Journal of High Energy Physics
    Year: 2024

Modular factorization of superconformal indices

  • Authors: Vishnu Jejjala, Yang Lei, Sam van Leuven, Wei Li
    Journal: Journal of High Energy Physics
    Year: 2023

The Panorama of Spin Matrix theory

  • Authors: Stefano Baiguera, Troels Harmark, Yang Lei
    Journal: Journal of High Energy Physics
    Year: 2023

 

 

Jie Fan | Electroweak Physics | Best Researcher Award

Assoc. Prof. Dr. Jie Fan | Electroweak Physics | Best Researcher Award

Associate Researcher at Changchun University of Science and Technology  | China

Dr. Jie Fan is an Associate Researcher, Doctoral Supervisor, and Research Teacher at Changchun University of Science and Technology. Recognized as a High-Level D Talent in Jilin Province, Dr. Fan is a rising force in the field of semiconductor laser technology. With more than 30 academic publications and involvement in innovative laser device development, Dr. Fan is carving a significant niche in optoelectronic device research.

👨‍🎓Profile

Scopus

🎓 Early Academic Pursuits

Dr. Fan pursued advanced studies in semiconductor optoelectronics, laying a robust academic foundation in laser device physics and engineering. The academic journey was defined by an early focus on semiconductor light sources and beam quality enhancement, which later evolved into targeted, high-impact research directions.

💼 Professional Endeavors

Currently serving at the Changchun University of Science and Technology, Dr. Fan has taken on multiple roles including research leader, doctoral mentor, and project investigator. Leading 9 scientific research projects showcases not only scientific depth but also the ability to manage complex, long-term research efforts effectively.

🔬 Contributions and Research Focus

Dr. Fan’s core research revolves around high-power and high beam quality semiconductor laser technology. A standout contribution is the monolithic integration of DBR master oscillator and tapered power amplifier (MOPA) structure, enabling lasers with enhanced beam quality and peak power. Another key innovation is the development of dual-wavelength semiconductor laser devices using double Bragg grating diffraction feedback, achieving stable dual-output modes. Furthermore, Dr. Fan has addressed the challenge of transverse multi-lobe output in high-power lasers, enhancing near-fundamental mode performance—a vital step for real-world applications.

🌐 Impact and Influence

Despite a currently low citation index (1), the originality and applied relevance of Dr. Fan’s work present strong potential for future academic and industrial impact. The submission of 8 additional patents underlines continuous innovation and the intention to bridge research with practical solutions in optoelectronics.

📚 Academic Citations

With 27 SCI/Scopus-indexed journal articles, including contributions to Optics Letters and Optics Communications, Dr. Fan has made substantial efforts in academic dissemination. While the current citation index reflects early-stage impact, the volume and quality of publications indicate strong groundwork for rising academic influence.

🧠 Research Skills

Dr. Fan brings expertise in semiconductor laser modeling, structural integration, diffraction feedback design, and device fabrication. The ability to move from conceptual design to physical realization of complex laser systems showcases a rare combination of theoretical insight and experimental skill.

👨‍🏫 Teaching Experience

As a doctoral supervisor, Dr. Fan is deeply involved in mentoring graduate students and guiding cutting-edge research topics. The integration of teaching and research helps foster a new generation of optoelectronics researchers equipped with both academic rigor and applied skills.

🏆 Awards and Honors

Dr. Fan is listed among the High-Level D Talents in Jilin Province, recognizing his scientific excellence and research leadership. This designation is a testament to his growing status as a key contributor in China’s advanced optoelectronics research landscape.

🧬 Legacy and Future Contributions

Looking ahead, Dr. Fan is poised to further influence the semiconductor laser industry through scalable device designs and collaborative innovation. While more visibility through citations, industry partnerships, and global collaboration will enhance his profile, the foundational research already promises a lasting legacy in high-performance laser device engineering.

Publications Top Notes

Research on the Asymmetric Phase-Shift Laterally-Coupled DFB Semiconductor Lasers with High Single Longitudinal Mode Yield

  • Authors: Zhang, Naiyu; Qiu, Bocang; Zou, Yonggang; Li, Qingmin; Ma, Xiaohui
    Journal: Optics Express
    Year: 2025

Study on Mode Characteristics of Supersymmetric Transversally Coupled Array Semiconductor Lasers

  • Authors: Wang, Zelong; Fan, Jie; Zou, Yonggang; Li, Yan; Ma, Xiaohui
    Journal: Optics Communications
    Year: 2025

Thermal Characteristics Analysis of Multi-Material Composite Heat Sink Structure Based on VCSEL Array

  • Authors: Wang, Chenxin; Zou, Yonggang; Fan, Jie; Song, Yingmin; Liang, Hongjin
    Journal: Laser and Optoelectronics Progress
    Year: 2025

Near 1050 nm Laterally Coupled DFB Laser with Tightened-Ridge-Waveguide for Improving Grating Coupling Capability and Controlling Lateral Modes

  • Authors: Hou, Huilong; Fan, Jie; Fu, Xiyao; Zou, Yonggang; Ma, Xiaohui
    Journal: Optics Letters
    Year: 2025

Dual-Wavelength Composite Grating Semiconductor Laser for Raman Detection

  • Authors: Huang, Zhuoer; Zou, Yonggang; Fu, Xiyao; Wang, Xiaozhuo; Cheng, Biyao
    Journal: Optics and Laser Technology
    Year: 2025

 

 

Dieudonné NGA ONGODO | High energy physics | Best Researcher Award

Assist. Prof. Dr. Dieudonné NGA ONGODO | High energy physics | Best Researcher Award

University of Yaoundé I | Cameroon

Dr. Dieudonné NGA ONGODO is a Cameroonian nuclear physicist and Senior Lecturer at the University of Yaoundé I, Faculty of Science, Department of Physics. With over a decade of professional and academic engagement, Dr. Nga Ongodo stands out as a prominent scholar, researcher, and educator, whose work spans nuclear instrumentation, quantum mechanics, and radiation protection. His contributions are firmly rooted in both fundamental physics and applied technologies, making him a vital figure in the African and international scientific communities.

👨‍🎓Profile

Scopus 

ORCID

🎓 Early Academic Pursuits

Dr. Nga Ongodo’s academic foundation was laid with a Baccalaureate in Mathematics and Physics from Lycée d’Obala (2004–2005). He then enrolled at the University of Yaoundé I, completing his Undergraduate studies in Physics (2005–2010), followed by a Master’s Degree in Physics (2011–2013), and later earning a PhD in Nuclear Physics in 2020. His academic trajectory reflects a strong grounding in core and advanced physics disciplines, preparing him for a research-intensive career.

🧑‍🏫 Professional Endeavors

Over more than a decade, Dr. Nga Ongodo has built a distinguished academic career. Since May 2023, he serves as a Senior Lecturer at the University of Yaoundé I, having previously worked as an Assistant Lecturer (2021–2023) and Part-time Teacher (2014–2021) in the same department. Beyond academia, he also lectures at Institut Universitaire la Vision and previously at Institut Universitaire Sup Prépa, further demonstrating his commitment to educational development. Additionally, he plays a pivotal role in public contract regulation as a recognized expert for both the Regulatory Agency of Public Contracts (ARMP) and the Ministry of Public Contracts.

🧪 Contributions and Research Focus

Dr. Nga Ongodo is a dynamic and innovative researcher whose work spans several cutting-edge domains in physics. His expertise includes nuclear instrumentation, FPGA systems, digital signal and pulse processing (DSP, DPP), and radiation dosimetry. He has also contributed to the use of artificial neural networks in analyzing mass spectra, and explores quantum mechanics and SU(3) symmetry through advanced mathematical models. By integrating fractional calculus, Bohr Hamiltonian formalism, and quark models, he provides deep insight into atomic nuclei and particle interactions. His research bridges theory and application, advancing nuclear physics both locally and globally.

🌍 Impact and Influence

Dr. Nga Ongodo’s scientific influence transcends national borders. He has participated in prominent international workshops and seminars, including the African School of Fundamental Physics (Rwanda, 2016) and IAEA-AFRA training sessions across Cameroon and Ethiopia. His groundbreaking publications are featured in top-tier journals such as the European Physical Journal, Modern Physics Letters, and the International Journal of Modern Physics, attesting to the global relevance and visibility of his work.

📈 Academic Citations

With 13 peer-reviewed articles published between 2019 and 2025, Dr. Nga Ongodo’s work has received increasing academic attention. He has co-authored papers on topics including heavy pentaquark masses, Bohr Hamiltonian models, and charmonium resonances using both classical physics and AI techniques. His collaborations with other leading African physicists highlight his role as a central figure in nuclear modeling and quantum structure analysis.

🛠️ Research Skills

Dr. Nga Ongodo’s research expertise is deeply rooted in a diverse and robust technical skill set that empowers both his investigative pursuits and pedagogical approach. He possesses advanced mastery in nuclear and numerical electronics, as well as specialized experience in detector electronics and FPGA (Field Programmable Gate Array) systems, which are vital for real-time data acquisition and signal processing in nuclear experiments. His strong foundation in mathematical modeling, particularly through sophisticated frameworks such as the Nikiforov–Uvarov and Heun methods, allows him to derive analytical solutions for complex quantum systems.

👨‍🏫 Teaching Experience

A passionate and student-centered educator, Dr. Nga Ongodo has taught an extensive range of subjects including Quantum Physics, Electromagnetism, Fluid Mechanics, Thermodynamics, and Radiation Protection. He is well-versed in both theoretical instruction and practical laboratory supervision. His active engagement in pedagogical development seminars, such as the 2022 Competency-Based Teaching Workshop, showcases his dedication to educational innovation and student success.

🏅 Awards and Honors

While formal awards are not explicitly listed, Dr. Nga Ongodo’s appointments and invited participation in elite research events, including those organized by C.E.T.I.C and the IAEA, serve as implicit recognition of his expertise and leadership. His invitation to speak at the 2025 Radiological Protection Workshop in Cameroon underscores his role as a national thought leader in nuclear safety and public health.

🚀 Legacy and Future Contributions

Looking ahead, Dr. Nga Ongodo is set to play an even more significant role in African scientific development, particularly in areas of radiation protection, data-driven nuclear modeling, and sustainable electronics for physics research. His recent work involving Artificial Neural Networks, topological quantum mechanics, and quantum gravity analogues points to a future of interdisciplinary research that bridges AI, quantum systems, and high-energy physics. His legacy will not only be defined by the depth of his research, but also by his transformational impact on Cameroon’s scientific infrastructure, his mentorship of emerging scholars, and his efforts to elevate African research onto the global stage.

Publications Top Notes

Effect of spin-spin interaction and fractional order on heavy pentaquark masses under topological defect space-times

  • Authors: D. Nga Ongodo, A. A. Atangana Likéné, J. M. Ema’a Ema’a, P. Ele Abiama, G. H. Ben-Bolie
    Journal: The European Physical Journal C
    Year: 2025

Hyperbolic tangent form of sextic potential in Bohr Hamiltonian: Analytical approach via extended Nikiforov–Uvarov and Heun equations

  • Authors: D. Nga Ongodo, A. Atangana Likéné, A. Zarma, J. M. Ema’a Ema’a, P. Ele Abiama, G. H. Ben-Bolie
    Journal: International Journal of Modern Physics E
    Year: 2025

Electric quadrupole transitions of triaxial nuclei via the Bohr Hamiltonian within the screened Kratzer–Hellmann potential

  • Authors: D. Nga Ongodo, A. A. Atangana Likéné, A. Zarma, S. Haman Adama, J. M. Ema’a Ema’a, G. H. Ben-Bolie
    Journal: The European Physical Journal Plus
    Year: 2025

Non-compact extra dimensions and flavor dependence of cc̄ and bb̄ mesons masses in a hot QCD medium with lattice, LO and NLO parametrizations of the Debye mass

  • Authors: A. A. Atangana Likéné, L. B. Ungem, D. C. Mbah, D. Nga Ongodo, R. Houzibe, F. B. Djeuyi Ndafeun
    Journal: Modern Physics Letters A
    Year: 2025

Quantum chromodynamics Lagrangian density and SU(3) gauge symmetry: A fractional approach

  • Authors: A. A. Atangana Likéné, D. Nga Ongodo, P. Mah Tsila, A. Atangana, G. H. Ben-Bolie
    Journal: Modern Physics Letters A
    Year: 2024

Hanyang Li | High energy physics | Best Researcher Award

Prof. Hanyang Li | High energy physics | Best Researcher Award

Lab Director at Harbin Engineering University | China

Dr. Hanyang Li is a dedicated researcher and professor specializing in optical microcavity and laser propulsion technologies. With a background rooted in chemical engineering and physical chemistry, his journey spans top academic institutions and international collaborations. Currently a Professor at the College of Physics and Optoelectronic Engineering, Harbin Engineering University, Dr. Li integrates scientific innovation with practical applications, mentoring the next generation of photonics researchers and contributing extensively to high-impact journals.

👨‍🎓Profile

Scopus

📘 Early Academic Pursuits

Dr. Li’s academic foundation was laid at Heilongjiang University, where he earned a B.S. in Applied Chemistry (2003–2007). He then pursued a M.Eng. in Physical Chemistry (2007–2009) followed by a Ph.D. in Chemical Engineering and Technology (2009–2015) at the prestigious Harbin Institute of Technology. These formative years shaped his deep interest in optical systems, nanostructures, and laser-matter interactions, driving him toward cutting-edge interdisciplinary research.

💼 Professional Endeavors

Dr. Li has demonstrated exceptional academic progression, beginning as a Lecturer in the College of Science at Harbin Engineering University (2017–2021), rising to Associate Professor (2021–2024), and ultimately Professor in 2024. His global outlook is reflected in his role as a Visiting Research Fellow at the University of North Carolina at Charlotte (USA) from 2019–2020. These roles have not only enriched his teaching and research but also expanded his international collaborations.

🔬 Contributions and Research Focus

Dr. Li’s research revolves around fiber sensors, microresonators, whispering-gallery modes (WGM), and nano/microlaser systems. He has led groundbreaking projects funded by the National Natural Science Foundation of China, the Heilongjiang Provincial Foundation, and the China Postdoctoral Science Foundation. His work in co-doped nanofiber lasers, enzyme reaction monitoring in microcavities, and micropropulsion dynamics continues to push the boundaries of photonic innovation.

🌍 Impact and Influence

With over 110 SCI-indexed publications, including more than 50 as first/corresponding author, Dr. Li has significantly influenced the fields of microcavity optics and laser-based sensing systems. His H-index of 21 attests to the scholarly impact of his work. Two of his papers have earned cover-page recognition in ACS Photonics and Liquid Crystals, underscoring their novelty and scientific relevance. He also serves as a technical consultant to Harbin Kaimeisi Technology Co., Ltd., bridging academic research with industrial development.

📊 Academic Citations

Dr. Li’s research is widely cited in international journals, particularly in optics, nanomaterials, and sensor technologies. His works in Optics Letters, ACS Photonics, Applied Physics Letters, and Journal of Materials Chemistry C are frequently referenced, reflecting his status as a thought leader in integrated photonic systems and functional microdevices.

🧪 Research Skills

Dr. Li’s research arsenal includes optical design, microresonator fabrication, laser pulse diagnostics, and nanomaterial synthesis. He is adept in developing fiber-optic devices, performing real-time sensing, and constructing phase-change materials-based systems. His strength lies in multidisciplinary integration, combining chemistry, physics, and engineering to address fundamental and applied challenges.

📚 Teaching Experience

Since 2021, Dr. Li has taught “Microcavity Photonics Devices and Applications” at the graduate level and “Microcavity Optics” for undergraduates at Harbin Engineering University. These courses are crafted to empower students with both theoretical insight and experimental practice, preparing them to excel in modern photonics research.

🏅 Awards and Honors

Dr. Li’s academic excellence has been recognized through multiple research grants and fellowships, including support from the China Postdoctoral Science Foundation and the Natural Science Foundation of Heilongjiang Province. He is also an esteemed member of the Chinese Society for Optical Engineering, further attesting to his reputation in the scientific community.

🌟 Legacy and Future Contributions

Looking ahead, Dr. Li aims to deepen his work on optical microdevices and laser-driven micropropulsion, with plans to develop next-gen photonic systems for biomedical, aerospace, and energy applications. His commitment to scientific excellence, industry collaboration, and student mentorship positions him as a key figure in shaping the future of photonic technology in China and beyond.

Publications Top Notes

The experimental study on concentration disturbance pattern and conversion mechanism of underwater plasma laser propulsion

  • Authors: Y. Ge, X. Tang, Y. Chen, X. Yang, H. Li
    Journal: Optics and Lasers in Engineering
    Year: 2025

Fiber Bragg grating-based method for underwater object angular measurement

  • Authors: H. Li, Y. Song, J. Wang, X. Dou
    Journal: Measurement Science and Technology
    Year: 2025

Observation of microsphere clusters separated by pulsed laser in water environment

  • Authors: Y. Ge, G. Zhou, X. Yang, J. Sun, H. Li
    Journal: Laser Physics
    Year: 2025

Observation of spectral splitting of whispering-gallery modes in asymmetrical photonic molecules

  • Authors: J. Wang, J. Sun, Y. Zhang, Z.I. Liu, H. Li
    Journal: Optics Letters
    Year: 2024

Bragg grating-based all-optical continuous two-dimensional force perceptron

  • Authors: H. Li, Z. Wu, J. Dai, G. Zhou, J. Sun
    Journal: Measurement Science and Technology
    Year: 2024

Mohammed salah Abd El minem | High energy physics | Physics Excellence in Industry Award

Dr. Mohammed salah Abd El minem | High energy physics | Physics Excellence in Industry Award

Assistant Professor at Physics Department, Faculty of Science, Al-Azhar University, Egypt

Mohamed Salah Abdel-Moneim Youssef is an Assistant Lecturer at the Department of Physics at Al-Azhar University, Assiut, Egypt. He holds a Bachelor’s degree in Physics (2012) and a Master’s degree from Al-Azhar University with a focus on optical properties of BiI3 thin films. He has been actively involved in teaching, research, and scientific activities, contributing significantly to the field of material science and optoelectronics.

👨‍🎓Profile

Google scholar

ORCID

Early Academic Pursuits 🎓

Mohamed began his academic journey at Al-Azhar University, where he earned his Bachelor’s degree in Physics in 2012. His academic prowess and commitment to the field were recognized when he was appointed as a Demonstrator in the Department of Physics in 2018. This early appointment demonstrated his passion for physics and his readiness to contribute to the academic community.

Professional Endeavors 🏢

Since 2018, Mohamed has worked as an Assistant Lecturer at Al-Azhar University, where he teaches both undergraduate and preparatory dental students. His teaching responsibilities include specialized courses such as Solid-State Physics, Electronics, Semiconductors, Nuclear Physics, and Modern Physics. His teaching experience reflects his broad knowledge of physics and his ability to simplify complex concepts for diverse student groups.

Contributions and Research Focus 🔬

Mohamed’s primary research focuses on material science and optoelectronics, particularly the structural and optical properties of thin films. His Master’s thesis was centered around the impact of gamma-irradiation on BiI3 thin films, aiming to improve optoelectronic devices. Two notable publications emerged from this research, contributing to the understanding of optical parameters in photovoltaic and nonlinear applications.

His PhD research continued to explore materials science, specifically the substitution of BaTiO3 in lead borosilicate glass for ultrasonic applications, published in the Journal of Materials Science: Materials in Electronics.

Impact and Influence 🌍

Through his research and academic contributions, Mohamed has played a key role in advancing the study of materials for optoelectronic applications. His work on BiI3 thin films and BaTiO3-substituted borosilicate glass has the potential to impact industries related to photovoltaics, optoelectronics, and ultrasonic technologies. By focusing on improving material properties, his research has practical applications that can enhance the performance and efficiency of various technologies.

Academic Cites 📚

Mohamed’s research has garnered recognition in prominent scientific journals. His paper on BaTiO3 substitution in borosilicate glass was published in the Journal of Materials Science: Materials in Electronics (35 (22), 1534). Additionally, his Master’s research resulted in two significant papers that have been well-received in the field of optoelectronics. These publications contribute to the growing body of knowledge in the field of materials science and physics.

Research Skills 🔍

Mohamed is proficient in a variety of research methodologies, including material characterization techniques such as ball milling, gamma-irradiation, and thin film deposition. He has hands-on experience in structural and optical characterization of materials, specifically in the context of optoelectronic applications. His analytical skills and ability to synthesize complex data enable him to draw meaningful conclusions that enhance our understanding of material properties.

Teaching Experience 🎓

In addition to his research activities, Mohamed has been actively involved in teaching physics since 2018. He has taught a variety of courses, including both general physics and specialized courses in solid-state physics, semiconductors, and nuclear physics. His ability to communicate complex ideas clearly and his commitment to educating the next generation of scientists demonstrate his dedication to academic excellence.

Legacy and Future Contributions 🚀

Looking forward, Mohamed is poised to continue making significant contributions to materials science and optoelectronics. His ongoing research, particularly in optical and ultrasonic technologies, holds immense potential for future industrial applications. As he continues to expand his research, collaborate with other researchers, and enhance his teaching, Mohamed will likely leave a lasting impact on both the academic and industrial communities.

Publications Top Notes

Structural and optical investigations of multi-component lead-borosilicate glasses containing PbO, BaO, and TiO2

  • Authors: M. Salah, El Sayed Moustafa, A.A. Showahy
    Journal: Optical Materials
    Year: 2025

Influence of BaTiO3 substitution on structural and thermal response of lead borosilicate glass for ultrasonic applications

  • Authors: M. Salah, El Sayed Moustafa, A.A. Showahy
    Journal: Journal of Materials Science: Materials in Electronics
    Year: 2024

Influence of γ-irradiation dose on the structure, linear and nonlinear optical properties of BiI3 thick films for optoelectronics

  • Authors: AM Abdelnaeim, M Salah, E Massoud, A EL-Taher, ER Shaaban
    Journal: Digest Journal of Nanomaterials & Biostructures (DJNB)
    Year: 2022

Optical parameters of various thickness of bismuth (III) iodide thin films for photovoltaic and nonlinear applications

  • Authors: M Salah, A Abdelnaeim, S Makhlolf, A El-Taher, ER Shaaban
    Journal: International Journal of Thin Film Science & Technology
    Year: 2022

A new one-parameter lifetime distribution and its regression model with applications

  • Authors: MS Eliwa, E Altun, ZA Alhussain, EA Ahmed, MM Salah, HH Ahmed, …
    Journal: PLOS ONE
    Year: 2021

 

Shewa Getachew | High energy physics | Editorial Board Member

Mr. Shewa Getachew | High energy physics | Editorial Board Member

Lecturer at Wolkite University | Ethiopia

Shewa Getachew Mamo is a dedicated Physics Lecturer and researcher with a specialized focus on optical properties of nanocomposites, material science, refractive index, and group velocity. Passionate about advancing scientific knowledge, he is committed to both academic excellence and innovative research in the realm of condensed matter physics. His expertise extends to investigating local field enhancements, optical properties of nanostructures, and exploring nanoparticle-based materials and geometries.

👨‍🎓Profile

ORCID

Early Academic Pursuits 🎓

Shewa’s academic journey began at Wolkite University, where he earned his Bachelor’s degree in Physics (2016-2019) and later pursued a Master’s degree in Condensed Matter Physics (2022-2023). Throughout his education, he developed a strong foundation in experimental and theoretical physics, which propelled him into a career of teaching and research in the field.

Professional Endeavors 💼

Currently, Shewa serves as a Physics Teacher at Wolkite University (since December 2023). In this role, he is responsible for preparing and presenting undergraduate and sometimes postgraduate courses in various areas of physics, including mechanics, electromagnetism, thermodynamics, quantum mechanics, and material science. He plays a vital role in designing curricula, developing lesson plans, and selecting relevant textbooks to ensure effective learning outcomes. His academic influence extends to advising students on academic matters and guiding them through research projects.

Contributions and Research Focus 🔬

Shewa’s research focus is primarily on the optical properties of core-shell spherical nanocomposites and local field enhancements. His research aims to explore the interaction between optical fields and nanocomposites, as well as investigating the influence of depolarization on the local field enhancement factor in passive and active composites with pure metal spheroidal nanoinclusions. One of his notable research areas includes optical bistability in nanoparticle composites and the role of tunable dielectric cores in cylindrical core-shell nanocomposites.

Impact and Influence 🌍

Shewa’s research has led to significant contributions to the field of material science and nanotechnology, specifically in understanding the optical properties of nanostructured materials. His findings have been widely discussed in the scientific community, with numerous publications in prominent journals. He is committed to staying updated with the latest advancements in condensed matter physics and nanotechnology, consistently striving to push the boundaries of existing scientific knowledge.

Academic Cites 📚

Shewa’s work has been widely cited, with his contributions being recognized across several prestigious journals. His publications include studies such as:

  • Tsegaye, A., & Getachew, S. (2024). “Investigation Optical Properties of ZnTe@Ag Core-Shell Spherical Nanocomposites Within Varies Dielectric Host Matrices”. Advances in Materials, 13(4), 80-91.
  • Getachew, S. (2024). “Effect of Tunable Dielectric Core on Optical Bistability in Cylindrical Core-Shell Nanocomposites”. Advances in Condensed Matter Physics, 2024(1), 9911970.
  • Getachew, S. (2024). “Investigation of Refractive Index and Group Velocity Metal Coated Dielectric Spherical Nanocomposites”. Iranian Journal of Physics Research, 24(3), 75-87.

His academic citations are a testament to his research impact and scientific contributions.

Research Skills 🔍

Shewa possesses advanced knowledge in condensed matter physics, with strong analytical and problem-solving skills. He is proficient in a range of experimental and theoretical physics techniques. His technical expertise includes programs such as Matlab, Word, Excel, PowerPoint, OpenOffice, and Latex, and he is skilled in computer languages like Python, Fortran, and Gnuplot. He also has experience with Unix systems and software like xmgrace, showcasing his comprehensive research toolset.

Teaching Experience 📘

Shewa’s teaching experience is extensive, having taught various physics courses at the undergraduate and postgraduate levels. He designs engaging lesson plans and works closely with students to help them grasp key concepts in physics. By preparing and grading exams, assignments, and laboratory reports, he ensures students receive constructive feedback for their academic growth. His role as a mentor goes beyond the classroom, advising students on their academic and career paths and supervising their research projects.

Legacy and Future Contributions 🌱

Shewa is committed to leaving a lasting legacy in the fields of nanotechnology, material science, and condensed matter physics. His ongoing research will likely continue to make valuable contributions to the understanding of optical properties and nanocomposite materials. Looking ahead, Shewa is dedicated to mentoring the next generation of scientists and physicists, sharing his knowledge and advancing the boundaries of nanophysics and material science research. Through continuous publication and collaboration, his work is set to influence the scientific community for years to come.

Publications Top Notes

Effect of Tunable Dielectric Function of the Core on Optical Bistability in Small Spherical Metal-Dielectric Composite

  • Authors: Hawi Aboma, Shewa Getachew, Sisay Shewamare
    Journal: Ethiopian Journal of Applied Sciences
    Year: 2025

Investigation Optical Properties of ZnTe@Ag Core-Shell Spherical Nanocomposites Within Varies Dielectric Host Matrices

  • Authors: Tsegaye Atnaf, Shewa Getachew
    Journal: Advances in Materials
    Year: 2024

Investigating the Optical Bistability of Pure Spheroidal Nanoinclusions in Passive and Active Host Matrices

  • Authors: Shewa Getachew, Girma Berga
    Journal: Canadian Journal of Physics
    Year: 2024

Investigation of Refractive Index and Group Velocity Metal Coated Dielectric Spherical Nanocomposites Within Passive and Active Dielectric Cores

  • Authors: Shewa Getachew
    Journal: Iranian Journal of Physics Research (IJPR)
    Year: 2024

Effect of Tunable Dielectric Core on Optical Bistability in Cylindrical Core–Shell Nanocomposites

  • Authors: Shewa Getachew, Junjie Li
    Journal: Advances in Condensed Matter Physics
    Year: 2024

 

 

Song He | High energy physics | Best Researcher Award

Mr. Song He | High energy physics | Best Researcher Award

Ph.D. student at Huazhong University of Science and Technology | China

Song He is currently a Ph.D. student at Huazhong University of Science and Technology (HUST), specializing in novel radiation detectors and imaging techniques. He has contributed extensively to high-impact journals in the fields of material science and electronics, with innovative research in scintillator development. His work has led to groundbreaking discoveries in enhancing X-ray imaging and fast neutron imaging resolution.

👨‍🎓Profile

Scopus 

ORCID

Early Academic Pursuits 🎓

Song He’s academic journey began with a Bachelor of Engineering in Materials Science and Engineering from China University of Mining and Technology (2015-2019). He continued with a Master of Engineering in Materials and Physics from the same university (2019-2022). Currently, he is pursuing a Ph.D. in Electronic Science and Technology at HUST since 2022. His early education laid a strong foundation for his innovative approach to radiation detection and imaging technology.

Professional Endeavors 💼

Throughout his career, Song He has primarily focused on developing novel radiation detectors and imaging technologies. His work emphasizes improving the performance of scintillators for better X-ray and neutron imaging. He has filed several patents related to his inventions, demonstrating his commitment to transformative research in radiation detection. Despite limited professional collaborations at this stage, his independent contributions have been highly impactful in the scientific community.

Contributions and Research Focus 🔬

Song He’s research primarily revolves around novel radiation detectors and scintillator technologies. In particular, he has developed a new class of scintillators that overcome traditional limitations by using hot exciton molecules (TPE-4Br) and conjugated polymers (PVT) to enhance performance. His contributions have led to breakthroughs in X-ray imaging and fast neutron imaging resolution, significantly advancing the field of radiation detection.

Impact and Influence 🌍

Song He’s work is paving the way for high-resolution imaging technologies that can have a significant impact in fields such as medical diagnostics, nuclear physics, and security imaging. His innovative approaches are influencing both academic research and practical applications. His recent paper in Advanced Functional Materials (DOI: 10.1002/adfm.202503688) received recognition for offering a new solution to long-standing challenges in the radiation detection field.

Academic Citations 📑

Although Song He’s citation index is not formally listed, his work is published in top-tier journals like Advanced Functional Materials, Inorganic Chemistry, Advanced Materials, and The Journal of Physical Chemistry C. The high impact of his research is evident in the citations of his publications, showing their relevance and influence in the scientific community.

Research Skills 🧠

Song He demonstrates exceptional skills in materials science, physics, and electronic technology. His ability to synthesize innovative materials and develop advanced radiation detectors showcases his technical expertise. Additionally, he has practical skills in scintillator synthesis, polymer chemistry, and in-situ polymerization. His experimental design and analytical techniques allow for high-precision imaging, which is crucial for the future of radiation detection.

Awards and Honors 🏅

Currently, Song He has not reported receiving formal awards or honors. However, the significance of his innovative research and published work in high-impact journals positions him as a rising star in his field. His patent applications and scientific contributions hint at a promising future where such recognitions are likely.

Legacy and Future Contributions 🔮

With his cutting-edge research in radiation detectors and imaging technologies, Song He is poised to make long-lasting contributions to both academic and industry sectors. His future work holds the potential for further advancements in medical imaging, nuclear research, and security applications, with his innovative materials providing solutions to longstanding challenges. As his career progresses, Song He is expected to become a significant figure in radiation detection technologies, with lasting impact on both science and society.

Publications Top Notes

High‐Performing Direct X‐Ray Detection Made of One‐Dimensional Perovskite‐Like (TMHD)SbBr₅ Single Crystal With Anisotropic Response

  • Authors: Guangya Zheng, Haodi Wu, Song He, Hanchen Li, Zhiwu Dong, Tong Jin, Jincong Pang, Rachid Masrour, Zhiping Zheng, Guangda Niu et al.
    Journal: Small
    Year: 2025

Hot Exciton‐Based Plastic Scintillator Engineered for Efficient Fast Neutron Detection and Imaging

  • Authors: Song He, Pengying Wan, Hanchen Li, Zizhen Bao, Xinjie Sui, Guangya Zheng, Hang Yin, Jincong Pang, Tong Jin, Shunsheng Yuan et al.
    Journal: Advanced Functional Materials
    Year: 2025

Close‐to‐Equilibrium Crystallization for Large‐Scale and High‐Quality Perovskite Single Crystals

  • Authors: Hang Yin, Mingquan Liao, Yuanpeng Shi, Zhiqiang Liu, Hanchen Li, Song He, Zhiping Zheng, Ling Xu, Jiang Tang, Guangda Niu
    Journal: Advanced Materials
    Year: 2025

BiSBr, an Anisotropic One-Dimensional Chalcohalide Used for Radiographic Detection

  • Authors: Yunmeng Liang, Pang Jincong, Zhang Qingli, He Song, Xu Ling, Luo Wei, Zhiping Zheng, Guangda Niu
    Journal: The Journal of Physical Chemistry C
    Year: 2024

Remarkable Improvement of Thermoelectric Performance in Ga and Te Cointroduced Cu₃SnS₄

  • Authors: Song He, 勇 罗, Liangliang Xu, Yue Wang, Zhongkang Han, Xie Li, Jiaolin Cui
    Journal: Inorganic Chemistry
    Year: 2021

 

 

Valeriu Savu | High energy physics | Best Researcher Award

Dr. Valeriu Savu | High energy physics | Best Researcher Award

INOE2000 | Romania

Valeriu Savu is a highly accomplished Technological Development Engineer with an extensive career spanning over 35 years. Currently working at the National Institute of Research and Development for Optoelectronics (INOE2000) in Măgurele, Romania, Savu has demonstrated significant expertise in research and development of electronic modules and optical equipment. His work primarily revolves around lasers, optical fibers, and nanotechnology, and his contributions have been instrumental in advancing applications within telecommunications and military systems.

👨‍🎓Profile

Google scholar

Scopus

ORCID

Early Academic Pursuits 🎓

Savu’s academic journey began at the Polytechnic Institute of Bucharest, where he obtained a Bachelor’s degree in Electronics and Telecommunications in 1986. Later, he pursued a Master’s degree in Nanostructures and Unconventional Engineering Processes at the Polytechnic University of Bucharest (2012-2014). This was followed by the completion of his PhD in Engineering Sciences in 2007-2014 with a thesis on radio pulse selection and processing. His doctoral work focused on cosmic ray detection, emphasizing advanced methodologies for high-precision data processing in complex environments like saline settings.

Professional Endeavors 💼

Savu’s professional career began in 1990 with the Research Design Institute of Electromechanics ICPEM, where he worked on military electronics systems. From 2000 to 2005, he served as an Engineer at Elettra Communications S.A., contributing to the telecommunications sector with an emphasis on testing and verification of military-grade equipment. Since 2005, Savu has been at INOE2000, leading the Department of Engineering Design and Technology, where he focuses on cutting-edge optical devices and laser systems. His experience spans across the creation of advanced lasers, fiber optics, and sensor technologies for both commercial and military applications.

Contributions and Research Focus 🔬

Valeriu Savu has made notable contributions to several fields, including laser technology, optical fibers, and military electronics. He is an expert in the design, testing, and characterization of laser systems, photovoltaics, and nanostructured materials. One of his major research focuses includes Cherenkov radiation detection and the application of nanotechnology for optical sensing. Savu has been involved in the development of innovative sensors, including UV sensors for organic materials and high-voltage power supplies used in medical laser systems.

Impact and Influence 🌍

Savu’s work has significantly advanced the field of optoelectronics and has been applied in medical, military, and telecommunications sectors. He has also patented several devices, including laser protection systems and cosmic radiation detectors for specialized environments like salt mines. His innovative solutions continue to influence scientific research and engineering practices globally.

Academic Cites 📚

Savu’s scholarly work has earned recognition within the academic community, with numerous scientific articles published in prominent journals. His research has appeared in the Romanian Journal of Physics, Romanian Journal of Biophysics, and other prestigious publications. He has contributed to international conferences and his research papers are frequently cited by peers. Notable academic publications include his studies on the Nd:YAG laser for microsurgical ophthalmology and breast tissue investigation using diffuse optical tomography.

Research Skills 🧑‍💻

Valeriu Savu is highly skilled in experimental research, device testing, and the design of optical systems. He has expertise in advanced signal processing, laser characterization, and system integration. Savu’s proficiency with software tools such as OrCAD, FabMaster, NI Multisim, and OriginLab has made him a highly versatile researcher, capable of modeling complex systems and optimizing experimental designs. His experience spans across lab-based investigations, field tests, and cross-disciplinary applications of advanced technologies.

Teaching Experience 🍏

While Savu’s career has been predominantly research-driven, his extensive academic background and technical expertise have made him a valuable contributor to teaching and training in the field of optoelectronics. He has actively mentored students at various stages of their careers, guiding them through engineering problems and sharing his knowledge of cutting-edge technologies. His role as a PhD advisor and involvement in academic projects has contributed to the development of future scientists and engineers in the optoelectronics field.

Awards and Honors 🏆

Throughout his career, Savu has received various certificates and awards recognizing his contributions to both military and civilian applications. His innovative work has been acknowledged by organizations and research institutions, and he has earned several certificates of innovation for his unique designs and systems. Savu’s patents are a testament to his creative and practical contributions to optical technology and laser applications.

Legacy and Future Contributions 🔮

Savu’s extensive body of work leaves a lasting legacy in the field of optoelectronics, particularly in laser applications, telecommunications, and military technology. His ongoing work in cosmic radiation detectors and laser safety will likely influence future technological advancements in various sectors. As he continues to develop new systems and devices, his future contributions are expected to further shape the landscape of optical technology and engineering research.

Patents and Innovations 💡

Valeriu Savu’s patents reflect his ingenuity and forward-thinking approach to technology. Some of his recent applications include systems for automated discharge protection in laser pumps and power supply disconnect systems. His patents focus on enhancing the safety and efficiency of electronic systems, laser devices, and telecommunications infrastructure, with an emphasis on providing innovative solutions for user protection and optimal performance in real-world applications.

Publications Top Notes

Power Dissipation Reduction System for Adjustable Power Supplies
  • Authors: V Savu, MI Rusu, D Savastru, D Manea
    Journal: Energies
    Year: 2025

Analysis of a high-power laser thermal phenomena induced onto a composite made UAV/drone in flight
  • Authors: D Savastru, V Savu, MI Rusu, M Tautan, A Stanciu
    Journal: Journal of Optoelectronics and Advanced Materials
    Year: 2024

Sampling the travel distance of a vehicle through an unconventional method for data acquisition
  • Authors: MI Rusu, V Savu, D Savastru, CH Gandescu, A Stan, DM Cotorobai
    Journal: Journal of Optoelectronics and Advanced Materials
    Year: 2023

Grating Optic Fiber Sensors Detection of Smart Polymer Composite Delamination
  • Authors: D Savastru, D Savastru, MI Rusu, M Tautan, V Savu, II Lancranjan
    Journal: Optics, Photonics and Lasers
    Year: 2023

Ellipsometric characterization of tungsten oxide thin films, before and after He plasma exposure
  • Authors: MI Rusu, Y Addab, C Martin, C Pardanaud, V Savu, II Lancranjan, …
    Journal: Optoelectronics and Advanced Materials-Rapid Communications
    Year: 2023