Md. Rajibul Islam | High energy physics | Best Researcher Award

Dr. Md. Rajibul Islam | High energy physics | Best Researcher Award

Research Fellow at The Hong Kong Polytechnic University | Hong Kong

Md. Rajibul Islam is a distinguished Research Fellow in Photonics at The Hong Kong Polytechnic University. With over a decade of academic and research excellence, his expertise bridges the domains of photonics, optical sensors, and AI-driven biomedical solutions. Known for his interdisciplinary innovation, he holds a Ph.D. in Photonics Engineering, a Master’s in IT, and a Bachelor’s in Computer Applications. His scientific contributions are recognized globally through patents, international awards, and Q1 journal publications. He continues to champion healthcare technology innovation through cutting-edge research and collaborative ventures.

👨‍🎓Profile

Google scholar

Scopus

ORCID

📚 Early Academic Pursuits

Md. Rajibul Islam began his academic journey with a Bachelor of Computer Applications from IGNOU, India, laying a foundation in computing. His early interest in secure systems led him to pursue a Master of Science (by Research) in IT at Multimedia University (MMU), Malaysia, where he focused on fingerprint identification and verification technologies. Driven by a passion for physics and photonics, he earned a Ph.D. in Photonics Engineering from the University of Malaya, researching fiber Bragg grating-based Fabry-Perot resonators. His academic trajectory reflects a seamless blend of computational and physical sciences, underpinning his interdisciplinary research focus.

💼 Professional Endeavors 

Dr. Islam has held progressive academic positions, including Assistant Professor, Head of Department, and Associate Professor in Bangladesh’s top institutions such as UAP and BUBT. Internationally, he is engaged as a Research Fellow at The Hong Kong Polytechnic University, where he leads cutting-edge photonic sensor research for healthcare. His professional roles extend to industry consulting, software engineering, and research assistance across Malaysia and Ireland. These roles have shaped his ability to bridge theory and application, manage multidisciplinary teams, and contribute to the global research ecosystem. He consistently integrates teaching, innovation, and leadership in every position held.

🔬 Contributions and Research Focus

Dr. Islam’s core research revolves around fiber optic sensors, particularly fiber Bragg gratings (FBGs) and photonic devices for biomedical applications. He combines AI and photonics, enabling smart diagnostics and disease monitoring through enhanced sensor data analysis. His patent on few-mode fiber grating sensors showcases innovation in high-sensitivity sensing technologies. He has also contributed to vocal fold disorder detection, leaf disease identification, and high-speed optical communication systems. His work demonstrates versatility, spanning machine learning, image processing, and optoelectronics. Dr. Islam’s research is rooted in real-world relevance, bridging medical technology and photonics engineering.

🌍 Impact and Influence

Dr. Islam’s research has a measurable global impact, evidenced by peer-reviewed journal publications, international presentations, and a diverse citation base. His work is featured in Q1 and Q2 journals including Scientific Reports and Infrared Physics and Technology, ensuring high visibility within the scientific community. His contributions to biomedical photonics, AI-based diagnosis, and optical sensor design are used as reference frameworks by scholars and engineers globally. As a keynote speaker, panelist, and reviewer for top journals, he helps shape the scientific discourse. His interdisciplinary methods inspire research across AI, optics, and healthcare technologies.

📖 Academic Cites

Though citation metrics such as h-index are not provided here, Dr. Islam’s inclusion in SCOPUS-indexed journals, such as Scientific Reports, with an impact factor of 3.9, reflects research quality and relevance. His co-authored and first-authored works on deep learning architectures, fiber optic systems, and disorder classification are gaining academic traction. Cited in AI, photonics, and biomedical engineering domains, his papers contribute to emerging research trends. He has collaborated with international authors across Asia, Europe, and the Middle East, enhancing the citation diversity and reach of his work. His publications are considered valuable resources for ongoing applied research.

🧪 Research Skills

Dr. Islam possesses advanced experimental and computational skills across photonics, sensor design, and AI-based diagnostics. Technically adept in fiber Bragg grating fabrication, optical spectrum analysis, laser-based sensor development, and cleanroom processes, he couples this with Python, MATLAB, and COMSOL Multiphysics for simulation and analysis. He also develops AI pipelines using TensorFlow and PyTorch, particularly in image-based disease classification and signal processing. His skill in lab automation and data acquisition systems enhances experimental efficiency. Dr. Islam bridges engineering precision with computational intelligence, a rare blend that elevates the scope and accuracy of biomedical research.

👨‍🏫 Teaching Experience

With more than a decade in academia, Dr. Islam has taught both undergraduate and postgraduate courses in Data Communication, AI, Software Engineering, Database Systems, and Computer Architecture. His roles at UAP, BUBT, and North South University demonstrate a strong pedagogical presence. He fosters interactive learning and encourages research mentorship, having supervised numerous student theses in AI and medical applications. His curriculum design integrates latest industry trends and research breakthroughs, making learning application-focused. He leverages his international exposure to deliver globally relevant education, nurturing future innovators in computing and photonics.

🏅 Awards and Honors 

Dr. Islam is a recipient of prestigious accolades, including full sponsorships for events like the ACM-ICPC World Finals, ICTP Winter School, and PECIPTA Innovation Fair. His Bronze Medal for Few-Mode Fiber Sensor and Best Paper Award at ISCC-2011 highlight his technical ingenuity. Featured in Marquis Who’s Who and Stanford Who’s Who, he has earned national and international recognition. His multiple fellowships and research grants, including from Erasmus Mundus and IEERD, underscore sustained academic excellence. These honors reflect his research impact, scholarly leadership, and commitment to technological advancement in healthcare and photonics.

🌟 Legacy and Future Contributions

Dr. Islam is actively shaping a new frontier in biomedical sensing, where AI meets photonics. His legacy lies in developing cost-effective, high-accuracy optical sensors for early disease diagnosis and health monitoring. Looking ahead, he plans to expand collaborations across Asia and Europe, commercialize patented technologies, and establish AI-integrated photonics labs in developing countries. By mentoring future scientists, contributing to policy-making panels, and authoring advanced curricula, he is fostering a new generation of innovators and ethical researchers. His future contributions will undoubtedly influence medical technologies, academic reforms, and international research partnerships for decades to come.

Publications Top Notes

An Enhanced LSTM Approach for Detecting IoT-Based DDoS Attacks Using Honeypot Data

  • Authors: Arnob, A.K.B.; Mridha, M.F.; Safran, M.; Amiruzzaman, M.; Islam, M.R.
    Journal: International Journal of Computational Intelligence Systems
    Year: 2025

Low-Profile Reflective Metasurface for Broadband OAM Beam Generation at Ka-Band

  • Authors: Md. Rajibul Islam (Corresponding Author)
    Journal: Infrared Physics & Technology
    Year: 2025

FallVision: A Benchmark Video Dataset for Fall Detection

  • Authors: Nakiba Nuren Rahman; Abu Bakar Siddique Mahi; Durjoy Mistry; Shah Murtaza Rashid Al Masud; Aloke Kumar Saha; Rashik Rahman; Md. Rajibul Islam
    Journal: Data in Brief
    Year: 2025

An Evaluation of EVM-Compatible Blockchain Platforms for Trade Finance

  • Authors: Asif Bhat; Rizal Mohd Nor; Md Amiruzzaman; Md. Rajibul Islam; Munleef Quadir
    Journal: Journal of Advanced Research Design
    Year: 2025

A Machine Learning Approach for Vocal Fold Segmentation and Disorder Classification Based on Ensemble Method

  • Authors: Nobel, S.M.N.; Swapno, S.M.M.R.; Islam, M.R.; Safran, M.; Alfarhood, S.; Mridha, M.F.
    Journal: Scientific Reports
    Year: 2024

 

 

Bibhushan Shakya | High energy physics | Best Researcher Award

Dr. Bibhushan Shakya | High energy physics | Best Researcher Award

Staff Scientist at DESY | Germany

Dr. Bibhushan Shakya is a theoretical physicist specializing in particle physics and cosmology, currently serving as a Junior Staff Scientist at DESY, Hamburg. His research spans dark matter, gravitational waves, and early universe phenomena. With a Ph.D. from Cornell University, and professional stints at CERN, University of Michigan, and UCSC, he has emerged as a globally respected researcher. He has co-authored over 40 publications, supervised multiple graduate theses, and served in advisory and organizational roles within major international physics communities, including Snowmass and BCVSPIN. A native of Nepal, he actively contributes to science outreach across South Asia.

👨‍🎓Profile

Google scholar

Scopus

🎓 Early Academic Pursuits

Dr. Shakya’s academic journey began at Stanford University, where he earned three undergraduate degrees with distinction in Physics (Theoretical Concentration), Mathematics, and Philosophy. His passion for the fundamentals of the universe led him to Cornell University for doctoral studies under the mentorship of Prof. Maxim Perelstein. There, he specialized in theoretical particle physics, completing a Ph.D. thesis on dark matter phenomenology during a transformative period in experimental cosmology. His early academic years reflect a rare combination of depth in theoretical physics and breadth in interdisciplinary thought, laying the groundwork for his future contributions to cosmology and high-energy physics.

🧪 Professional Endeavors

Dr. Shakya has held prestigious research positions globally. After completing his Ph.D., he undertook postdoctoral fellowships at the University of Michigan, University of Cincinnati, and UC Santa Cruz, forming collaborative bridges across top U.S. institutions. He served as a Senior Fellow at CERN, Geneva, contributing to LISA cosmology initiatives, before joining DESY in 2021. His roles involve not just research but strategic leadership, including organizing seminars, leading selection committees, and mentoring Ph.D. students. He is recognized as a scientific community builder, contributing to international collaboration platforms like Snowmass 2022 and BCVSPIN in South Asia.

🔬 Contributions and Research Focus

Dr. Shakya’s research focuses on early-universe cosmology, dark matter, and gravitational wave signals from first-order phase transitions. His work addresses phenomena at the intersection of cosmology and high-energy physics, often exploring nonthermal origins of dark matter, tachyonic fields, and leptogenesis via bubble collisions. His publications in JCAP, JHEP, PRD, and PRL underscore both depth and originality. Notably, he collaborates with prominent physicists like Giudice, Kamionkowski, and Pomarol, positioning him at the forefront of phenomenological cosmology. His recent work with student co-authors further highlights his commitment to mentored discovery and academic development.

🌍 Impact and Influence

Dr. Shakya’s impact is global and multi-dimensional. Through publications, student mentorship, and international collaborations, he has significantly advanced the understanding of the early universe. As Chair of BCVSPIN, he champions particle physics in developing South Asian regions, fostering access to frontier research. His leadership role in the Snowmass 2022 Cosmic Frontier initiative helped shape the U.S. particle physics strategic roadmap. He regularly reviews for top-tier journals and major funding bodies like ERC and NSERC, reinforcing his influence on scientific standards. His lectures and outreach efforts have inspired young researchers and the general public across continents.

📚 Academic Cites and Publications

Dr. Shakya has authored over 40 peer-reviewed publications on arXiv, InspireHEP, and in leading journals like JCAP, JHEP, PRD, and PLB. His work is widely cited, with growing influence in cosmological phase transition physics, gravitational wave phenomenology, and non-thermal dark matter scenarios. Many of his papers involve cross-disciplinary ideas at the intersection of particle physics and cosmology, often co-authored with international experts and students. Some of his highly recognized works include those on dark photon production from cosmic strings, leptogenesis, and bubble collision dynamics. His research citations reflect a strong and growing academic footprint.

🧠 Research Skills and Expertise

Dr. Shakya exhibits exceptional analytical skills in quantum field theory, early-universe modeling, and beyond Standard Model physics. His ability to translate highly technical theory into observable cosmological predictions demonstrates deep understanding and creativity. He is proficient in phenomenological modeling, analytical methods, and scientific computation, making his work relevant to experimental data from CMB, LISA, and gravitational wave observatories. His collaborations across theory and experiment exemplify a rare blend of vision and rigor. He is also known for clear scientific communication, essential for both mentoring and outreach. These skills position him as a leading contributor to modern theoretical physics.

🧑‍🏫 Teaching and Mentorship

Dr. Shakya has contributed extensively to teaching and mentoring, both formally and informally. At University of Hamburg, he delivered guest lectures on supersymmetry and collider physics. He regularly teaches at international summer and winter schools (e.g., BCVSPIN, Hamburg Summer School) on topics like dark matter phenomenology and gravitational waves. He has supervised multiple Bachelor’s, Master’s, and Ph.D. students, many of whom have co-authored papers and moved on to prestigious research positions. His mentorship style encourages intellectual independence and scientific curiosity, making him an asset to any academic institution committed to excellence and training the next generation.

🏅 Awards and Honors

While Dr. Shakya has not yet been publicly recognized with individual awards, his appointment as Junior Staff Scientist at DESY, one of the world’s premier particle physics labs, underscores institutional recognition of his excellence. He has served as a referee for elite physics journals, a grant reviewer for the ERC and NSERC, and a strategic leader in international collaborations all clear acknowledgments of his scientific standing. His inclusion in roles like Snowmass 2022 liaison and chairing BCVSPIN reflects peer trust and leadership. These achievements serve as strong indicators of his eligibility for Best Researcher Award recognition.

🔮 Legacy and Future Contributions

Dr. Shakya’s legacy is already taking shape through his publications, mentorship, outreach, and scientific leadership in South Asia. In the future, he is well-positioned to become a principal investigator, lead independent grant-funded projects, and shape the field through interdisciplinary research. His ongoing involvement in gravitational wave cosmology, especially related to LISA, aligns with the next frontier in observational physics. By continuing to connect young scientists, global institutions, and frontier physics, he will play a pivotal role in both advancing science and making it more inclusive. His long-term influence will be felt across academia, policy, and outreach.

Publications Top Notes

📄 Particle Production from Phase Transition Bubbles
  • Authors: Henda Mansour, Bibhushan Shakya

  • Journal: Physical Review D

  • Year: 2025

📄 Aspects of Particle Production from Bubble Dynamics at a First Order Phase Transition
  • Author: Bibhushan Shakya

  • Journal: Physical Review D

  • Year: 2025

📄 Nonthermal Heavy Dark Matter from a First-Order Phase Transition
  • Authors: G. Giudice, H.M. Lee, A. Pomarol, B. Shakya

  • Journal: Journal of High Energy Physics (JHEP)

  • Year: 2024

📄 White Paper on Light Sterile Neutrino Searches and Related Phenomenology
  • Authors: Multiple authors (including Bibhushan Shakya)

  • Journal: Journal of Physics G: Nuclear and Particle Physics

  • Year: 2024

📄 Bouncing Dark Matter
  • Authors: L. Puetter, J.T. Ruderman, E. Salvioni, B. Shakya

  • Journal: Physical Review D

  • Year: 2024

 

Bei Chen | High energy physics | Best Researcher Award

Ms. Bei Chen | High energy physics | Best Researcher Award

Tianjin University of Technology | China

Chen Bei is a dynamic Photoelectric Chip Engineer specializing in Condensed Matter Physics with a focus on inorganic semiconductor materials and devices. With solid academic roots and research training from prestigious institutions like Tianjin University of Technology and National University of Defense Technology, Chen Bei is known for his hands-on expertise in photoelectric device fabrication, characterization, and broadband photodetectors. His works contribute to both civilian innovations and defense technologies, demonstrating a rare blend of academic excellence and applied engineering acumen.

👨‍🎓Profile

Scopus

🎓 Early Academic Pursuits

Chen Bei began his academic journey in Physics at Inner Mongolia University for Nationalities, where he ranked Top 3 of 50 students and held a leadership role as Vice Minister in the student organization department. His undergraduate studies emphasized quantum mechanics, solid-state physics, and electrodynamics, laying the groundwork for a career in advanced material science. His academic excellence continued with a Master’s in Condensed Matter Physics at Tianjin University of Technology, where he consistently ranked in the top 5 and received competitive scholarships and teaching responsibilities.

💼 Professional Endeavors

Currently serving as a Photoelectric Chip Engineer at the Jiangtian Research Group (National University of Defense Technology), Chen Bei’s role includes testing photoelectric chip packaging, bare die analysis, and optical path construction. This position builds on his experience in device fabrication, gained through years of semiconductor research. His ongoing work explores integration strategies for military-grade silicon-based photonic systems, marking a critical step in real-world technological deployment. His engineering contributions are aligned with national priorities and show potential for both academic and industrial breakthroughs.

🔬 Contributions and Research Focus

Chen Bei’s research spans self-powered broadband photodetectors, artificial retina simulation, optically controlled logic, and device integration for defense. Notable among these is his published work in ACS Applied Materials & Interfaces, where he developed a CuInS₂/SnO₂-based detector for encrypted optical communication. His focus on interfacial engineering using TiO₂ layers and metal ion doping shows deep engagement with optimizing device sensitivity and functionality across UV–Vis–NIR bands. These contributions are not only novel but also have tangible technological applications.

🌐 Impact and Influence

Chen Bei’s research has already gained peer recognition, with publications in high-impact journals and ongoing projects that promise cross-disciplinary relevance in biophotonics, optoelectronics, and secure communications. His work on retina-inspired photodetectors and photoelectric logic systems can significantly influence medical imaging, wearable sensors, and neuromorphic computing. Within his research institutions, he is recognized as a bridge between theory and application, contributing meaningfully to team outcomes while enhancing national R&D capabilities in semiconductor optics.

📚 Academic Citations

Chen Bei’s primary publication in ACS Applied Materials & Interfaces has received early attention in the material sciences and applied physics community. His upcoming article in Materials Today Energy a high-impact journal will further solidify his standing in energy-sensitive optoelectronic applications. With growing citation potential and interdisciplinary value, his publications are expected to form reference points for future research in low-power photoelectronic systems and bio-inspired photonic devices.

🧪 Research Skills

Chen Bei possesses strong experimental proficiency, including semiconductor material synthesis (spin-coating, hydrothermal, chemical bath deposition) and advanced characterization (SEM, TRPL, XRD, UV-Vis spectroscopy). His fluency with electronic instrumentation like Keithley source meters, vector network analyzers, and electrochemical workstations enables accurate and nuanced analysis of device behavior. He also designs and fabricates devices independently skills that mark him as a complete researcher from concept to validation. His strong grip on Origin, JADE, and Layout software also facilitates precise data interpretation and device simulation.

👨‍🏫 Teaching Experience

As a graduate teaching assistant at Tianjin University of Technology, Chen Bei supported students in both practical laboratory sessions and coursework in advanced physics topics. His ability to explain complex concepts like semiconductor devices, photonic behavior, and materials characterization reflects his aptitude for mentorship. He played a pivotal role in connecting theoretical learning with lab-based exploration an experience that underlines his capacity to contribute in academic or training-focused environments.

🏅 Awards and Honors

Chen Bei has consistently ranked among the top students, earning Second-Class Scholarships during both his bachelor’s and master’s studies. His selection as Vice Minister of the student organization department reflects strong leadership and organizational abilities. Recognition as a graduate assistant also attests to his teaching competence and trust within the academic community. These accolades, coupled with peer-reviewed publications, position him as a rising talent in applied physics and engineering.

🌟 Legacy and Future Contributions

Chen Bei is positioned to become a thought leader in optoelectronic integration and semiconductor device engineering. His work has the potential to impact military-grade communication, biomimetic sensors, and self-powered IoT technologies. With growing experience in multidisciplinary collaborations, and exposure to real-world implementation scenarios, he is set to define the next wave of photoelectric innovation. As he continues to evolve, his blend of scientific insight, engineering rigor, and innovation-minded focus will be instrumental in shaping future technologies.

Publications Top Notes

UV-Vis-NIR Broad-Band Self-Powered CuInS₂/SnO₂ Photodetectors and the Application in Encrypted Optical Communication
  • Authors: Chen Be
    Journal: ACS Applied Materials & Interfaces
    Year: 2024

Insertion Layer of TiO₂ to Improve the UV−Vis−NIR Photoresponse Characteristics of CuInS₂/SnO₂ Self-Powered Photodetectors and Its Application in Artificial Retinas
  • Authors: Chen Bei
    Journal: Materials Today Energy
    Year: 2024

 

Xiangling Tian | High energy physics | Best Researcher Award

Assoc. Prof. Dr. Xiangling Tian | High energy physics | Best Researcher Award

University of Electronic Science and Technology of China | Yangtze Delta Region Institute (Quzhou) | China

Dr. Xiangling Tian is an accomplished Associate Researcher at the University of Electronic Science and Technology of China and the Yangtze Delta Region Institute (Quzhou). With a Ph.D. in Materials Science, his research focuses on optoelectronic devices, nanowire-based scintillators, and nonlinear optics. He has held research positions at prestigious institutions, including Zhejiang Laboratory and Nanyang Technological University in Singapore. His expertise lies in advanced photonic materials, smart medical imaging technologies, and optical properties of low-dimensional semiconductors. A dynamic and emerging figure in material sciences, Dr. Tian has made substantial contributions through high-impact research, international collaborations, and innovative technologies.

👨‍🎓Profile

Scopus 

ORCID

🎓 Early Academic Pursuits

Dr. Tian’s academic journey began with a B.Sc. in Physics from Qufu Normal University, where he laid a solid foundation in theoretical and experimental physics. He earned his M.Sc. in Condensed Matter Physics at Zhejiang Normal University, focusing on mechanoluminescence. His academic ascent culminated in a Ph.D. in Materials Science from South China University of Technology (2015–2018), under Prof. Jianrong Qiu, with a dissertation on optical nonlinearity in transition metal chalcogenides and bismuth oxyselenide. These formative years shaped his deep interest in photonic materials and advanced optical phenomena.

💼 Professional Endeavors

Dr. Tian has undertaken several impactful research roles. At Nanyang Technological University, he explored multidimensional perovskites for high-performance light-emitting devices. As an Associate Researcher at Zhejiang Laboratory, he contributed to near-infrared materials and smart fibers. Since 2022, he has held a leading role at UESTC, where he conducts research, mentors young talent, and advances technology transfer initiatives. His professional work demonstrates a balance of scientific leadership, project execution, and collaborative innovation across interdisciplinary domains, particularly in optoelectronics, nanomaterials, and biomedical imaging.

🔬 Contributions and Research Focus

Dr. Tian’s research centers on smart medical imaging devices, high-resolution scintillators, and nonlinear optical materials. He is the Principal Investigator (PI) of several key national and regional projects, including those on DBR lasers, nanowire waveguides, and perovskite quantum dots. His interdisciplinary work connects materials science, photonics, and device engineering, with applications ranging from X-ray imaging to NIR spectroscopy. He is also advancing flexible scintillators and artificial muscle fibers, reflecting his interest in next-generation wearable and biomedical technologies. His research not only expands scientific knowledge but also drives real-world innovations.

🌍 Impact and Influence

Dr. Tian’s work has made significant academic and societal impacts. His research outcomes have enhanced the performance of medical imaging systems, contributed to green optoelectronics, and led to highly cited publications in journals like Advanced Optical Materials and ACS Applied Materials & Interfaces. He actively contributes as a peer reviewer for top journals and has helped organize international conferences, demonstrating his influence in the global scientific community. His innovations in nonlinear optics and nanowire-based scintillators are gaining attention across photonics and materials science sectors, showcasing his growing influence as a thought leader.

📚 Academic Cites

Dr. Tian has published over 15 journal articles, including first-author and corresponding-author papers in SCI-indexed journals such as Nanoscale, Ceramics International, and Journal of Materials Chemistry C. His works are increasingly cited by peers in fields spanning photonics, optics, materials science, and biomedical engineering. He has also co-authored a Springer book and contributed to book chapters, further expanding his academic footprint. With multiple ongoing projects funded by NSFC, his publications continue to influence emerging research on scintillation, laser technologies, and nonlinear optical phenomena.

🛠️ Research Skills

Dr. Tian possesses strong interdisciplinary and technical proficiencies. His laboratory expertise includes TEM, SEM, AFM, XRD, and FTIR, while his computational toolkit covers MATLAB, Python, and data analysis for photonic simulations. He excels in nanomaterial synthesis, glass ceramics, and quantum dot engineering, particularly for light emission and imaging applications. His hands-on ability in fabrication and characterization supports the development of cutting-edge optical devices. With excellent project management and proposal writing experience, he is a complete researcher bridging lab-based innovation and practical device application.

👩‍🏫 Teaching Experience

While primarily research-focused, Dr. Tian is actively involved in talent cultivation through mentorship and research supervision. At UESTC, he engages with graduate students and junior researchers, providing guidance on project design, experimentation, and publication. His academic mentoring is supported by his international exposure and practical lab skills. Though formal teaching roles are less emphasized in his profile, his impact on training future scientists through hands-on instruction and project leadership is evident, especially in high-tech fields like nanophotonics and bioimaging materials.

🏆 Awards and Honors

Dr. Tian’s excellence has been recognized through several prestigious awards. He won the Zhejiang Provincial Natural Science Award (Second Prize) for his work on low-dimensional semiconductors and photonic applications. He was a Finalist in the Yuanchuang Cup Innovation Competition for designing a bionic compound eye system. Additionally, he received the Outstanding Ph.D. Dissertation Award and was named an Outstanding Graduate Student in Guangdong. These honors underscore his scientific creativity, innovation, and leadership within the academic and applied research communities.

🚀 Legacy and Future Contributions

Looking ahead, Dr. Tian aims to drive advancements in high-performance biomedical imaging, flexible photonic devices, and quantum optoelectronics. His legacy will likely include bridging fundamental research with translational technologies, impacting healthcare, defense, and energy sectors. By mentoring young scientists and leading collaborative research efforts, he is shaping a sustainable and inclusive scientific culture. With his robust publication record, research funding success, and international outlook, Dr. Tian is poised to make lasting contributions as a visionary leader in materials science and photonics innovation.

Top Noted Publications

High-temperature X-ray Time-lapse Imaging Based on the Improved Scintillating Performance of Na₅Lu₉F₃₂:Tb³⁺ Glass Ceramics

  • Authors: Rongfei Wei*, Ying Chen, Li Wang, Junwei Pan, Xiangling Tian*, Fangfang Hu, and Hai Guo*

  • Journal: Advanced Optical Materials

  • Year: 2025

Improved broadband luminescence in Gd₂GaSb₁₋ₓTaₓO₇:Cr³⁺,Yb³⁺ pyrochlore phosphors: Near-infrared spectroscopic applications and dual-mode optical thermometry

  • Authors: Ligan Ma, Rongfei Wei*, Qingqing Yu, Peican Dai, Xiangling Tian⁎⁎, Fangfang Hu, Hai Guo***

  • Journal: Materials Today Chemistry

  • Year: 2024

Enhanced scintillating performance in Tb³⁺ doped oxyfluoride glass for high-resolution X-ray imaging

  • Authors: Lanjiao Li, Rongfei Wei*, Li Wang, Xiangling Tian⁎⁎, Xiaoman Li, Fangfang Hu, Hai Guo***

  • Journal: Ceramics International

  • Year: 2024

Achieving an Improved NIR Performance of Ca₄₋ₓSc₂ₓZr₁₋ₓGe₃O₁₂:Cr³⁺ via [Sc³⁺-Sc³⁺] → [Ca²⁺-Zr⁴⁺]

  • Authors: Ying Chen, Rongfei Wei*, Lanjiao Li, Xiangling Tian*, Fangfang Hu, and Hai Guo*

  • Journal: Inorganic Chemistry

  • Year: 2024

Enhanced thermal stability of broadband NIR phosphors Ca₃.₃Mg₀.₇ZrGe₃O₁₂:Cr³⁺ for pc-LEDs

  • Authors: Lanjiao Li, Ying Chen, Rongfei Wei*, Siyu Guo, Xiangling Tian*, Fangfang Hu, Hai Guo*

  • Journal: Journal of Alloys and Compounds

  • Year: 2025

 

 

 

Paolo Valtancoli | Particle physics and cosmology | Best Researcher Award

Dr. Paolo Valtancoli | Particle physics and cosmology | Best Researcher Award

Dipartimento di Fisica e Astronomia | Italy

Paolo Valtancoli is an accomplished physicist whose career has spanned over four decades, focusing on the intersections of gravitational physics, quantum field theory, and noncommutative geometry. He obtained his Laurea in Physics from the University of Florence in 1984 with a thesis on gravitational anomalies and earned his Ph.D. in Pisa in 1989, delving into chiral anomalies within field theory. Since 1991, he has been a researcher at the University of Florence, contributing prolifically with over 60 scientific publications in leading physics journals.

👨‍🎓Profile

Scopus

ORCID

🎓 Early Academic Pursuits

Paolo Valtancoli’s academic journey began in Florence, where he graduated with a degree in Physics in 1984, presenting a thesis on gravitational anomalies a field deeply tied to the foundations of quantum gravity. His intellectual rigor led him to pursue a Ph.D. in Pisa, completed in 1989, with groundbreaking research on chiral anomalies and their interpretation through the vacuum structure of field theory. These formative years were marked by a keen interest in theoretical consistency in quantum field models, laying the groundwork for his lifelong research focus.

🧑‍🔬 Professional Endeavors

Since May 1991, Paolo Valtancoli has served as a permanent researcher at the University of Florence, contributing consistently to the field of theoretical physics. His role includes affiliations with INFN (Istituto Nazionale di Fisica Nucleare), enhancing collaborative research. With over 60 peer-reviewed publications, Valtancoli has explored diverse theoretical domains including gravity in lower dimensions, minimal length theories, noncommutative geometry, and black hole physics. His career reflects a dedication to independent, high-quality scholarship, with a strong presence in both national and international physics communities.

🧠 Contributions and Research Focus

Valtancoli’s research spans several frontier areas in theoretical physics, notably: (2+1)-dimensional gravity, Chern-Simons supergravity, Snyder geometry, and noncommutative space-time models. His work on minimal length frameworks, such as those modifying the Heisenberg uncertainty principle, plays a pivotal role in connecting quantum mechanics and gravity. Publications like “Bumblebee gravity with cosmological constant” and “Dirac oscillator and minimal length” exemplify his ability to tackle complex mathematical structures in a physically meaningful way. His deep engagement with black hole thermodynamics, gravitational waves, and f(R) inflation models further highlight a broad, yet coherent, research trajectory.

🌍 Impact and Influence

Valtancoli’s impact lies in his sustained scholarly output and his early pioneering work on anomalies, which has influenced subsequent developments in quantum gravity. His detailed modeling of (2+1) dimensional systems has contributed to the mathematical understanding of spacetime singularities, especially in topologically nontrivial scenarios. His contributions to fuzzy geometry and noncommutative gauge theory are widely cited by theorists seeking to extend the Standard Model or quantize gravity. By merging rigorous formalism with conceptual depth, he has shaped theoretical directions for young researchers in both Italian and international contexts.

📚 Academic Citations

Across his 60+ works, Valtancoli has accumulated citations across key subfields such as quantum gravity, noncommutative geometry, and black hole physics. His early collaboration with figures like Luca Lusanna and Andrea Cappelli led to widely referenced papers on Dirac observables and topological anomalies. Articles like “Spontaneous symmetry breaking in the nonAbelian anyon fluid” and “Gravity on a fuzzy sphere” remain key references in niche but impactful areas. His citations reveal a consistent thematic alignment with advanced quantum field theories and a lasting presence in scholarly discourse.

🧪 Research Skills

Valtancoli demonstrates exceptional skills in analytical methods, particularly in path integrals, canonical quantization, and field-theoretic anomaly computations. His mathematical fluency extends to differential geometry, Lie algebra analysis, and noncommutative algebraic structures, essential for modeling quantum space-time. His ability to generate exact solutions in modified gravity theories, including f(R) and Bumblebee models, reflects a refined capacity for integrating formal mathematics into physical theory-building. His independence and precision make him a valuable contributor to any theoretical or interdisciplinary physics project.

👨‍🏫 Teaching Experience

Though primarily a researcher, Paolo Valtancoli has also contributed to the education of young physicists through graduate-level mentorship and supervision of theses at the University of Florence. His deep subject matter expertise enhances advanced instruction in general relativity, field theory, and quantum mechanics. By integrating his own research into teaching, he offers students firsthand insights into active research areas like noncommutative geometry and gravity models. His consistent academic presence since 1991 makes him a pillar of continuity for the university’s theoretical physics curriculum.

🏅 Awards and Honors

While no major international prizes are listed, Valtancoli’s career longevity, publication record, and continuous academic appointment since 1991 reflect institutional recognition and respect. His collaborations with prestigious institutions like INFN, CERN, and LBL Berkeley, and contributions to renowned conferences such as Rencontres de Moriond, show a high level of peer acknowledgment. Publishing regularly in journals like Annals of Physics, Nuclear Physics B, and International Journal of Modern Physics A, underscores his scholarly reliability and quality. These are honors earned through sustained academic excellence.

🧭 Legacy and Future Contributions

Paolo Valtancoli’s legacy lies in his rich and consistent body of theoretical work that will remain valuable as physics progresses toward quantum gravity and beyond. His models involving minimal length, noncommutative spaces, and gravitational anomalies anticipate many themes in emerging quantum spacetime theories. As theoretical physics increasingly intersects with mathematical rigor, Valtancoli’s contributions serve as a bridge between classical theory and quantum innovation. Looking ahead, his continued research now entering its fifth decade promises further insights into the foundations of space, time, and matter.

Top Noted Publications

Bumblebee gravity with cosmological constant

  • Author: P. Valtancoli
    Journal: Annals of Physics
    Year: 2025

Euclidean black holes and spin connection

  • Author: P. Valtancoli
    Journal: (Institutional Repository)
    Year: 2024

Translation in momentum space and minimal length

  • Author: P. Valtancoli
    Journal: International Journal of Modern Physics A
    Year: 2022

Generating perfect fluid solutions in isotropic coordinates

  • Author: P. Valtancoli
    Journal: Annals of Physics
    Year: 2020

Exactly solvable f(R) inflation

  • Author: P. Valtancoli
    Journal: International Journal of Modern Physics D
    Year: 2019

 

Hayriye SUNDU | High energy physics | Best Researcher Award

Prof. Hayriye SUNDU | High energy physics | Best Researcher Award

Professor at ISTANBUL MEDENIYET UNIVERSITY | Turkey

Assoc. Prof. Dr. Hayriye Sundu Pamuk is a seasoned theoretical physicist specializing in high energy physics and QCD sum rules, currently serving at Istanbul Medeniyet University. With over two decades of academic experience, she has made impactful contributions to the field of exotic hadrons, publishing extensively in high-impact journals. Her work spans theoretical predictions of heavy tetraquark states, hybrid mesons, and thermal properties of hadronic matter. She is recognized for her rigorous research, effective mentorship, and leadership roles in academia.

👨‍🎓Profile

Google scholar

Scopus

📘 Early Academic Pursuits

Dr. Hayriye Sundu Pamuk began her academic journey with a B.Sc. in Physics Education from Balıkesir University in 1998. Her passion for particle physics led her to Middle East Technical University (METU), where she completed both her M.Sc. and Ph.D. in High Energy Physics under the supervision of Prof. Dr. Erhan Onur İltan. Her graduate research focused on the Two Higgs Doublet Model (2HDM), addressing phenomena such as lepton flavor violation and the muon anomalous magnetic moment. These early explorations laid the theoretical groundwork for her future contributions in particle phenomenology and quantum field theory.

🧑‍🔬 Professional Endeavors

Her professional academic path includes notable roles at top institutions. From 2000 to 2007, she served as a research and teaching assistant at METU. In 2007, she joined Kocaeli University as a faculty member, advancing from Dr. Assistant to Associate Professor. Her tenure there spanned 16 years, enriched by administrative leadership and mentorship of graduate theses. In 2023, she transitioned to the Faculty of Engineering and Natural Sciences at Istanbul Medeniyet University, where she continues to lead innovative research and graduate instruction in advanced theoretical physics topics.

🔬 Contributions and Research Focus 

Dr. Sundu Pamuk’s primary research lies in the phenomenology of exotic hadrons, particularly tetraquarks and hybrid mesons, explored through QCD sum rules and thermal field theory. Her studies contribute to understanding the non-perturbative aspects of QCD, and she is often cited for theoretical analyses of fully-heavy quark systems such as bbcc and bcbc states. Her recent works  appearing in journals like Phys. Rev. D, Eur. Phys. J. C, and Phys. Lett. B are instrumental in predicting the mass spectra, decay constants, and thermal behaviors of these particles, bridging theory with potential experimental discovery.

🌍 Impact and Influence

Dr. Sundu Pamuk’s influence in high-energy physics is reflected in her collaborations across multiple institutions and countries, especially with leading researchers like K. Azizi and S.S. Agaev. Her papers are widely downloaded, cited, and reviewed within the theoretical particle physics community. As a graduate mentor, she has produced scholars contributing to academia and research. Her investigations are especially relevant in the era of LHC upgrades and heavy ion collisions, where her predictions guide experimental searches. Her administrative roles demonstrate her strategic vision for academic excellence and her commitment to building research capacity.

📈 Academic Citations

With more than 20 SCI-indexed publications in a short period (2023–2025), Dr. Sundu Pamuk has maintained a high publication density. Her articles in reputable journals such as Phys. Rev. D and Eur. Phys. J. C have garnered significant citations, particularly in areas involving exotic quark configurations. Her collaborative works on thermal properties of tetraquarks and decay mechanisms of hybrid mesons are frequently referenced by fellow theorists and computational physicists. Her academic footprint is steadily growing, with Google Scholar and ResearchGate profiles that reflect her influence, consistency, and scientific originality.

🛠️ Research Skills 

Dr. Sundu Pamuk demonstrates proficiency in computational techniques, particularly QCD sum rules, operator product expansion, and thermal field theory. She is adept at performing analytical derivations and numerical modeling, frequently applying them to predict hadron spectra, leptonic decay constants, and transition amplitudes. Her ability to bridge theoretical frameworks with real-world particle behavior makes her a sought-after collaborator. She also employs tools such as Mathematica, Maple, and other symbolic computation platforms. Her focus on rigor, reproducibility, and mathematical consistency has earned her strong credibility in quantum field theory and particle phenomenology.

👩‍🏫 Teaching Experience

An accomplished educator, Dr. Sundu Pamuk has taught a wide range of graduate and undergraduate courses, including Advanced Quantum Physics, Statistical Physics, Thermodynamics, and Electromagnetic Theory. She is noted for her clarity of explanation, student mentorship, and the ability to simplify complex physical concepts. At both Kocaeli University and Istanbul Medeniyet University, she has introduced innovative approaches in courses such as Numerical Methods in High Energy Physics. Her consistent engagement with students beyond lectures through thesis advising, research projects, and workshops reflects her commitment to fostering scientific curiosity and critical thinking.

🏆 Awards and Honors

Dr. Sundu Pamuk’s academic excellence has been formally recognized with multiple Scientific Achievement Prizes from Kocaeli University (2011, 2012, 2016, 2017, 2019, 2021). She also received the Honour Students Prize during her doctoral studies at METU in 2004, highlighting early promise. Her repeated honors reflect sustained research output, dedication to teaching, and service to the academic community. These accolades serve as evidence of institutional and peer recognition, affirming her status as a leading scholar in particle physics and a role model for younger scientists in Turkey and beyond.

🌟 Legacy and Future Contributions

As a leading figure in exotic hadron physics, Dr. Sundu Pamuk is poised to make lasting contributions to quantum chromodynamics and beyond-standard-model physics. Her future work is expected to delve into multi-quark dynamics at extreme conditions, relevant for astrophysical phenomena and collider experiments. Her legacy will also include her influence on physics education, as her former students continue to shape research in Turkey and globally. With a strong foundation and growing international collaborations, she is well-positioned to lead interdisciplinary initiatives, contribute to policy in science education, and inspire the next generation of physicists.

Top Noted Publications

Fully heavy asymmetric scalar tetraquarks

  • Authors: S.S. Agaev, K. Azizi, H. Sundu
    Journal: European Physical Journal A
    Year: 2025

Scalar fully-charm and bottom tetraquarks under extreme temperatures

  • Authors: A. Aydın, H. Sundu, J.Y. Süngü, E. Veli Veliev
    Journal: European Physical Journal C
    Year: 2025

Hidden charm-bottom structures bcb̄c̄: Axial-vector case

  • Authors: S.S. Agaev, K. Azizi, H. Sundu
    Journal: Physics Letters B
    Year: 2025

Properties of the tensor state bc b̄ c̄

  • Authors: S.S. Agaev, K. Azizi, H. Sundu
    Journal: Physical Review D
    Year: 2025

Decays of the light hybrid meson 1⁻⁺

  • Authors: G.D. Esmer, K. Azizi, H. Sundu, S. Türkmen
    Journal: Physical Review D
    Year: 2025

 

WAEL CHOUK | High energy physics | Young Scientist Award

Dr. WAEL CHOUK | High energy physics | Young Scientist Award

Post-Doc at Faculty of Sciences of Bizerte | Tunisia

Dr. Wael Chouk is a dedicated Tunisian physicist specializing in materials physics, particularly in the field of dielectric and superconducting materials. With a PhD earned from the Faculty of Sciences of Bizerte, University of Carthage, he has demonstrated a consistent track record of academic excellence, international research experience, and pedagogical commitment. His profile reflects a unique blend of technical expertise, research passion, and community involvement.

👨‍🎓Profile

Scopus

📘 Early Academic Pursuits

Dr. Chouk began his academic journey with a preparatory cycle in engineering (Math-Physics) from 2012 to 2015 at the Preparatory Institute for Engineering Studies, Nabeul. He then pursued a Fundamental Physics degree (2015–2017) and a Master’s in Physics (2017–2020), graduating with honors. His early research centered on materials structure and properties, laying the foundation for his future in high-impact experimental physics.

🧑‍🏫 Professional Endeavors

Wael’s career is marked by consistent involvement in academic teaching and research supervision. As a part-time lecturer at the Faculty of Sciences of Bizerte (2021–2022), he taught practical physics and later co-supervised Master’s research projects in 2023 and 2024. His teaching was not just instructional but also developmental, helping students build critical skills in dielectric materials and experimental analysis.

🔬 Contributions and Research Focus

His PhD work (2021–2024) explores the superconducting-supercapacitance transition in the complex ceramic YBa₂₋ₓCaₓCuβOδ, synthesized using the sol-gel method. His research involves advanced characterization techniques such as XRD, SEM, TEM, XPS, PPMS, and VSM, highlighting his expertise in materials synthesis and structural/magnetic analysis. His contributions to the field include two co-authored scientific papers on phase transitions and intrinsic permittivity in ceramic compounds.

🌍 Impact and Influence

Dr. Chouk has enhanced his research impact through international internships a two-month stay at BAU University in Turkey and a three-month program at ICMM in Madrid, part of CSIC. He has also presented at prestigious events like SMS’2024 and AdAMFM 2022, and showcased his work at the Innovation Fair by the ANPR, where his stand on electro-ceramics for high-energy-density capacitors demonstrated both academic relevance and real-world application.

📊 Academic Citations and Publications

Dr. Wael Chouk has authored notable publications including “Study of phase transition behavior and high dielectric properties in YBa₂₋ₓCaₓCu₃Oδ ceramics” and “Novel high intrinsic permittivity in new perovskite ceramic GdCa₂Cu₃Oδ”. These studies significantly contribute to the scientific understanding of ceramic-based high-performance materials, with impactful applications in electronics, energy storage, and superconductivity. His research enhances the academic literature and reflects a growing influence in the field of materials physics.

🧪 Research Skills

Dr. Wael Chouk demonstrates strong experimental and analytical skills, especially in material synthesis (sol-gel, ceramic fabrication) and advanced characterization techniques such as XRD, TEM, SEM, XPS, and EPR. He is also proficient in simulation and analysis tools including MATLAB, Origin, and Gaussian. His expertise in laboratory instrumentation and data interpretation equips him to contribute effectively to cross-disciplinary research and lead complex experimental projects, reflecting a robust and versatile research capability.

🧑‍🏫 Teaching Experience

His years as a part-time teacher and student supervisor reveal a solid commitment to academic mentorship. He has taught practical physics to undergraduate students and supported Master’s candidates in achieving their academic goals, especially in materials physics and dielectric behavior analysis.

🏅 Awards and Honors

While formal award titles are not specified, Dr. Wael Chouk’s participation in international conferences, prestigious research internships, and representation at innovation fairs reflect peer recognition and academic credibility. He holds valuable certifications in ISO 9001, ISO 50001, X-ray diffraction, project management, stress management, public speaking, and first aid. These accomplishments highlight his professional competence, leadership potential, and strong alignment with high research standards and institutional trust.

🌱 Legacy and Future Contributions

Dr. Wael Chouk is poised to leave a lasting impact on the field of applied materials physics. His future contributions are likely to lie at the intersection of ceramic materials, energy storage technologies, and magnetic-electrical coupling. With a strong foundation in both academic teaching and experimental research, he is a promising candidate for collaborative international projects, postdoctoral fellowships, and innovative research leadership.

Publications Top Notes

Study of phase transition behavior and high dielectric properties in YBa₂₋ₓCaₓCu₃Oδ ceramics

  • Authors: Wael Chouk, Khouloud Moualhi, Abdelhak Othmani, Mouldi Zouaoui
    Journal: Materials Chemistry and Physics
    Year: 2023

Novel high intrinsic permittivity in new perovskite ceramic GdCa₂Cu₃Oδ

  • Authors: Khouloud Moualhi, Wael Chouk, Youssef Moualhi, Abdelhak Othmani, Mouldi Zouaoui
    Journal: Materials chemistry and physics
    Year: 2024

Multifunctional chitosan/montmorillonite/TiO₂ nanocomposites: Correlating microstructure with dielectric and photocatalytic properties

  • Authors: Lahbib M., Mejri C., Bejaoui M., Chadha C., Oueslati A., Oueslati W.
    Journal: Journal of the Indian Chemical Society
    Year: 2025

Conduction mechanism investigation in YCa₂Cu₃Oδ colossal permittivity ceramics

  • Authors: Wael Chouk, Mohamed Annabi, Mouldi Zouaoui
    Journal: Results in Physics
    Year:2025

 

 

Dieudonné NGA ONGODO | High energy physics | Best Researcher Award

Assist. Prof. Dr. Dieudonné NGA ONGODO | High energy physics | Best Researcher Award

University of Yaoundé I | Cameroon

Dr. Dieudonné NGA ONGODO is a Cameroonian nuclear physicist and Senior Lecturer at the University of Yaoundé I, Faculty of Science, Department of Physics. With over a decade of professional and academic engagement, Dr. Nga Ongodo stands out as a prominent scholar, researcher, and educator, whose work spans nuclear instrumentation, quantum mechanics, and radiation protection. His contributions are firmly rooted in both fundamental physics and applied technologies, making him a vital figure in the African and international scientific communities.

👨‍🎓Profile

Scopus 

ORCID

🎓 Early Academic Pursuits

Dr. Nga Ongodo’s academic foundation was laid with a Baccalaureate in Mathematics and Physics from Lycée d’Obala (2004–2005). He then enrolled at the University of Yaoundé I, completing his Undergraduate studies in Physics (2005–2010), followed by a Master’s Degree in Physics (2011–2013), and later earning a PhD in Nuclear Physics in 2020. His academic trajectory reflects a strong grounding in core and advanced physics disciplines, preparing him for a research-intensive career.

🧑‍🏫 Professional Endeavors

Over more than a decade, Dr. Nga Ongodo has built a distinguished academic career. Since May 2023, he serves as a Senior Lecturer at the University of Yaoundé I, having previously worked as an Assistant Lecturer (2021–2023) and Part-time Teacher (2014–2021) in the same department. Beyond academia, he also lectures at Institut Universitaire la Vision and previously at Institut Universitaire Sup Prépa, further demonstrating his commitment to educational development. Additionally, he plays a pivotal role in public contract regulation as a recognized expert for both the Regulatory Agency of Public Contracts (ARMP) and the Ministry of Public Contracts.

🧪 Contributions and Research Focus

Dr. Nga Ongodo is a dynamic and innovative researcher whose work spans several cutting-edge domains in physics. His expertise includes nuclear instrumentation, FPGA systems, digital signal and pulse processing (DSP, DPP), and radiation dosimetry. He has also contributed to the use of artificial neural networks in analyzing mass spectra, and explores quantum mechanics and SU(3) symmetry through advanced mathematical models. By integrating fractional calculus, Bohr Hamiltonian formalism, and quark models, he provides deep insight into atomic nuclei and particle interactions. His research bridges theory and application, advancing nuclear physics both locally and globally.

🌍 Impact and Influence

Dr. Nga Ongodo’s scientific influence transcends national borders. He has participated in prominent international workshops and seminars, including the African School of Fundamental Physics (Rwanda, 2016) and IAEA-AFRA training sessions across Cameroon and Ethiopia. His groundbreaking publications are featured in top-tier journals such as the European Physical Journal, Modern Physics Letters, and the International Journal of Modern Physics, attesting to the global relevance and visibility of his work.

📈 Academic Citations

With 13 peer-reviewed articles published between 2019 and 2025, Dr. Nga Ongodo’s work has received increasing academic attention. He has co-authored papers on topics including heavy pentaquark masses, Bohr Hamiltonian models, and charmonium resonances using both classical physics and AI techniques. His collaborations with other leading African physicists highlight his role as a central figure in nuclear modeling and quantum structure analysis.

🛠️ Research Skills

Dr. Nga Ongodo’s research expertise is deeply rooted in a diverse and robust technical skill set that empowers both his investigative pursuits and pedagogical approach. He possesses advanced mastery in nuclear and numerical electronics, as well as specialized experience in detector electronics and FPGA (Field Programmable Gate Array) systems, which are vital for real-time data acquisition and signal processing in nuclear experiments. His strong foundation in mathematical modeling, particularly through sophisticated frameworks such as the Nikiforov–Uvarov and Heun methods, allows him to derive analytical solutions for complex quantum systems.

👨‍🏫 Teaching Experience

A passionate and student-centered educator, Dr. Nga Ongodo has taught an extensive range of subjects including Quantum Physics, Electromagnetism, Fluid Mechanics, Thermodynamics, and Radiation Protection. He is well-versed in both theoretical instruction and practical laboratory supervision. His active engagement in pedagogical development seminars, such as the 2022 Competency-Based Teaching Workshop, showcases his dedication to educational innovation and student success.

🏅 Awards and Honors

While formal awards are not explicitly listed, Dr. Nga Ongodo’s appointments and invited participation in elite research events, including those organized by C.E.T.I.C and the IAEA, serve as implicit recognition of his expertise and leadership. His invitation to speak at the 2025 Radiological Protection Workshop in Cameroon underscores his role as a national thought leader in nuclear safety and public health.

🚀 Legacy and Future Contributions

Looking ahead, Dr. Nga Ongodo is set to play an even more significant role in African scientific development, particularly in areas of radiation protection, data-driven nuclear modeling, and sustainable electronics for physics research. His recent work involving Artificial Neural Networks, topological quantum mechanics, and quantum gravity analogues points to a future of interdisciplinary research that bridges AI, quantum systems, and high-energy physics. His legacy will not only be defined by the depth of his research, but also by his transformational impact on Cameroon’s scientific infrastructure, his mentorship of emerging scholars, and his efforts to elevate African research onto the global stage.

Publications Top Notes

Effect of spin-spin interaction and fractional order on heavy pentaquark masses under topological defect space-times

  • Authors: D. Nga Ongodo, A. A. Atangana Likéné, J. M. Ema’a Ema’a, P. Ele Abiama, G. H. Ben-Bolie
    Journal: The European Physical Journal C
    Year: 2025

Hyperbolic tangent form of sextic potential in Bohr Hamiltonian: Analytical approach via extended Nikiforov–Uvarov and Heun equations

  • Authors: D. Nga Ongodo, A. Atangana Likéné, A. Zarma, J. M. Ema’a Ema’a, P. Ele Abiama, G. H. Ben-Bolie
    Journal: International Journal of Modern Physics E
    Year: 2025

Electric quadrupole transitions of triaxial nuclei via the Bohr Hamiltonian within the screened Kratzer–Hellmann potential

  • Authors: D. Nga Ongodo, A. A. Atangana Likéné, A. Zarma, S. Haman Adama, J. M. Ema’a Ema’a, G. H. Ben-Bolie
    Journal: The European Physical Journal Plus
    Year: 2025

Non-compact extra dimensions and flavor dependence of cc̄ and bb̄ mesons masses in a hot QCD medium with lattice, LO and NLO parametrizations of the Debye mass

  • Authors: A. A. Atangana Likéné, L. B. Ungem, D. C. Mbah, D. Nga Ongodo, R. Houzibe, F. B. Djeuyi Ndafeun
    Journal: Modern Physics Letters A
    Year: 2025

Quantum chromodynamics Lagrangian density and SU(3) gauge symmetry: A fractional approach

  • Authors: A. A. Atangana Likéné, D. Nga Ongodo, P. Mah Tsila, A. Atangana, G. H. Ben-Bolie
    Journal: Modern Physics Letters A
    Year: 2024

Vien Vo Van | High-Energy Physics | Best Researcher Award

Assoc. Prof. Dr. Vien Vo Van | High-Energy Physics | Best Researcher Award

Lecturer at Tay Nguyen University | Vietnam

Dr. Vo Van Vien is a Senior Lecturer at Tay Nguyen University, specializing in Theoretical Physics with an emphasis on Neutrino Physics and Standard Model Extensions. He has an impressive academic background with a Bachelor’s degree from Vinh University, a Master’s from Ha Noi National University of Education, and a Doctorate from the Institute of Physics, Vietnam. His research primarily focuses on high-energy physics and particle phenomenology.

👨‍🎓Profile

Google scholar

Scopus

ORCID

Early Academic Pursuits 📚

Dr. Vien’s academic journey began with a Bachelor’s degree in Theoretical Physics from Vinh University (1999-2003), followed by a Master’s degree in Theoretical Physics and Mathematical Physics from Ha Noi National University of Education (2006-2008). He then pursued a PhD at the Institute of Physics (2009-2014), where his research deepened his expertise in neutrino physics and discrete symmetry models.

Professional Endeavors 💼

Dr. Vien has been a Senior Lecturer at Tay Nguyen University since 2004, where he continues to teach and mentor the next generation of physicists. His academic position has allowed him to lead several high-impact research projects in particle physics, neutrino mass mixing, and flavor symmetries. Notably, he has been the Principal Investigator for multiple funded projects including studies on lepton and quark mixings in extended Standard Models.

Contributions and Research Focus 🔬

Dr. Vien’s research contributions have been pivotal in extending the Standard Model, especially in neutrino physics, particle mass mixing, and discrete symmetries. His projects have explored a range of models like B-L models, flavor symmetries (e.g., A4, S4, Z4), and the muon anomaly. He has also contributed significantly to understanding neutrino oscillation phenomenology and the implications for dark matter in various extended models.

Impact and Influence 🌍

Dr. Vien’s work has significantly impacted the field of particle physics and neutrino phenomenology. His research on neutrino mass, mixing, and symmetry breaking models has been widely cited and recognized in global academic circles. His collaborations with prominent researchers and his leadership in international research projects underscore his influence in advancing high-energy physics.

📑 Academic Cites

Through his cutting-edge research, Dr. Vien has garnered significant recognition within the scientific community. His publications and citations have had a noticeable impact on the development of high-energy physics and mathematical models used in modern particle physics. His research has been cited by peers, especially those exploring theoretical extensions of the Standard Model and the neutrino sector.

Research Skills 🛠️

Dr. Vien has exceptional skills in Theoretical Physics, particularly in neutrino phenomenology, standard model extensions, and discrete symmetries. His expertise in mathematical models is complemented by proficiency in high-energy particle simulations and advanced theoretical methods, ensuring his research is at the cutting edge of particle physics.

Teaching Experience 🧑‍🏫

As a Senior Lecturer at Tay Nguyen University, Dr. Vien has mentored and inspired numerous students in theoretical physics and mathematical physics. He is known for his innovative teaching methods, combining advanced theoretical concepts with practical examples to help students understand complex phenomena in high-energy physics. His dedication to education ensures that his students are well-prepared to pursue careers in both academia and industry.

Awards and Honors 🏅

Dr. Vien has received several awards and accolades for his academic excellence and research leadership, including:

  • National Foundation for Science and Technology Development grants for his research on Fermion mass and mixing.

  • Tay Nguyen University Principal Investigator awards for his work in extending the Standard Model and exploring new physics.

  • Recognition in peer-reviewed journals for his groundbreaking research in neutrino physics and dark matter.

Legacy and Future Contributions 🌠

Dr. Vo Van Vien’s legacy lies in his substantial contributions to particle physics and his dedication to educating future generations of physicists. His ongoing research promises to further unravel the complexities of neutrino physics, dark matter, and the Standard Model extensions. With a vision of pushing the boundaries of high-energy physics, Dr. Vien is poised to make lasting contributions to theoretical physics that could have a profound impact on how we understand the universe.

Publications Top Notes

Realistic fermion mass and mixing in U(1)L model with A4 flavor symmetry for Majorana neutrino

  • Authors: V.V. Vien, Vo Van
    Journal: Indian Journal of Physics
    Year: 2025

Lepton masses and mixings with broken μ−τ symmetry in a B – L extended 3HDM based on (Z2×Z4)⋊Z2 (I) symmetry

  • Authors: V.V. Vien, Vo Van
    Journal: Chinese Journal of Physics
    Year: 2025

The μ−τ reflection symmetry breaking in a B−L model with T7×Z8×Z2 symmetry

  • Authors: V.V. Vien, Vo Van
    Journal: Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics
    Year: 2024

A4×Z2×Z4 flavor symmetry model for neutrino oscillation phenomenology

  • Authors: V.V. Vien, Vo Van
    Journal: Revista Mexicana de Fisica
    Year: 2024

Fermion masses and mixings and g − 2 muon anomaly in a Q6 flavored 2HDM

  • Authors: V.V. Vien, Vo Van, H.N. Long, A.E. Cárcamo Hernández, J. Marchant González
    Journal: Nuclear Physics, Section B
    Year: 2024

 

 

 

Ngangkham Nimai Singh | High energy physics | Distinguished Scientist Award

Prof. Dr. Ngangkham Nimai Singh | High energy physics | Distinguished Scientist Award

Professor at Manipur University | India

Dr. Ngangkham Nimai Singh is a distinguished Theoretical Physicist and the current Director of the Research Institute of Science and Technology (RIST) in Manipur. With an academic career spanning over 30 years, Dr. Singh has made remarkable contributions to High Energy Physics (HEP) and is an influential figure in scientific research and education. His expertise in Grand Unified Theories (GUTs), Neutrino Physics, and QCD-oriented hadronic models makes him a globally recognized scientist.

👨‍🎓Profile

Google scholar

Scopus

Early Academic Pursuits 🎓

Dr. Singh’s educational journey began in Manipur, where he completed his early schooling before moving to Delhi University. There, he earned a B.Sc. in Physics (Hons.) in 1979, followed by an M.Sc. in Physics in 1981. His pursuit of higher knowledge led to an M.Phil. (1984) and a Ph.D. in Physics (1989), both from Delhi University, under the mentorship of the esteemed Prof. A. N. Mitra. Dr. Singh’s early academic training laid the foundation for his later contributions to theoretical physics.

Professional Endeavors 🌍

Dr. Singh’s professional career includes over 22 years of service at Gauhati University, where he held the positions of Lecturer, Reader, and eventually Professor. As Head of the Department of Physics (2010–2013), he played a crucial role in the department’s development. From 2013–2014, he served as a Professor and Head at Manipur University. Additionally, Dr. Singh has held various important positions such as Controller of Examination (I/C) at Manipur University and a PAC Member for International Cooperation/Physics at DST, New Delhi. His leadership extends to scientific bodies like PANE, NEAS, and MAPS.

Contributions and Research Focus 🔬

Dr. Singh’s research has had a transformational impact in the field of Theoretical High Energy Physics (HEP). His research interests include:

  • Grand Unified Theories (GUTs) such as SU(5) and SO(10), exploring the unification of the fundamental forces of nature.

  • Neutrino Physics, focusing on the origin of neutrino masses and mixings.

  • Baryogenesis through Leptogenesis, aiming to understand the matter-antimatter asymmetry in the universe.

  • Higgs Physics and Proton Decay, investigating the fundamental particles and forces.

  • Relativistic Few-Quark Dynamics and Quark Confinement, including QCD-oriented hadronic models and Bethe Salpeter Dynamics.

His research has contributed significantly to the understanding of the standard model of particle physics and beyond, particularly in the areas of neutrino masses, Higgs boson properties, and proton decay.

Impact and Influence 🌐

Dr. Singh’s impact extends far beyond his research. His role as a founding member of numerous scientific organizations, including the North East Academy of Sciences (NEAS), Physics Academy of North East (PANE), and Manipur Centre of Scientific Culture, highlights his dedication to the promotion of science in the northeastern region of India. Dr. Singh has also served as a visiting associate at prestigious institutions like PRL Ahmedabad and ICTP Trieste, fostering global collaborations. As President of PANE, he has worked tirelessly to advance scientific education and promote collaboration among physicists in the region, shaping the future of Physics in Northeast India.

Academic Cites 📚

Dr. Singh’s work has been cited in numerous academic papers and has contributed to the development of Grand Unified Theories (GUTs) and Neutrino Physics. His research on quark dynamics and light-cone physics has helped refine QCD models and deepen the scientific understanding of hadronic structures. His findings in Higgs physics, Baryogenesis, and Proton Decay continue to be foundational for researchers in particle physics worldwide.

Research Skills 🔍

Dr. Singh is highly skilled in theoretical modeling and quantitative analysis, focusing on complex phenomena in high-energy physics. His ability to formulate and solve problems in quantum chromodynamics (QCD), neutrino mass models, and baryogenesis is unmatched. Furthermore, his interdisciplinary approach, combining elements of quantum mechanics, relativistic dynamics, and cosmology, sets him apart as a pioneering researcher in his field.

Teaching Experience 🍎

With three decades of experience in academia, Dr. Singh has mentored and guided numerous graduate and postgraduate students. His role as a Professor and Head of the Department of Physics at Gauhati University and Manipur University allowed him to impart valuable knowledge on high-energy physics, theoretical models, and advanced quantum mechanics. He is also a respected research supervisor, helping students push the boundaries of particle physics.

Awards and Honors 🏅

Dr. Singh’s contributions have been widely recognized throughout his career:

  • Commonwealth Fellowship (1999-2000) at Southampton University, UK.

  • Visiting Associate at the Physical Research Laboratory (PRL), Ahmedabad.

  • Regular Associate at the ICTP, Trieste.

  • Member of the All India Theoretical Physics Seminar Circuit (2004-2005).

These accolades, along with his research collaborations and leadership in scientific societies, underscore his global recognition and influence in the scientific community.

Legacy and Future Contributions 🌱

Dr. Singh’s legacy is defined by his dedication to scientific progress and his mentorship of future generations of physicists. His involvement in founding scientific organizations in the Northeast has created lasting structures for the promotion of physics in the region. In the future, Dr. Singh’s research on neutrino physics, proton decay, and quark confinement is likely to continue influencing the field of high-energy physics. As a leader, educator, and researcher, he will undoubtedly leave an enduring mark on the scientific community, especially in advancing particle physics and cosmological theories.

Publications Top Notes

A5 symmetry and deviation from golden ratio mixing with charged lepton flavor violation

  • Authors: V. Puyam, Ngangkham Nimai Singh
    Journal: Nuclear Physics, Section B
    Year: 2025

Perturbation to μ -τ symmetry using type I and type II seesaw mechanisms under SU(2)L × Δ (27) × Z2 flavor symmetry

  • Authors: P. Wilina, Ngangkham Nimai Singh
    Journal: Modern Physics Letters A
    Year: 2025

Modular A4 symmetry in 3 + 1 active-sterile neutrino masses and mixings

  • Authors: Mayengbam Kishan Singh, Soram Robertson Singh, Ngangkham Nimai Singh
    Journal: International Journal of Modern Physics A
    Year: 2024

A randomly generated Majorana neutrino mass matrix using adaptive Monte Carlo method

  • Authors: Yuvraj Monitar Singh, Mayengbam Kishan Singh, Ngangkham Nimai Singh
    Journal: International Journal of Modern Physics A
    Year: 2024

Comparative analysis on the validity of golden ratio, tri-bimaximal, hexagonal and bimaximal neutrino mixing patterns under the radiative corrections

  • Authors: Yuvraj Monitar Singh, Moirangthem Shubhakanta Singh, Ngangkham Nimai Singh
    Journal: Physica Scripta
    Year: 2024