Bibhushan Shakya | High energy physics | Best Researcher Award

Dr. Bibhushan Shakya | High energy physics | Best Researcher Award

Staff Scientist at DESY | Germany

Dr. Bibhushan Shakya is a theoretical physicist specializing in particle physics and cosmology, currently serving as a Junior Staff Scientist at DESY, Hamburg. His research spans dark matter, gravitational waves, and early universe phenomena. With a Ph.D. from Cornell University, and professional stints at CERN, University of Michigan, and UCSC, he has emerged as a globally respected researcher. He has co-authored over 40 publications, supervised multiple graduate theses, and served in advisory and organizational roles within major international physics communities, including Snowmass and BCVSPIN. A native of Nepal, he actively contributes to science outreach across South Asia.

👨‍🎓Profile

Google scholar

Scopus

🎓 Early Academic Pursuits

Dr. Shakya’s academic journey began at Stanford University, where he earned three undergraduate degrees with distinction in Physics (Theoretical Concentration), Mathematics, and Philosophy. His passion for the fundamentals of the universe led him to Cornell University for doctoral studies under the mentorship of Prof. Maxim Perelstein. There, he specialized in theoretical particle physics, completing a Ph.D. thesis on dark matter phenomenology during a transformative period in experimental cosmology. His early academic years reflect a rare combination of depth in theoretical physics and breadth in interdisciplinary thought, laying the groundwork for his future contributions to cosmology and high-energy physics.

🧪 Professional Endeavors

Dr. Shakya has held prestigious research positions globally. After completing his Ph.D., he undertook postdoctoral fellowships at the University of Michigan, University of Cincinnati, and UC Santa Cruz, forming collaborative bridges across top U.S. institutions. He served as a Senior Fellow at CERN, Geneva, contributing to LISA cosmology initiatives, before joining DESY in 2021. His roles involve not just research but strategic leadership, including organizing seminars, leading selection committees, and mentoring Ph.D. students. He is recognized as a scientific community builder, contributing to international collaboration platforms like Snowmass 2022 and BCVSPIN in South Asia.

🔬 Contributions and Research Focus

Dr. Shakya’s research focuses on early-universe cosmology, dark matter, and gravitational wave signals from first-order phase transitions. His work addresses phenomena at the intersection of cosmology and high-energy physics, often exploring nonthermal origins of dark matter, tachyonic fields, and leptogenesis via bubble collisions. His publications in JCAP, JHEP, PRD, and PRL underscore both depth and originality. Notably, he collaborates with prominent physicists like Giudice, Kamionkowski, and Pomarol, positioning him at the forefront of phenomenological cosmology. His recent work with student co-authors further highlights his commitment to mentored discovery and academic development.

🌍 Impact and Influence

Dr. Shakya’s impact is global and multi-dimensional. Through publications, student mentorship, and international collaborations, he has significantly advanced the understanding of the early universe. As Chair of BCVSPIN, he champions particle physics in developing South Asian regions, fostering access to frontier research. His leadership role in the Snowmass 2022 Cosmic Frontier initiative helped shape the U.S. particle physics strategic roadmap. He regularly reviews for top-tier journals and major funding bodies like ERC and NSERC, reinforcing his influence on scientific standards. His lectures and outreach efforts have inspired young researchers and the general public across continents.

📚 Academic Cites and Publications

Dr. Shakya has authored over 40 peer-reviewed publications on arXiv, InspireHEP, and in leading journals like JCAP, JHEP, PRD, and PLB. His work is widely cited, with growing influence in cosmological phase transition physics, gravitational wave phenomenology, and non-thermal dark matter scenarios. Many of his papers involve cross-disciplinary ideas at the intersection of particle physics and cosmology, often co-authored with international experts and students. Some of his highly recognized works include those on dark photon production from cosmic strings, leptogenesis, and bubble collision dynamics. His research citations reflect a strong and growing academic footprint.

🧠 Research Skills and Expertise

Dr. Shakya exhibits exceptional analytical skills in quantum field theory, early-universe modeling, and beyond Standard Model physics. His ability to translate highly technical theory into observable cosmological predictions demonstrates deep understanding and creativity. He is proficient in phenomenological modeling, analytical methods, and scientific computation, making his work relevant to experimental data from CMB, LISA, and gravitational wave observatories. His collaborations across theory and experiment exemplify a rare blend of vision and rigor. He is also known for clear scientific communication, essential for both mentoring and outreach. These skills position him as a leading contributor to modern theoretical physics.

🧑‍🏫 Teaching and Mentorship

Dr. Shakya has contributed extensively to teaching and mentoring, both formally and informally. At University of Hamburg, he delivered guest lectures on supersymmetry and collider physics. He regularly teaches at international summer and winter schools (e.g., BCVSPIN, Hamburg Summer School) on topics like dark matter phenomenology and gravitational waves. He has supervised multiple Bachelor’s, Master’s, and Ph.D. students, many of whom have co-authored papers and moved on to prestigious research positions. His mentorship style encourages intellectual independence and scientific curiosity, making him an asset to any academic institution committed to excellence and training the next generation.

🏅 Awards and Honors

While Dr. Shakya has not yet been publicly recognized with individual awards, his appointment as Junior Staff Scientist at DESY, one of the world’s premier particle physics labs, underscores institutional recognition of his excellence. He has served as a referee for elite physics journals, a grant reviewer for the ERC and NSERC, and a strategic leader in international collaborations all clear acknowledgments of his scientific standing. His inclusion in roles like Snowmass 2022 liaison and chairing BCVSPIN reflects peer trust and leadership. These achievements serve as strong indicators of his eligibility for Best Researcher Award recognition.

🔮 Legacy and Future Contributions

Dr. Shakya’s legacy is already taking shape through his publications, mentorship, outreach, and scientific leadership in South Asia. In the future, he is well-positioned to become a principal investigator, lead independent grant-funded projects, and shape the field through interdisciplinary research. His ongoing involvement in gravitational wave cosmology, especially related to LISA, aligns with the next frontier in observational physics. By continuing to connect young scientists, global institutions, and frontier physics, he will play a pivotal role in both advancing science and making it more inclusive. His long-term influence will be felt across academia, policy, and outreach.

Publications Top Notes

📄 Particle Production from Phase Transition Bubbles
  • Authors: Henda Mansour, Bibhushan Shakya

  • Journal: Physical Review D

  • Year: 2025

📄 Aspects of Particle Production from Bubble Dynamics at a First Order Phase Transition
  • Author: Bibhushan Shakya

  • Journal: Physical Review D

  • Year: 2025

📄 Nonthermal Heavy Dark Matter from a First-Order Phase Transition
  • Authors: G. Giudice, H.M. Lee, A. Pomarol, B. Shakya

  • Journal: Journal of High Energy Physics (JHEP)

  • Year: 2024

📄 White Paper on Light Sterile Neutrino Searches and Related Phenomenology
  • Authors: Multiple authors (including Bibhushan Shakya)

  • Journal: Journal of Physics G: Nuclear and Particle Physics

  • Year: 2024

📄 Bouncing Dark Matter
  • Authors: L. Puetter, J.T. Ruderman, E. Salvioni, B. Shakya

  • Journal: Physical Review D

  • Year: 2024

 

Bei Chen | High energy physics | Best Researcher Award

Ms. Bei Chen | High energy physics | Best Researcher Award

Tianjin University of Technology | China

Chen Bei is a dynamic Photoelectric Chip Engineer specializing in Condensed Matter Physics with a focus on inorganic semiconductor materials and devices. With solid academic roots and research training from prestigious institutions like Tianjin University of Technology and National University of Defense Technology, Chen Bei is known for his hands-on expertise in photoelectric device fabrication, characterization, and broadband photodetectors. His works contribute to both civilian innovations and defense technologies, demonstrating a rare blend of academic excellence and applied engineering acumen.

👨‍🎓Profile

Scopus

🎓 Early Academic Pursuits

Chen Bei began his academic journey in Physics at Inner Mongolia University for Nationalities, where he ranked Top 3 of 50 students and held a leadership role as Vice Minister in the student organization department. His undergraduate studies emphasized quantum mechanics, solid-state physics, and electrodynamics, laying the groundwork for a career in advanced material science. His academic excellence continued with a Master’s in Condensed Matter Physics at Tianjin University of Technology, where he consistently ranked in the top 5 and received competitive scholarships and teaching responsibilities.

💼 Professional Endeavors

Currently serving as a Photoelectric Chip Engineer at the Jiangtian Research Group (National University of Defense Technology), Chen Bei’s role includes testing photoelectric chip packaging, bare die analysis, and optical path construction. This position builds on his experience in device fabrication, gained through years of semiconductor research. His ongoing work explores integration strategies for military-grade silicon-based photonic systems, marking a critical step in real-world technological deployment. His engineering contributions are aligned with national priorities and show potential for both academic and industrial breakthroughs.

🔬 Contributions and Research Focus

Chen Bei’s research spans self-powered broadband photodetectors, artificial retina simulation, optically controlled logic, and device integration for defense. Notable among these is his published work in ACS Applied Materials & Interfaces, where he developed a CuInS₂/SnO₂-based detector for encrypted optical communication. His focus on interfacial engineering using TiO₂ layers and metal ion doping shows deep engagement with optimizing device sensitivity and functionality across UV–Vis–NIR bands. These contributions are not only novel but also have tangible technological applications.

🌐 Impact and Influence

Chen Bei’s research has already gained peer recognition, with publications in high-impact journals and ongoing projects that promise cross-disciplinary relevance in biophotonics, optoelectronics, and secure communications. His work on retina-inspired photodetectors and photoelectric logic systems can significantly influence medical imaging, wearable sensors, and neuromorphic computing. Within his research institutions, he is recognized as a bridge between theory and application, contributing meaningfully to team outcomes while enhancing national R&D capabilities in semiconductor optics.

📚 Academic Citations

Chen Bei’s primary publication in ACS Applied Materials & Interfaces has received early attention in the material sciences and applied physics community. His upcoming article in Materials Today Energy a high-impact journal will further solidify his standing in energy-sensitive optoelectronic applications. With growing citation potential and interdisciplinary value, his publications are expected to form reference points for future research in low-power photoelectronic systems and bio-inspired photonic devices.

🧪 Research Skills

Chen Bei possesses strong experimental proficiency, including semiconductor material synthesis (spin-coating, hydrothermal, chemical bath deposition) and advanced characterization (SEM, TRPL, XRD, UV-Vis spectroscopy). His fluency with electronic instrumentation like Keithley source meters, vector network analyzers, and electrochemical workstations enables accurate and nuanced analysis of device behavior. He also designs and fabricates devices independently skills that mark him as a complete researcher from concept to validation. His strong grip on Origin, JADE, and Layout software also facilitates precise data interpretation and device simulation.

👨‍🏫 Teaching Experience

As a graduate teaching assistant at Tianjin University of Technology, Chen Bei supported students in both practical laboratory sessions and coursework in advanced physics topics. His ability to explain complex concepts like semiconductor devices, photonic behavior, and materials characterization reflects his aptitude for mentorship. He played a pivotal role in connecting theoretical learning with lab-based exploration an experience that underlines his capacity to contribute in academic or training-focused environments.

🏅 Awards and Honors

Chen Bei has consistently ranked among the top students, earning Second-Class Scholarships during both his bachelor’s and master’s studies. His selection as Vice Minister of the student organization department reflects strong leadership and organizational abilities. Recognition as a graduate assistant also attests to his teaching competence and trust within the academic community. These accolades, coupled with peer-reviewed publications, position him as a rising talent in applied physics and engineering.

🌟 Legacy and Future Contributions

Chen Bei is positioned to become a thought leader in optoelectronic integration and semiconductor device engineering. His work has the potential to impact military-grade communication, biomimetic sensors, and self-powered IoT technologies. With growing experience in multidisciplinary collaborations, and exposure to real-world implementation scenarios, he is set to define the next wave of photoelectric innovation. As he continues to evolve, his blend of scientific insight, engineering rigor, and innovation-minded focus will be instrumental in shaping future technologies.

Publications Top Notes

UV-Vis-NIR Broad-Band Self-Powered CuInS₂/SnO₂ Photodetectors and the Application in Encrypted Optical Communication
  • Authors: Chen Be
    Journal: ACS Applied Materials & Interfaces
    Year: 2024

Insertion Layer of TiO₂ to Improve the UV−Vis−NIR Photoresponse Characteristics of CuInS₂/SnO₂ Self-Powered Photodetectors and Its Application in Artificial Retinas
  • Authors: Chen Bei
    Journal: Materials Today Energy
    Year: 2024

 

Xiangling Tian | High energy physics | Best Researcher Award

Assoc. Prof. Dr. Xiangling Tian | High energy physics | Best Researcher Award

University of Electronic Science and Technology of China | Yangtze Delta Region Institute (Quzhou) | China

Dr. Xiangling Tian is an accomplished Associate Researcher at the University of Electronic Science and Technology of China and the Yangtze Delta Region Institute (Quzhou). With a Ph.D. in Materials Science, his research focuses on optoelectronic devices, nanowire-based scintillators, and nonlinear optics. He has held research positions at prestigious institutions, including Zhejiang Laboratory and Nanyang Technological University in Singapore. His expertise lies in advanced photonic materials, smart medical imaging technologies, and optical properties of low-dimensional semiconductors. A dynamic and emerging figure in material sciences, Dr. Tian has made substantial contributions through high-impact research, international collaborations, and innovative technologies.

👨‍🎓Profile

Scopus 

ORCID

🎓 Early Academic Pursuits

Dr. Tian’s academic journey began with a B.Sc. in Physics from Qufu Normal University, where he laid a solid foundation in theoretical and experimental physics. He earned his M.Sc. in Condensed Matter Physics at Zhejiang Normal University, focusing on mechanoluminescence. His academic ascent culminated in a Ph.D. in Materials Science from South China University of Technology (2015–2018), under Prof. Jianrong Qiu, with a dissertation on optical nonlinearity in transition metal chalcogenides and bismuth oxyselenide. These formative years shaped his deep interest in photonic materials and advanced optical phenomena.

💼 Professional Endeavors

Dr. Tian has undertaken several impactful research roles. At Nanyang Technological University, he explored multidimensional perovskites for high-performance light-emitting devices. As an Associate Researcher at Zhejiang Laboratory, he contributed to near-infrared materials and smart fibers. Since 2022, he has held a leading role at UESTC, where he conducts research, mentors young talent, and advances technology transfer initiatives. His professional work demonstrates a balance of scientific leadership, project execution, and collaborative innovation across interdisciplinary domains, particularly in optoelectronics, nanomaterials, and biomedical imaging.

🔬 Contributions and Research Focus

Dr. Tian’s research centers on smart medical imaging devices, high-resolution scintillators, and nonlinear optical materials. He is the Principal Investigator (PI) of several key national and regional projects, including those on DBR lasers, nanowire waveguides, and perovskite quantum dots. His interdisciplinary work connects materials science, photonics, and device engineering, with applications ranging from X-ray imaging to NIR spectroscopy. He is also advancing flexible scintillators and artificial muscle fibers, reflecting his interest in next-generation wearable and biomedical technologies. His research not only expands scientific knowledge but also drives real-world innovations.

🌍 Impact and Influence

Dr. Tian’s work has made significant academic and societal impacts. His research outcomes have enhanced the performance of medical imaging systems, contributed to green optoelectronics, and led to highly cited publications in journals like Advanced Optical Materials and ACS Applied Materials & Interfaces. He actively contributes as a peer reviewer for top journals and has helped organize international conferences, demonstrating his influence in the global scientific community. His innovations in nonlinear optics and nanowire-based scintillators are gaining attention across photonics and materials science sectors, showcasing his growing influence as a thought leader.

📚 Academic Cites

Dr. Tian has published over 15 journal articles, including first-author and corresponding-author papers in SCI-indexed journals such as Nanoscale, Ceramics International, and Journal of Materials Chemistry C. His works are increasingly cited by peers in fields spanning photonics, optics, materials science, and biomedical engineering. He has also co-authored a Springer book and contributed to book chapters, further expanding his academic footprint. With multiple ongoing projects funded by NSFC, his publications continue to influence emerging research on scintillation, laser technologies, and nonlinear optical phenomena.

🛠️ Research Skills

Dr. Tian possesses strong interdisciplinary and technical proficiencies. His laboratory expertise includes TEM, SEM, AFM, XRD, and FTIR, while his computational toolkit covers MATLAB, Python, and data analysis for photonic simulations. He excels in nanomaterial synthesis, glass ceramics, and quantum dot engineering, particularly for light emission and imaging applications. His hands-on ability in fabrication and characterization supports the development of cutting-edge optical devices. With excellent project management and proposal writing experience, he is a complete researcher bridging lab-based innovation and practical device application.

👩‍🏫 Teaching Experience

While primarily research-focused, Dr. Tian is actively involved in talent cultivation through mentorship and research supervision. At UESTC, he engages with graduate students and junior researchers, providing guidance on project design, experimentation, and publication. His academic mentoring is supported by his international exposure and practical lab skills. Though formal teaching roles are less emphasized in his profile, his impact on training future scientists through hands-on instruction and project leadership is evident, especially in high-tech fields like nanophotonics and bioimaging materials.

🏆 Awards and Honors

Dr. Tian’s excellence has been recognized through several prestigious awards. He won the Zhejiang Provincial Natural Science Award (Second Prize) for his work on low-dimensional semiconductors and photonic applications. He was a Finalist in the Yuanchuang Cup Innovation Competition for designing a bionic compound eye system. Additionally, he received the Outstanding Ph.D. Dissertation Award and was named an Outstanding Graduate Student in Guangdong. These honors underscore his scientific creativity, innovation, and leadership within the academic and applied research communities.

🚀 Legacy and Future Contributions

Looking ahead, Dr. Tian aims to drive advancements in high-performance biomedical imaging, flexible photonic devices, and quantum optoelectronics. His legacy will likely include bridging fundamental research with translational technologies, impacting healthcare, defense, and energy sectors. By mentoring young scientists and leading collaborative research efforts, he is shaping a sustainable and inclusive scientific culture. With his robust publication record, research funding success, and international outlook, Dr. Tian is poised to make lasting contributions as a visionary leader in materials science and photonics innovation.

Top Noted Publications

High-temperature X-ray Time-lapse Imaging Based on the Improved Scintillating Performance of Na₅Lu₉F₃₂:Tb³⁺ Glass Ceramics

  • Authors: Rongfei Wei*, Ying Chen, Li Wang, Junwei Pan, Xiangling Tian*, Fangfang Hu, and Hai Guo*

  • Journal: Advanced Optical Materials

  • Year: 2025

Improved broadband luminescence in Gd₂GaSb₁₋ₓTaₓO₇:Cr³⁺,Yb³⁺ pyrochlore phosphors: Near-infrared spectroscopic applications and dual-mode optical thermometry

  • Authors: Ligan Ma, Rongfei Wei*, Qingqing Yu, Peican Dai, Xiangling Tian⁎⁎, Fangfang Hu, Hai Guo***

  • Journal: Materials Today Chemistry

  • Year: 2024

Enhanced scintillating performance in Tb³⁺ doped oxyfluoride glass for high-resolution X-ray imaging

  • Authors: Lanjiao Li, Rongfei Wei*, Li Wang, Xiangling Tian⁎⁎, Xiaoman Li, Fangfang Hu, Hai Guo***

  • Journal: Ceramics International

  • Year: 2024

Achieving an Improved NIR Performance of Ca₄₋ₓSc₂ₓZr₁₋ₓGe₃O₁₂:Cr³⁺ via [Sc³⁺-Sc³⁺] → [Ca²⁺-Zr⁴⁺]

  • Authors: Ying Chen, Rongfei Wei*, Lanjiao Li, Xiangling Tian*, Fangfang Hu, and Hai Guo*

  • Journal: Inorganic Chemistry

  • Year: 2024

Enhanced thermal stability of broadband NIR phosphors Ca₃.₃Mg₀.₇ZrGe₃O₁₂:Cr³⁺ for pc-LEDs

  • Authors: Lanjiao Li, Ying Chen, Rongfei Wei*, Siyu Guo, Xiangling Tian*, Fangfang Hu, Hai Guo*

  • Journal: Journal of Alloys and Compounds

  • Year: 2025

 

 

 

Lijun Wang | High energy physics | Best Researcher Award

Dr. Lijun Wang | High energy physics | Best Researcher Award

Changzhou University | China

Dr. Lijun Wang is a dynamic researcher and educator specializing in thermoelectric materials, currently a Research Fellow at the Queensland University of Technology and previously a Lecturer at Changzhou University. With a Ph.D. in Materials Science and Engineering from China University of Petroleum (Beijing) and a visiting Ph.D. experience at The University of Queensland, Dr. Wang brings a global perspective to advanced materials research. His expertise bridges energy materials, nanostructures, and thermal transport, underlined by over 28 peer-reviewed publications, 5 patents, and an impressive academic citation record.

👨‍🎓Profile

Scopus

Google scholar

🎓 Early Academic Pursuits

Dr. Wang began his academic journey with a Bachelor’s degree in Polymer Materials from Liaocheng University, followed by a Master’s in Textile and Material Engineering from Dalian Polytechnic University. His drive for deeper scientific exploration led to a Ph.D. in Materials Science and Engineering at China University of Petroleum-Beijing, supported by the China Scholarship Council. As a Visiting Ph.D. Researcher at The University of Queensland, he honed his skills in nanomaterials and thermoelectrics, laying the foundation for his future contributions in thermal conductivity engineering and energy conversion systems.

🧑‍🔬 Professional Endeavors

Dr. Wang’s professional career features a dual academic appointment—a Lecturer at Changzhou University since 2020 and a Research Fellow at Queensland University of Technology starting in 2024. At Changzhou University, he has taught and developed several key materials science and chemistry courses. His academic leadership also includes supervising Master’s and undergraduate research projects. His international experience and involvement in multi-institutional collaborations highlight his role in advancing research on SnTe-based and flexible thermoelectric systems, contributing to global energy solutions and academic excellence.

🔬 Contributions and Research Focus

Dr. Wang’s research is focused on thermoelectric materials, especially SnTe-based systems, thermal conductivity minimization, and nanostructure engineering. He has significantly contributed to the design of high-performance materials using doping strategies, phonon scattering mechanisms, and solution-based synthesis methods. His work addresses critical needs in flexible electronics, energy harvesting, and battery thermal management. Dr. Wang’s impactful studies have been published in prestigious journals like ACS Applied Materials & Interfaces, Chemical Society Reviews, and Nano Energy, where he frequently serves as first author or co-corresponding author.

🌏 Impact and Influence

Dr. Wang’s research has attracted over 700 Google Scholar citations, demonstrating significant scientific influence. His innovations in SnTe thermoelectric materials have received international recognition, contributing to advancements in green energy technologies and sustainable materials. He has co-authored in high-impact journals such as Advanced Science, ACS Nano, and Acta Materialia, influencing the academic and industrial communities alike. His patented technologies represent tangible outputs of academic research into real-world applications, particularly in energy-efficient electronic systems.

📚 Academic Citations

With 28 publications, including 10 first-author papers, 5 patents, and an H-index of 12, Dr. Wang’s work has achieved 704 citations to date. His most cited work on Se/Cd Co-doped SnTe has been referenced 56 times, highlighting its impact on thermoelectric research. Several of his publications in ACS Applied Materials, Nano Energy, and Chemical Engineering Journal are foundational to lattice thermal conductivity and nanostructuring techniques. His research continues to influence new generations of material scientists, both through citations and collaborative projects.

🛠️ Research Skills

Dr. Wang possesses a strong arsenal of experimental techniques, including microwave solvothermal synthesis, nanostructure design, and high-resolution microscopy. His work involves thermal property measurements, electronic transport analysis, and computational modeling of energy materials. He is skilled in collaborative research, project management, and multidisciplinary problem-solving, especially in the fields of thermoelectrics, photovoltaics, and membrane materials. His ability to translate fundamental science into technological innovation is reflected in both his patented methods and high-impact publications.

🧑‍🏫 Teaching Experience

At Changzhou University, Dr. Wang has taught and developed curriculum for four core undergraduate courses: Material Economy and Management, Organic Membrane Materials, Foundations of Crystallography, and Experimental Chemistry from 2020 to 2023. His innovative teaching approach integrates theoretical grounding with practical applications, inspiring students toward research excellence. As a certified higher education lecturer and Master’s thesis supervisor, he has mentored over 10 undergraduate and graduate students, many of whom have pursued advanced studies and research roles under his guidance.

🏆 Awards and Honors

Dr. Wang has received numerous prestigious awards including the Chinese Government Award for Outstanding Joint PhD Students Abroad (2017) and the National PhD Scholarship. He also won the Outstanding Poster Award at the Chinese Materials Conference 2017. His teaching and academic merits earned him the Higher Education Teaching Qualification Certificate and Master’s Supervisor Certification in China. His early academic excellence was recognized with multiple university scholarships and an Outstanding Graduate Award a testament to his consistent academic dedication and leadership.

🚀 Legacy and Future Contributions

Dr. Wang aims to pioneer the next generation of energy materials through advanced thermoelectric systems, flexible devices, and scalable synthesis methods. With his evolving role at Queensland University of Technology, he is poised to lead international collaborations, contribute to climate-conscious technologies, and mentor a new wave of materials scientists. His growing body of patented inventions and scholarly works will shape the future of energy conversion technologies. Dr. Wang’s legacy lies in his dedication to bridging fundamental research with real-world impact, paving a sustainable path forward.

Top Noted Publications

Zn/In dual doping enhances the thermoelectric performance of SnTe
  • Authors: Lijun Wang, Xiao-Lei Shi, Lvzhou Li, Cuicui Dong, Pengcheng Miao, Ziyi Shen, Ningyi Yuan, Jianning Ding, Shuqi Zheng, Zhi-Gang Chen
    Journal: Journal of Physics: Materials
    Year: 2024

Advances in solid-state and flexible thermoelectric coolers for battery thermal management systems
  • Authors: Lijun Wang, Xiao-Lei Shi, Yicheng Yue, Lvzhou Li, Cuicui Dong, Jianjun Guan, Jianning Ding, Ningyi Yuan, Zhi-Gang Chen
    Journal: Soft Science
    Year: 2024

Advancing flexible thermoelectrics for integrated electronics
  • Authors: Xiao-Lei Shi, Lijun Wang, Wanyu Lyu, Tianyi Cao, Wenyi Chen, Boxuan Hu, Zhi-Gang Chen*
    Journal: Chemical Society Reviews
    Year: 2024

Zinc Doping Induces Enhanced Thermoelectric Performance of Solvothermal SnTe
  • Authors: Lijun Wang, Xiao-Lei Shi*, Lvzhou Li, Min Hong, Bencai Lin, Pengcheng Miao, Jianning Ding, Ningyi Yuan, Shuqi Zheng*, Zhi-Gang Chen*
    Journal: Chemistry – An Asian Journal
    Year: 2024

Hierarchical Structuring to Break the Amorphous Limit of Lattice Thermal Conductivity in High-Performance SnTe-Based Thermoelectrics
  • Authors: Lijun Wang, Min Hong, Qiang Sun, Yuan Wang, Luo Yue, Shuqi Zheng*, Jin Zou*, Zhi-Gang Chen*
    Journal: ACS Applied Materials & Interfaces
    Year: 2020

 

 

 

 

Hayriye SUNDU | High energy physics | Best Researcher Award

Prof. Hayriye SUNDU | High energy physics | Best Researcher Award

Professor at ISTANBUL MEDENIYET UNIVERSITY | Turkey

Assoc. Prof. Dr. Hayriye Sundu Pamuk is a seasoned theoretical physicist specializing in high energy physics and QCD sum rules, currently serving at Istanbul Medeniyet University. With over two decades of academic experience, she has made impactful contributions to the field of exotic hadrons, publishing extensively in high-impact journals. Her work spans theoretical predictions of heavy tetraquark states, hybrid mesons, and thermal properties of hadronic matter. She is recognized for her rigorous research, effective mentorship, and leadership roles in academia.

👨‍🎓Profile

Google scholar

Scopus

📘 Early Academic Pursuits

Dr. Hayriye Sundu Pamuk began her academic journey with a B.Sc. in Physics Education from Balıkesir University in 1998. Her passion for particle physics led her to Middle East Technical University (METU), where she completed both her M.Sc. and Ph.D. in High Energy Physics under the supervision of Prof. Dr. Erhan Onur İltan. Her graduate research focused on the Two Higgs Doublet Model (2HDM), addressing phenomena such as lepton flavor violation and the muon anomalous magnetic moment. These early explorations laid the theoretical groundwork for her future contributions in particle phenomenology and quantum field theory.

🧑‍🔬 Professional Endeavors

Her professional academic path includes notable roles at top institutions. From 2000 to 2007, she served as a research and teaching assistant at METU. In 2007, she joined Kocaeli University as a faculty member, advancing from Dr. Assistant to Associate Professor. Her tenure there spanned 16 years, enriched by administrative leadership and mentorship of graduate theses. In 2023, she transitioned to the Faculty of Engineering and Natural Sciences at Istanbul Medeniyet University, where she continues to lead innovative research and graduate instruction in advanced theoretical physics topics.

🔬 Contributions and Research Focus 

Dr. Sundu Pamuk’s primary research lies in the phenomenology of exotic hadrons, particularly tetraquarks and hybrid mesons, explored through QCD sum rules and thermal field theory. Her studies contribute to understanding the non-perturbative aspects of QCD, and she is often cited for theoretical analyses of fully-heavy quark systems such as bbcc and bcbc states. Her recent works  appearing in journals like Phys. Rev. D, Eur. Phys. J. C, and Phys. Lett. B are instrumental in predicting the mass spectra, decay constants, and thermal behaviors of these particles, bridging theory with potential experimental discovery.

🌍 Impact and Influence

Dr. Sundu Pamuk’s influence in high-energy physics is reflected in her collaborations across multiple institutions and countries, especially with leading researchers like K. Azizi and S.S. Agaev. Her papers are widely downloaded, cited, and reviewed within the theoretical particle physics community. As a graduate mentor, she has produced scholars contributing to academia and research. Her investigations are especially relevant in the era of LHC upgrades and heavy ion collisions, where her predictions guide experimental searches. Her administrative roles demonstrate her strategic vision for academic excellence and her commitment to building research capacity.

📈 Academic Citations

With more than 20 SCI-indexed publications in a short period (2023–2025), Dr. Sundu Pamuk has maintained a high publication density. Her articles in reputable journals such as Phys. Rev. D and Eur. Phys. J. C have garnered significant citations, particularly in areas involving exotic quark configurations. Her collaborative works on thermal properties of tetraquarks and decay mechanisms of hybrid mesons are frequently referenced by fellow theorists and computational physicists. Her academic footprint is steadily growing, with Google Scholar and ResearchGate profiles that reflect her influence, consistency, and scientific originality.

🛠️ Research Skills 

Dr. Sundu Pamuk demonstrates proficiency in computational techniques, particularly QCD sum rules, operator product expansion, and thermal field theory. She is adept at performing analytical derivations and numerical modeling, frequently applying them to predict hadron spectra, leptonic decay constants, and transition amplitudes. Her ability to bridge theoretical frameworks with real-world particle behavior makes her a sought-after collaborator. She also employs tools such as Mathematica, Maple, and other symbolic computation platforms. Her focus on rigor, reproducibility, and mathematical consistency has earned her strong credibility in quantum field theory and particle phenomenology.

👩‍🏫 Teaching Experience

An accomplished educator, Dr. Sundu Pamuk has taught a wide range of graduate and undergraduate courses, including Advanced Quantum Physics, Statistical Physics, Thermodynamics, and Electromagnetic Theory. She is noted for her clarity of explanation, student mentorship, and the ability to simplify complex physical concepts. At both Kocaeli University and Istanbul Medeniyet University, she has introduced innovative approaches in courses such as Numerical Methods in High Energy Physics. Her consistent engagement with students beyond lectures through thesis advising, research projects, and workshops reflects her commitment to fostering scientific curiosity and critical thinking.

🏆 Awards and Honors

Dr. Sundu Pamuk’s academic excellence has been formally recognized with multiple Scientific Achievement Prizes from Kocaeli University (2011, 2012, 2016, 2017, 2019, 2021). She also received the Honour Students Prize during her doctoral studies at METU in 2004, highlighting early promise. Her repeated honors reflect sustained research output, dedication to teaching, and service to the academic community. These accolades serve as evidence of institutional and peer recognition, affirming her status as a leading scholar in particle physics and a role model for younger scientists in Turkey and beyond.

🌟 Legacy and Future Contributions

As a leading figure in exotic hadron physics, Dr. Sundu Pamuk is poised to make lasting contributions to quantum chromodynamics and beyond-standard-model physics. Her future work is expected to delve into multi-quark dynamics at extreme conditions, relevant for astrophysical phenomena and collider experiments. Her legacy will also include her influence on physics education, as her former students continue to shape research in Turkey and globally. With a strong foundation and growing international collaborations, she is well-positioned to lead interdisciplinary initiatives, contribute to policy in science education, and inspire the next generation of physicists.

Top Noted Publications

Fully heavy asymmetric scalar tetraquarks

  • Authors: S.S. Agaev, K. Azizi, H. Sundu
    Journal: European Physical Journal A
    Year: 2025

Scalar fully-charm and bottom tetraquarks under extreme temperatures

  • Authors: A. Aydın, H. Sundu, J.Y. Süngü, E. Veli Veliev
    Journal: European Physical Journal C
    Year: 2025

Hidden charm-bottom structures bcb̄c̄: Axial-vector case

  • Authors: S.S. Agaev, K. Azizi, H. Sundu
    Journal: Physics Letters B
    Year: 2025

Properties of the tensor state bc b̄ c̄

  • Authors: S.S. Agaev, K. Azizi, H. Sundu
    Journal: Physical Review D
    Year: 2025

Decays of the light hybrid meson 1⁻⁺

  • Authors: G.D. Esmer, K. Azizi, H. Sundu, S. Türkmen
    Journal: Physical Review D
    Year: 2025

 

WAEL CHOUK | High energy physics | Young Scientist Award

Dr. WAEL CHOUK | High energy physics | Young Scientist Award

Post-Doc at Faculty of Sciences of Bizerte | Tunisia

Dr. Wael Chouk is a dedicated Tunisian physicist specializing in materials physics, particularly in the field of dielectric and superconducting materials. With a PhD earned from the Faculty of Sciences of Bizerte, University of Carthage, he has demonstrated a consistent track record of academic excellence, international research experience, and pedagogical commitment. His profile reflects a unique blend of technical expertise, research passion, and community involvement.

👨‍🎓Profile

Scopus

📘 Early Academic Pursuits

Dr. Chouk began his academic journey with a preparatory cycle in engineering (Math-Physics) from 2012 to 2015 at the Preparatory Institute for Engineering Studies, Nabeul. He then pursued a Fundamental Physics degree (2015–2017) and a Master’s in Physics (2017–2020), graduating with honors. His early research centered on materials structure and properties, laying the foundation for his future in high-impact experimental physics.

🧑‍🏫 Professional Endeavors

Wael’s career is marked by consistent involvement in academic teaching and research supervision. As a part-time lecturer at the Faculty of Sciences of Bizerte (2021–2022), he taught practical physics and later co-supervised Master’s research projects in 2023 and 2024. His teaching was not just instructional but also developmental, helping students build critical skills in dielectric materials and experimental analysis.

🔬 Contributions and Research Focus

His PhD work (2021–2024) explores the superconducting-supercapacitance transition in the complex ceramic YBa₂₋ₓCaₓCuβOδ, synthesized using the sol-gel method. His research involves advanced characterization techniques such as XRD, SEM, TEM, XPS, PPMS, and VSM, highlighting his expertise in materials synthesis and structural/magnetic analysis. His contributions to the field include two co-authored scientific papers on phase transitions and intrinsic permittivity in ceramic compounds.

🌍 Impact and Influence

Dr. Chouk has enhanced his research impact through international internships a two-month stay at BAU University in Turkey and a three-month program at ICMM in Madrid, part of CSIC. He has also presented at prestigious events like SMS’2024 and AdAMFM 2022, and showcased his work at the Innovation Fair by the ANPR, where his stand on electro-ceramics for high-energy-density capacitors demonstrated both academic relevance and real-world application.

📊 Academic Citations and Publications

Dr. Wael Chouk has authored notable publications including “Study of phase transition behavior and high dielectric properties in YBa₂₋ₓCaₓCu₃Oδ ceramics” and “Novel high intrinsic permittivity in new perovskite ceramic GdCa₂Cu₃Oδ”. These studies significantly contribute to the scientific understanding of ceramic-based high-performance materials, with impactful applications in electronics, energy storage, and superconductivity. His research enhances the academic literature and reflects a growing influence in the field of materials physics.

🧪 Research Skills

Dr. Wael Chouk demonstrates strong experimental and analytical skills, especially in material synthesis (sol-gel, ceramic fabrication) and advanced characterization techniques such as XRD, TEM, SEM, XPS, and EPR. He is also proficient in simulation and analysis tools including MATLAB, Origin, and Gaussian. His expertise in laboratory instrumentation and data interpretation equips him to contribute effectively to cross-disciplinary research and lead complex experimental projects, reflecting a robust and versatile research capability.

🧑‍🏫 Teaching Experience

His years as a part-time teacher and student supervisor reveal a solid commitment to academic mentorship. He has taught practical physics to undergraduate students and supported Master’s candidates in achieving their academic goals, especially in materials physics and dielectric behavior analysis.

🏅 Awards and Honors

While formal award titles are not specified, Dr. Wael Chouk’s participation in international conferences, prestigious research internships, and representation at innovation fairs reflect peer recognition and academic credibility. He holds valuable certifications in ISO 9001, ISO 50001, X-ray diffraction, project management, stress management, public speaking, and first aid. These accomplishments highlight his professional competence, leadership potential, and strong alignment with high research standards and institutional trust.

🌱 Legacy and Future Contributions

Dr. Wael Chouk is poised to leave a lasting impact on the field of applied materials physics. His future contributions are likely to lie at the intersection of ceramic materials, energy storage technologies, and magnetic-electrical coupling. With a strong foundation in both academic teaching and experimental research, he is a promising candidate for collaborative international projects, postdoctoral fellowships, and innovative research leadership.

Publications Top Notes

Study of phase transition behavior and high dielectric properties in YBa₂₋ₓCaₓCu₃Oδ ceramics

  • Authors: Wael Chouk, Khouloud Moualhi, Abdelhak Othmani, Mouldi Zouaoui
    Journal: Materials Chemistry and Physics
    Year: 2023

Novel high intrinsic permittivity in new perovskite ceramic GdCa₂Cu₃Oδ

  • Authors: Khouloud Moualhi, Wael Chouk, Youssef Moualhi, Abdelhak Othmani, Mouldi Zouaoui
    Journal: Materials chemistry and physics
    Year: 2024

Multifunctional chitosan/montmorillonite/TiO₂ nanocomposites: Correlating microstructure with dielectric and photocatalytic properties

  • Authors: Lahbib M., Mejri C., Bejaoui M., Chadha C., Oueslati A., Oueslati W.
    Journal: Journal of the Indian Chemical Society
    Year: 2025

Conduction mechanism investigation in YCa₂Cu₃Oδ colossal permittivity ceramics

  • Authors: Wael Chouk, Mohamed Annabi, Mouldi Zouaoui
    Journal: Results in Physics
    Year:2025

 

 

Durgesh Tripathi | High-Energy Astrophysics | Best Researcher Award

Prof. Dr. Durgesh Tripathi | High-Energy Astrophysics | Best Researcher Award

Senior Professor at Inter-University Centre for Astronomy and Astrophysics, Pune | India

Prof. Dr. Durgesh Tripathi is a distinguished solar physicist and a Senior Professor at the Inter-University Centre for Astronomy and Astrophysics (IUCAA), Pune, India. With an illustrious academic journey spanning over two decades and contributions that have reshaped our understanding of the Sun, he stands as a globally recognized leader in the field of solar atmospheric physics. He is currently the Principal Investigator of the Solar Ultraviolet Imaging Telescope (SUIT) aboard Aditya-L1, India’s first solar mission by ISRO.

👨‍🎓Profile

Google scholar

Scopus

ORCID

📘 Early Academic Pursuits

Born with a curiosity for the cosmos, Dr. Tripathi earned his M.Sc. in Physics with specialization in Astrophysics from D.D.U. Gorakhpur University, where he secured a University Gold Medal. He then pursued a Doctor of Natural Sciences (Dr. rer. Nat.) from the Max-Planck Institute for Solar System Research, Germany, affiliated with Georg-August Universität Göttingen. His doctoral thesis focused on “EUV and Coronagraphic Observations of Coronal Mass Ejections“, laying the groundwork for his lifelong pursuit in solar research.

🧑‍🏫 Professional Endeavors

Dr. Tripathi’s professional journey is marked by prestigious positions and international fellowships. He has held postdoctoral roles at institutions like the University of Cambridge (DAMTP), University College London (MSSL), and Max-Planck Institute, Germany. At IUCAA, he advanced through the ranks from Assistant Professor to Senior Professor, contributing significantly in research, teaching, and leadership.

🔭 Contributions and Research Focus

Prof. Dr. Durgesh Tripathi has made pioneering contributions to the coupling and dynamics of the solar atmosphere, especially in coronal heating, solar wind origins, and magnetic reconnection. His work includes impulsive heating in the quiet Sun using machine learning on 300,000 light curves, studies of Ellerman Bombs via 2D MHD simulations, and insights into solar wind switchbacks, redshift anomalies, and temperature-dependent coronal fuzziness. His leadership in Aditya-L1 and the SUIT telescope represents a historic milestone in Indian space science.

🌍 Impact and Influence

Dr. Tripathi’s influence spans continents and disciplines. He has led and collaborated in Indo-German, Indo-US, and Indo-French research programs, driving international cooperation in space science. His findings have influenced not only academic research but also space weather forecasting, vital for satellite operations and communication systems on Earth.

📚 Academic Citations

While specific citation metrics are not listed here, his consistent presence in top-tier journals, editorial board memberships (e.g., Proceedings of the Royal Society A, RASTI), and leadership in missions like Aditya-L1 speak volumes about his scholarly impact and peer recognition. His work is widely cited in the domains of solar spectroscopy, coronal heating, and magnetohydrodynamics.

🛠️ Research Skills

Dr. Durgesh Tripathi possesses a unique blend of theoretical depth and hands-on expertise in both computational and observational astrophysics. His skill set spans UV & EUV spectroscopy, machine learning in astrophysics, multi-wavelength data analysis, magnetohydrodynamic (MHD) simulations, and space instrumentation development. This fusion of classical and modern techniques empowers him to address complex astrophysical problems with innovation, making him a leader in cutting-edge solar research and instrumental in advancing our understanding of the Sun.

👨‍🏫 Teaching Experience

A passionate educator, he has taught core astrophysics courses such as Stellar Structure and Evolution, Electrodynamics and Radiative Processes, and Statistical Techniques at IUCAA and Pune University. His long-term involvement in graduate education reflects his commitment to mentoring the next generation of astrophysicists.

🏅 Awards and Honors

Prof. Durgesh Tripathi has received prestigious national and international accolades, reflecting his scientific excellence and global reputation. Notable honors include the Young Career Award by the Asia Pacific Solar Physics Meeting (2024), the BUTI Foundation Award (2017), and a Group Achievement Award from the Romanian Academy of Science. He has held visiting professorships in Japan, UK, USA, and Germany, and holds life and associate memberships at esteemed institutions like Clare Hall, St. Edmunds College, and the IAU.

🧬 Legacy and Future Contributions

Through his leadership in Aditya-L1 and interdisciplinary solar research, Dr. Durgesh Tripathi is laying the groundwork for future space missions and advanced solar exploration. His work in instrument design, fundamental solar physics, and academic mentorship is shaping a lasting legacy in both Indian and global astrophysics. Looking ahead, his focus includes the integration of AI-driven tools, deeper investigation of the Sun-Earth climate connection, and the expansion of India’s role in space-based solar observations.

Publications Top Notes

Near- and Mid-ultraviolet Observations of X-6.3 Flare on 2024 February 22 Recorded by the Solar Ultraviolet Imaging Telescope on board Aditya-L1

  • Authors: S. Roy, Durgesh Tripathi, Sreejith S. Padinhatteeri, Dibyendu K. Nandy, Dipankar Banerjee
    Journal: Astrophysical Journal Letters
    Year: 2025

The Solar Ultraviolet Imaging Telescope on Board Aditya-L1

  • Authors: Durgesh Tripathi, Anamparambu N. Ramaprakash, Sreejith S. Padinhatteeri, D. R. Veeresha, R. Venkateswaran
    Journal: Solar Physics
    Year: 2025

Science Filter Characterization of the Solar Ultraviolet Imaging Telescope (SUIT) on board Aditya-L1

  • Authors: Janmejoy Sarkar, Rushikesh Deogaonkar, Ravi Kesharwani, Netra S. Pillai, Swapnil Singh
    Journal: Experimental Astronomy
    Year: 2025

Thermodynamic Evolution of Plumes

  • Authors: Biswanath Malaker, Vishal Upendran, Durgesh Tripathi
    Journal: Astrophysical Journal
    Year: 2024

Heliophysics Great Observatories and International Cooperation in Heliophysics: An Orchestrated Framework for Scientific Advancement and Discovery

  • Authors: Laurence E. Kepko, Rumi Nakamura, Yoshifumi Saito, Spiro K. Antiochos, Chi Wang
    Journal: Advances in Space Research
    Year: 2024

Yang Lei | High energy physics | Best Researcher Award

Prof. Yang Lei | High energy physics | Best Researcher Award

Associate Professor at Soochow University | China

Prof. Yang Lei is a distinguished theoretical physicist at the Institute of Advanced Study, Soochow University, specializing in black hole physics, holography, and quantum field theory. With extensive training and research experience from world-renowned institutions such as Peking University, Durham University, and Niels Bohr Institute, Prof. Lei is recognized for his cutting-edge work on AdS/CFT correspondence and non-relativistic holography, making him a rising voice in the global high-energy physics community.

👨‍🎓Profile

Scopus

ORCID

🎓 Early Academic Pursuits

Prof. Lei began his academic journey at the prestigious Yuanpei College, Peking University, earning his Bachelor’s degree in 2011, with a second major in Mathematics a testament to his foundational strength in formal theoretical reasoning. He pursued his MSc in Particles, Strings, and Cosmology at Durham University, supervised by Simon Ross, followed by a PhD in Mathematics, with a focus on Singularities in holographic non-relativistic spacetimes an area of deep relevance in modern quantum gravity.

👨‍🔬 Professional Endeavors

Following his PhD, Prof. Yang Lei embarked on an impressive journey through several prestigious postdoctoral positions at top-tier institutions including the Institute of Theoretical Physics, CAS, University of the Witwatersrand, Niels Bohr Institute, and Kavli Institute of Theoretical Science (KITS), UCAS. In 2022, he was appointed as an Associate Professor at Soochow University, where he continues to lead cutting-edge research and mentor young physicists, contributing meaningfully to the field of theoretical high-energy physics.

🔬 Contributions and Research Focus

Prof. Lei’s research is centered on black holes, holography, AdS/CFT duality, non-relativistic limits of field theories, and quantum gravity. His studies on spin matrix theory, EVH (Extremal Vanishing Horizon) black holes, and modular factorization in superconformal indices showcase his theoretical versatility and original insights into foundational questions of physics.

🌍 Impact and Influence

Prof. Lei has delivered more than 20 invited talks at prestigious international conferences, including String 2016, Tsinghua University, and Joburg Workshop on String Theory. His presence at academic forums and black hole workshops affirms his growing influence in the global theoretical physics community. He also demonstrates leadership in academic outreach through organizing workshops like the SUIAS HEP Workshop and KITS Summer School, promoting collaborative learning in high-energy physics.

📈 Academic Citations

While specific citation metrics were not detailed in the current profile, Prof. Lei’s consistent conference participation, grants awarded, and long-term collaborations with major institutions indicate a highly regarded academic presence, especially within holography and black hole research circles.

🛠️ Research Skills

Prof. Yang Lei possesses a sophisticated toolkit of theoretical and mathematical techniques, including AdS/CFT duality calculations, non-relativistic quantum field theory, spin matrix theory analysis, black hole thermodynamics, modular invariance, and superconformal indices, as well as advanced perturbation theory and resurgence. These research capabilities enable him to tackle some of the most complex and unsolved problems in quantum gravity and holographic dualities, reinforcing his role as a leading thinker in high-energy theoretical physics.

👨‍🏫 Teaching Experience

Prof. Yang Lei is a highly engaged educator, teaching core physics courses in English at Soochow University, such as Quantum Mechanics (Autumn 2023) and Solid State Physics (Spring 2023). He also contributed to the KITS Summer School, guiding students on black hole microstates and the information paradox. During his PhD, he served as a Teaching Assistant at Durham University, showcasing his well-rounded dedication to both academic instruction and research mentorship in theoretical physics.

🏅 Awards and Honors

Prof. Yang Lei‘s exceptional contributions have earned him prestigious awards and competitive grants, such as the National Natural Science Foundation of China Young Researcher Grant (2024–2026), the China Postdoc Surface Grant (2021–2022), and the Overseas Postdoc Introduction and Communication Grant (2016–2018). He also received the Peter Rowe Memorial Postgraduate Prize (2012) and the Durham Teaching and Learning Award (UK HEA Associate Fellowship, 2016). These accolades highlight his scholarly excellence, peer recognition, and international collaboration.

🌟 Legacy and Future Contributions

With a solid academic foundation, global collaborations, and an ever-expanding research portfolio, Prof. Yang Lei is on a trajectory to become a leading voice in quantum gravity and holography. His future contributions are expected to shape our understanding of black hole dynamics, non-AdS holography, and quantum field theories under extreme conditions. He is well-positioned to continue his impactful journey as a scholar, educator, and thought leader in modern theoretical physics.

Publications Top Notes

Conformal mapping of non-Lorentzian geometries in SU(1, 2) Conformal Field Theory

  • Authors: Stefano Baiguera, Troels Harmark, Yang Lei, Ziqi Yan
    Journal: Journal of High Energy Physics
    Year: 2025

Modularity in d > 2 free conformal field theory

  • Authors: Yang Lei, Sam van Leuven
    Journal: Journal of High Energy Physics
    Year: 2024

Quasinormal modes of C-metric from SCFTs

  • Authors: Yang Lei, Hongfei Shu, Kilar Zhang, Ruidong Zhu
    Journal: Journal of High Energy Physics
    Year: 2024

Modular factorization of superconformal indices

  • Authors: Vishnu Jejjala, Yang Lei, Sam van Leuven, Wei Li
    Journal: Journal of High Energy Physics
    Year: 2023

The Panorama of Spin Matrix theory

  • Authors: Stefano Baiguera, Troels Harmark, Yang Lei
    Journal: Journal of High Energy Physics
    Year: 2023

 

 

André Aimé ATANGANA LIKENE | High energy physics | Best Researcher Award

Dr. André Aimé ATANGANA LIKENE | High energy physics | Best Researcher Award

Research Officer at Research Centre for Nuclear Science and Technology, Institute of Geological and Mining Research | Cameroon

Dr. Atangana Likéné André Aimé is a highly accomplished Research Officer specializing in Nuclear Physics, Dosimetry, and Radiation Protection. Holding a PhD in Physics from the University of Yaoundé I, his academic journey has been marked by excellence in both teaching and research. He currently works at the Research Center of Nuclear Science and Technology, part of the Institute of Geological and Mining Research, contributing to cutting-edge scientific endeavors in the field of nuclear science.

👨‍🎓Profile

Scopus 

ORCID

Early Academic Pursuits 🎓

Dr. Atangana’s academic foundation was built at the University of Douala, where he completed his Master’s Degree in Physics with a focus on Physics of Matter and Radiation. His initial research projects, including an experimental study on atoms and molecules in strong laser fields, showcased his deep engagement with experimental physics. He also earned a D.E.A in Physics from the same university, demonstrating his growing specialization in mathematical physics.

His stellar academic performance earned him multiple Academic Excellence Scholarships, which facilitated his progression through advanced studies. With a Bachelor’s degree in Physics and Mechanics, he laid the groundwork for a future in high-level research and teaching.

Professional Endeavors 💼

Dr. Atangana’s professional journey spans both academic teaching and practical research applications. Early in his career, he contributed as a part-time high school teacher, teaching Physics and Mathematics to secondary school students. His teaching journey expanded into higher education where he worked as a part-time lecturer at Einstein Group, and later at the University of Yaoundé I, where he currently teaches Nuclear and Atomic Physics to undergraduate students. Simultaneously, his professional experience has been diverse, from working at the National Radiation Protection Agency (NRPA) to being part of the Institute of Geological and Mining Research, where he works with ionizing radiation metrology in alpha, beta, and gamma spectrometry.

Contributions and Research Focus 🔬

Dr. Atangana’s research focuses on Nuclear Physics, Quantum Chromodynamics, and Particle Physics, particularly in hadron spectroscopy and the quark model. His doctoral research on the effect of topological defects on hadron spectra and quark confinement has significantly advanced the field. He also explores non-gravitational scalar fields and their impact on particle interactions in a Schwarzschild-like space-time. His contributions also span environmental radiation studies, where he has analyzed indoor radon concentrations and measured background radiation in uranium-rich zones in Cameroon.

Impact and Influence 🌍

Dr. Atangana’s research has had a lasting impact on both the academic community and global scientific organizations. He is a member of prominent scientific societies such as the Cameroon Radiological Protection Society (CRPS), African School of Physics (ASP), and the American Physical Society (APS). His collaborations with international research bodies like the International Atomic Energy Agency (IAEA) and his presentations at global conferences have enhanced international cooperation in radiation protection and nuclear science. His scientific publications in leading journals have advanced nuclear energy research and theoretical physics, focusing on heavy quarkonium, meson spectroscopy, and spin interactions in topological defect spaces.

Awards and Honors 🏆

Dr. Atangana has earned numerous awards and recognitions, including multiple Academic Excellence Scholarships and the distinction of being the Top of the 2015 Master’s Degree Promotion at the University of Douala. His sustained commitment to academic excellence and scientific discovery continues to earn him accolades both locally and internationally.

Teaching Experience 🍎

Dr. Atangana has substantial experience in teaching at both secondary and higher education levels. His roles as a part-time high school teacher and later as a university lecturer in Nuclear Physics reflect his passion for educating the next generation of physicists. He has been involved in mentoring undergraduate students and preparing course materials in Atomic and Nuclear Physics.

Research Skills 🛠️

With expertise in symbolic computations, scientific computing, and mathematical modeling, Dr. Atangana is proficient in tools such as Python, MATLAB, SageMath, Maple, and FORTRAN. His proficiency in machine learning applications for hadron spectroscopy is a key strength in his research. He also has hands-on experience in spectrometry and radiation protection techniques, making him an invaluable asset to his field.

Legacy and Future Contributions 🔮

Looking ahead, Dr. Atangana aims to continue his pioneering work in nuclear physics and radiation protection. He is committed to exploring new dimensions of quantum chromodynamics, advancing particle physics models, and contributing to sustainable energy solutions. His ongoing research promises to shape the future of nuclear science, particularly in the context of global radiation safety and environmental health. His future contributions will undoubtedly further his legacy in physics research and education, inspiring young minds and influencing both scientific communities and policy-making bodies in radiation protection.

Publications Top Notes

Effect of spin-spin interaction and fractional order on heavy pentaquark masses under topological defect space-times

  • Authors: D. Nga Ongodo, A. A. Atangana Likéné, J. M. Ema’a Ema’a, P. Ele Abiama, G. H. Ben-Bolie
    Journal: The European Physical Journal C
    Year: 2025

Hyperbolic tangent form of sextic potential in Bohr Hamiltonian: Analytical approach via extended Nikiforov–Uvarov and Heun equations

  • Authors: D. Nga Ongodo, A. Atangana Likéné, A. Zarma, J. M. Ema’a Ema’a, P. Ele Abiama, G. H. Ben-Bolie
    Journal: International Journal of Modern Physics E
    Year: 2025

Angular momentum dependence of nuclear decay of radon isotopes by emission of 14^{14}C nuclei and branching ratio relative to α\alpha -decay

  • Authors: A. A. Atangana Likéné, J. E. Ndjana Nkoulou II, Saïdou
    Journal: The European Physical Journal Plus
    Year: 2025

Non-compact extra dimensions and flavor dependence of cc̄ and bb̄ mesons masses in a hot QCD medium with lattice, LO and NLO parametrizations of the Debye mass

  • Authors: A. A. Atangana Likéné, L. B. Ungem, D. C. Mbah, D. Nga Ongodo, R. Houzibe, F. B. Djeuyi Ndafeun
    Journal: Modern Physics Letters A
    Year: 2025

Quantum chromodynamics Lagrangian density and SU(3) gauge symmetry: A fractional approach

  • Authors: A. A. Atangana Likéné, D. Nga Ongodo, P. Mah Tsila, A. Atangana, G. H. Ben-Bolie
    Journal: Modern Physics Letters A
    Year: 2024

 

 

 

Zhen-hua Zhao | Particle Physics and Cosmology | Best Researcher Award

Prof. Dr. Zhen-hua Zhao | Particle Physics and Cosmology | Best Researcher Award

Vice President at Liaoning Normal University | China

Zhen-hua Zhao is a distinguished Professor, Vice Dean, and Doctoral Supervisor at the School of Physics and Electronic Technology, Liaoning Normal University. With a strong academic background, he holds a Master’s and Doctoral degree from the Institute of Theoretical Physics, Chinese Academy of Sciences and completed his postdoctoral research at the Institute of High Energy Physics, Chinese Academy of Sciences. Over the years, he has built a reputation in the field of neutrino physics and cosmology.

👨‍🎓Profile

Scopus

ORCID

Early Academic Pursuits 🎓

Zhao’s academic journey began with his master’s and doctoral studies in Theoretical Physics at two of China’s top institutions the Institute of Theoretical Physics and the Institute of High Energy Physics at the Chinese Academy of Sciences. These early academic foundations equipped him with a solid understanding of particle physics and cosmology, areas which he has continued to focus on in his career. His doctoral research laid the groundwork for his later work in neutrino physics and the matter-antimatter asymmetry in the universe.

Professional Endeavors 🚀

As a Vice Dean, Professor, and Doctoral Supervisor at Liaoning Normal University, Zhao has been at the forefront of research and education in the field of Physics. His leadership extends beyond the classroom, where he has also been a mentor to future scientists in the field. Zhao is deeply involved in managing research projects, contributing to the development of new talent, and fostering an environment of academic excellence at his university.

Contributions and Research Focus 🔬

Zhao has made substantial contributions to neutrino physics, particularly in neutrino flavor physics and asymmetry in the universe. His research addresses some of the most pressing issues in cosmology, including the origin of matter-antimatter asymmetry. His expertise in high-energy physics has led to significant advancements in neutrino phenomenology, which has direct implications for our understanding of the universe’s evolution. Notable projects include his leadership in studies of neutrinoless double beta decay and other aspects of neutrino interactions.

Impact and Influence 🌍

Zhao’s work has had a far-reaching impact on the field of high-energy physics, with over 40 SCI papers published in top journals like JHEP, PRD, EPJC, and PLB. His research has provided key insights into the flavor physics of neutrinos and contributed to theoretical models addressing the matter-antimatter imbalance in the cosmos. In addition to his publications, Zhao has served as a reviewer for nine prominent journals, playing a pivotal role in shaping scientific discourse in neutrino physics.

Academic Citations 📚

Zhao has been recognized for his impactful work, with 35 of his 40 papers authored as first author or corresponding author. This includes 11 independent author papers, indicating his leadership in the scientific community. Two of his papers were published in the prestigious Reports on Progress in Physics, one of which earned him the 2019 China Top Cited Author Award by IOP Publishing. His work in neutrino physics has received extensive academic attention, with his citations reflecting the influence and relevance of his research.

🧪 Research Skills

Dr. Zhao possesses a comprehensive skill set in theoretical modeling, particle phenomenology, and cosmological simulation, with specialized competence in neutrino oscillation theory, flavor mixing, and CP violation studies. His interdisciplinary approach integrates quantum field theory, cosmological observations, and data-driven theoretical predictions.

👨‍🏫 Teaching Experience

As a Doctoral Supervisor, Dr. Zhao has mentored numerous graduate students and postdoctoral researchers. He has also delivered lectures at graduate summer schools, providing in-depth reviews of current developments in neutrino physics. His role in academia includes developing curricula and promoting cutting-edge research training at the university level.

🏅 Awards and Honors

Dr. Zhao has led three National Natural Science Foundation of China (NSFC) projects and has been recognized as a Top Young Talent under the “Xingliao Talent Plan” in Liaoning Province. In 2024, he was selected as an Outstanding Reviewer for the journal Chinese Physics C, reflecting his commitment to maintaining scientific integrity and rigor in the field.

🌟Legacy and Future Contributions 

Zhao’s future contributions are poised to shape the next frontier in high-energy physics and neutrino studies. His continued leadership in neutrino phenomenology and cosmology will likely yield breakthroughs that further our understanding of the fundamental forces of nature. His ongoing participation in major international projects, including the JUNO experiment and neutrinoless double beta decay experiments, suggests that his influence on both academic research and scientific policy will only grow. His legacy will not only impact the academic world but will also contribute to global scientific collaborations and innovation in high-energy physics.

Publications Top Notes

Low scale leptogenesis under neutrino μ-τ Reflection symmetry

  • Authors: Yan Shao, Zhenhua Zhao
    Journal: Physical Review D, 2025

Complete study of RG evolution induced leptogenesis in flavor symmetry scenarios

  • Authors: Zhenhua Zhao, Xiangyi Wu, Jing Zhang
    Journal: Physical Review D, 2024

Purely flavored leptogenesis from a sudden mass gain of right-handed neutrinos

  • Authors: Zhenhua Zhao, Jing Zhang, Xiangyi Wu
    Journal: Journal of High Energy Physics, 2024

Leptogenesis consequences of trimaximal mixing and μ-τ reflection symmetry in the most minimal seesaw model

  • Authors: Zhenhua Zhao, Hongyu Shi, Yan Shao
    Journal: Physical Review D, 2024