Suresh Kumar | Experimental methods | Best Researcher Award

Dr. Suresh Kumar | Experimental methods | Best Researcher Award

Associate Professor at MMEC, Maharishi Markandeshwar (Deemed to be University) Mullana | India

Dr. Suresh Kumar is an accomplished Associate Professor (Grade-II) at Maharishi Markandeshwar (Deemed to be University), Mullana, Haryana. With over 11 years of post-Ph.D. experience, he is widely recognized for his research in nanomaterials, dilute magnetic semiconductors, and photocatalysis. A prolific researcher and educator, he has authored 51 research publications, holds six patents, and actively supervises PG and Ph.D. research. His academic presence is validated across platforms such as Scopus, Web of Science, Google Scholar, and Vidwan. He is deeply committed to institutional development, student mentorship, and innovative science education in India.

👹‍🎓Profile

Google scholar

Scopus

ORCID

📘 Early Academic Pursuits

Dr. Suresh Kumar’s academic journey began with a B.Sc. in Non-Medical Sciences from Himachal Pradesh University in 1998. He further pursued M.Sc. Physics (2002), followed by B.Ed and M.Ed degrees, reinforcing his strong foundation in both science and education. His interest in research led him to complete an M.Phil in Physics, and later, a Ph.D. in Physics & Materials Science from Jaypee University of Information Technology in 2014. His doctoral work on transition metal-doped CdS nanofilms marked a turning point, setting the stage for a career rooted in cutting-edge nanotechnology and materials research.

đŸ’Œ Professional Endeavors

Dr. Kumar has held various academic roles, beginning as a Lecturer in 2007, advancing through positions like Teaching Assistant, Assistant Professor, and Associate Professor. Currently serving at MM(DU), Mullana, his journey reflects a steady progression in leadership, teaching, and research responsibility. He has contributed to institutional quality enhancement by coordinating activities such as NAAC Criteria III, FDPs, curriculum revision, and lab management. His previous affiliations include Jaypee University of Information Technology, Kalpi Institute of Technology, and Shivalik Institute of Engineering & Technology, contributing across UG, PG, and Ph.D. levels.

🔬 Contributions and Research Focus

Dr. Suresh Kumar’s research revolves around II-VI semiconductors, dilute magnetic semiconductors (DMS), photovoltaics, and photocatalysis. His work has pioneered advancements in the green synthesis of nanomaterials, particularly using plant extracts for nanoparticle synthesis, and has practical applications in energy and environmental remediation. His six patents include innovations in nanostructured thin films, solar energy tools, and beekeeping equipment, demonstrating a clear alignment with sustainable and applied science. With consistent publications in indexed journals (WOS, Scopus) and supervision of multiple research scholars, Dr. Kumar’s contributions deeply influence emerging material science trends.

🌍 Impact and Influence

Dr. Kumar’s research has made a measurable global impact, evidenced by 665 citations on Google Scholar, 524 on Web of Science, and 471 on Scopus. His h-index ranges from 11 to 14, reflecting both quality and relevance of his work. He has guided multiple dissertations and Ph.D. theses, and his innovations in solar-powered devices and eco-friendly nanoparticle synthesis have real-world value. He is a regular speaker and session chair at international conferences, such as the Halich Congress, Turkey, and his leadership has helped shape young researchers’ careers, affirming his academic and scientific influence both nationally and abroad.

📚 Academic Cites and Recognition

Dr. Kumar’s scholarly visibility is reinforced through profiles on Google Scholar, Scopus, Web of Science, ORCID, ResearchGate, and Vidwan. His 51 peer-reviewed publications span reputed journals with a combined impact factor of 75.74. These platforms showcase his interdisciplinary reach, from nanotechnology and materials characterization to renewable energy innovations. His academic identity is globally recognized, and his works are often referenced in the domains of thin film physics, green nanotechnology, and semiconductors. This strong digital footprint cements his role as a credible and referenced authority in his research areas.

đŸ§Ș Research Skills

Dr. Kumar possesses advanced expertise in material synthesis and characterization techniques, including Chemical Bath Deposition (CBD), vacuum and spin coating, and tools such as XRD, SEM, AFM, TEM, UV-Vis-NIR, EDX, FTIR, and VSM. His experimental precision is matched by a theoretical understanding of optical, structural, and magnetic properties of nanomaterials. He has a strong command over green synthesis methods and is skilled at translating laboratory research into patents and prototypes. His versatile research abilities are applied across diverse sectors—energy, healthcare, agriculture, and education technology making him a valuable asset in interdisciplinary scientific exploration.

🎓 Teaching Experience

Dr. Kumar brings 17+ years of teaching experience, including over 11 years post-Ph.D., spanning UG, PG, and Ph.D. programs. At MM(DU), he teaches B.Sc. Physics (Honors), M.Sc. Physics, and Ph.D. coursework, while also mentoring research students. Known for his engaging, student-centered teaching style, he integrates technology (Moodle, Swayam MOOCs) and hands-on lab work to foster experiential learning. As Lab In-charge and academic coordinator, he ensures high standards in curriculum delivery and laboratory safety. His commitment to academic excellence and student mentorship is a hallmark of his teaching legacy.

🏆 Awards and Honors 

Dr. Suresh Kumar has received numerous accolades, such as the Chanakya Award 2024 and Indo-Global Education Excellence Award 2024 from ICERT. He was honored with a session headship at the Halich Congress, Turkey, and received a Teacher Innovation Award during the pandemic from Rakshita Welfare Society. Earlier in his career, he secured a Best Poster Prize at RTMS-2011 and was awarded a Research Assistantship during his Ph.D. His academic diligence also earned him a merit certificate during B.Ed. These recognitions affirm his dedication to innovation, research impact, and educational leadership.

🔼 Legacy and Future Contributions

Dr. Kumar’s legacy lies in his innovative, sustainable, and interdisciplinary research, as well as his devotion to student growth and institutional advancement. Looking ahead, he aims to secure international collaborations, government-funded research projects, and explore technology transfer opportunities for his patented innovations. He envisions contributing to national science missions through eco-friendly materials research, renewable energy systems, and academic policy reform. His future work will likely expand into translational research, benefiting industries and communities alike. Dr. Kumar’s trajectory marks him as a thought leader and changemaker in the realms of science, innovation, and education.

Publications Top Notes

Solvothermal synthesis of PVP-assisted CuS structures for sunlight-driven photocatalytic degradation of organic dyes

  • Authors: Vishal Dhiman, Suresh Kumar, Abhishek Kandwal, Pankaj Sharma, Ankush Thakur, Sanjay Kumar Sharma
    Journal: Physica B: Condensed Matter
    Year: 2025

Enhanced photoconversion efficiency in dye-sensitized solar cells through Ag and La modified ZnO photoanodes

  • Authors: Aman Kumar, Suresh Kumar, Virender Singh Kundu, Kirti Hooda, Anil Vohra, Suresh Kumar, Mohit Podia, Abhishek Kandwal, Praveen Vummadisetty Naidu
    Journal: Physica Scripta
    Year: 2025

Photocatalytic Activity of ZnO Nanostructures

  • Authors: Anu Kapoor, Naveen Kumar, Suresh Kumar
    Journal: Book Chapter – In: Advanced Nanomaterials for Environmental Applications (Taylor & Francis)
    Year: 2025

Green Synthesis of Nanoparticles using Pea Peel Biomass and Their Assessment on Seed Germination of Tomato, Chilli and Brinjal Crop

  • Authors: Anjali Kanwal, Bikram Jit Singh, Suresh Kumar, Rippin Sehgal, Sushil Kumar Upadhyay, Raj Singh
    Journal: Indian Journal of Agricultural Research
    Year: 2025

A comprehensive review of bismuth, lanthanum and strontium based double perovskites − Unravelling structural, magnetic, and dielectric properties

  • Authors: Jagadish Parsad Nayak, Rohit Jasrotia, Avi Kumar Sharma, Abhishek Kandwal, Pratiksha Agnihotri, Mika SillanpÀÀ, Suman, M. Ramya, Vaseem Raja, Suresh Kumar, et al.
    Journal: Inorganic Chemistry Communications
    Year: 2024

 

Ahmed Abdelsalam | Theoretical Advances | Best Researcher Award

Mr. Ahmed Abdelsalam | Theoretical Advances | Best Researcher Award

Teaching assistant at Cairo University | Egypt

Ahmed Gamal Abdelsalam is a passionate theoretical physicist and teaching assistant at Cairo University, with deep involvement in quantum mechanics, plasma physics, and high-energy particle research. Originating from Giza, Egypt, Ahmed has consistently combined academic excellence with community service, showing both intellectual and social commitment. His journey from volunteer educator to published researcher reflects a blend of discipline, leadership, and scientific rigor. Known for his multi-disciplinary expertise, he contributes actively to Egypt’s academic and scientific development, with a strong potential to make lasting international contributions in physics and data modeling.

👹‍🎓Profile

Google scholar

🎓 Early Academic Pursuits

Ahmed began his academic career with a B.Sc. in Science from Cairo University in 2016. He enhanced his learning through prestigious summer schools at Zewail University and hands-on training at the National Research Center. His pursuit of knowledge led him to complete a Pre-Master’s program in 2019 and an M.Sc. in Science in 2021, specializing in theoretical physics. Through these experiences, Ahmed demonstrated early interest in particle interactions and quantum potentials, setting the foundation for future research. His commitment to academic excellence is supported by continuous training in plasma physics and modern physical theories.

đŸ’Œ Professional Endeavors

Ahmed’s professional journey began with volunteer teaching in a literacy project (2011–2012), where he rose to team leader. From 2016 to 2018, he served as a military officer, leading operations with precision. Since 2018, he has worked as a teaching assistant at Cairo University, supporting courses in physics, research guidance, and laboratory instruction. These roles exhibit his leadership, discipline, and mentorship capabilities. His seamless transition between education, national service, and academia reflects strong adaptability, professional responsibility, and a dedication to societal development alongside academic growth.

🔬 Contributions & Research Focus

Ahmed’s research spans quarkonium spectroscopy, spin splitting, and magnetic interactions in particle systems. His most cited work “Bound state of heavy quarks using a general polynomial potential”—proposes novel models in quantum chromodynamics. He also co-authored a paper on space plasma phenomena in Scientific Reports (2025), marking his entry into applied space physics. His work explores complex mathematical approaches using Nikiforov-Uvarov methods, Schrödinger equations, and analytical modeling. Through this, Ahmed contributes significantly to modern theoretical physics, bridging foundational theory with computational applications in quantum systems and astrophysical plasmas.

🌍 Impact and Influence

Ahmed’s research impact is evident through citations, interdisciplinary topics, and recognition in global journals. His 2018 publication has 35 citations, reflecting its academic reach. By addressing subjects like quark-antiquark systems and Venusian magnetospheric behavior, his work influences both particle physics and space research domains. His research contributions provide analytical tools and spectral data for understanding subatomic forces and cosmic interactions, fostering cross-disciplinary innovation. Ahmed’s influence is not just in numbers but in the applicability of his findings to future space exploration and high-energy experiments, paving paths for emerging physicists in Egypt and beyond.

📊 Academic Citations

Ahmed has co-authored six notable publications. His standout paper on heavy quarks (2018) is cited 35 times, while other works such as the meson spectra (2022) and spin splitting (2020) have also drawn attention. His arXiv preprint and additional contributions collectively amount to over 50 citations, underscoring a growing academic presence. Published in respected journals like Advances in High Energy Physics, Results in Physics, and Scientific Reports, his works are referenced in research related to quantum theory, plasma physics, and nuclear interactions, affirming his role as a rising voice in theoretical and applied physics research.

🧠 Research Skills

Ahmed possesses advanced research skills in mathematical modeling, data fitting, and simulation of physical systems. He is proficient in programming languages like Python, Fortran, C, C++, and analytical tools such as IDL, Matlab, and Origin software. He applies numerical methods and theoretical frameworks to solve quantum field problems and interpret experimental data. His expertise in problem-solving, statistical analysis, and computational physics allows him to work across multiple physics disciplines. Ahmed also leverages Google Drive, Microsoft Office, and scientific visualization tools to organize, communicate, and present his findings clearly and professionally.

đŸ‘šâ€đŸ« Teaching Experience

Ahmed has served as a teaching assistant at Cairo University since 2018, supporting undergraduate and postgraduate physics courses. His role includes lab instruction, tutorial sessions, and student mentoring, making complex theories accessible to learners. His earlier experience as a literacy teacher (2011–2012) equipped him with communication and leadership skills, further honed during his military officer training. Ahmed is known for fostering student engagement, using both traditional and digital platforms. His ability to blend academic rigor with student support makes him a well-rounded educator and a role model for aspiring Egyptian physicists.

🏅 Awards and Honors

While Ahmed has not listed formal awards, his academic journey reflects prestigious participation in elite programs like Zewail University’s Theoretical Physics School and BUE’s Plasma Physics Courses. His publications in indexed journals and the 2025 article in Scientific Reports signify a high level of peer recognition. His promotion within volunteer work and successful completion of military service also indicate commendable leadership and integrity. With growing citation counts and participation in national research programs, Ahmed has laid the groundwork for future awards in physics research, education, and innovation.

🚀 Legacy and Future Contributions

Ahmed is poised to become a leading researcher in theoretical and plasma physics. With experience in quantum mechanics, space physics, and analytical modeling, he is well-positioned to contribute to cutting-edge discoveries in astrophysics and particle interactions. He envisions deeper involvement in international collaborations, contributing to Egypt’s academic global presence. By mentoring future students and publishing impactful work, he aims to leave a lasting legacy of excellence, innovation, and service. His future may include Ph.D. studies, grant-winning research, and expanding his influence across global scientific communities.

Top Noted Publications

  • Bound state of heavy quarks using a general polynomial potential
    Authors: H. Mansour, A. Gamal
    Journal: Advances in High Energy Physics
    Year: 2018

  • Meson spectra using Nikiforov-Uvarov method
    Authors: H. Mansour, A. Gamal
    Journal: Results in Physics
    Year: 2022

  • Spin splitting spectroscopy of heavy Quark and Antiquarks systems
    Authors: H. Mansour, A. Gamal, M. Abolmahassen
    Journal: Advances in High Energy Physics
    Year: 2020

  • Two body problems with magnetic interactions
    Authors: H. Mansour, A. Gamal
    Year: 2019

  • Spectroscopy of the Quarkonium Systems for Heavy Quarks
    Authors: H. Mansour, A. Gamal
    Year: 2020

 

 

Sheng Hsiung Chang | Experimental methods | Best Researcher Award

Prof. Sheng Hsiung Chang | Experimental methods | Best Researcher Award

Professor at National Taiwan Ocean University | Taiwan

Dr. Sheng Hsiung Chang is a Professor at the National Taiwan Ocean University. His extensive career in academia and research is marked by significant roles in leading institutions such as Chung Yuan Christian University (CYCU) and National Central University. Dr. Chang’s work has spanned across several pivotal research areas, particularly in semiconductor physics, optical physics, and perovskite optoelectronic devices. His achievements not only demonstrate his technical expertise but also highlight his commitment to academic leadership, mentorship, and advancing scientific knowledge.

👹‍🎓Profile

Google scholar

Scopus

ORCID

Early Academic Pursuits 🎓

Dr. Chang’s academic journey began with his postdoctoral research roles, first at Academia Sinica (2008-2010) and later at National Central University (2010-2012), where he gained foundational experience in semiconductor and optical physics. During these early years, he developed a strong interest in light-material interactions and functional thin films, fields that would shape his future research directions. His foundational work in nanotechnology and optoelectronics established the groundwork for his later academic and research career.

Professional Endeavors 🌍

Dr. Chang has held pivotal roles in academia, including Associate Professor and Professor at CYCU, where he also served as the Director of the Career Service Center (2020-2021). These positions reflect his commitment to fostering both the research and professional development of students. Additionally, he has contributed to the scientific community as an Editorial Board Member for journals such as Nanotechnology and Physics Bimonthly.

He has also demonstrated leadership in academic societies, serving as Vice Chairman (2021-2024) and Secretary General (2019-2020) of the Taiwan Vacuum Society. This involvement shows his dedication not only to research but also to promoting collaboration and innovation within the scientific community.

Contributions and Research Focus 🔬

Dr. Chang’s research is centered around perovskite optoelectronic devices, light-material interactions, plasmonic devices, nonlinear optics, and functional thin films. He is currently the Principal Investigator for various research projects funded by the National Science and Technology Council (NSTC) and the Ministry of Science and Technology (MOST). His groundbreaking work on perovskite thin films and their applications in photovoltaic cells is pushing the boundaries of renewable energy technologies. Through projects that explore optical coupling, material interfaces, and energy harvesting, Dr. Chang’s research is expected to revolutionize the optoelectronics field.

Impact and Influence 🌍

Dr. Chang’s contributions to the scientific community have had far-reaching implications, particularly in the area of perovskite solar cells. His work on improving photovoltaic performance and investigating interfacial contacts between organic and inorganic materials has the potential to enhance solar cell efficiency and sustainability. He is a key player in advancing technologies related to energy conversion, helping to foster sustainable solutions to global energy challenges. His leadership roles in academic societies have also expanded his influence and outreach in the scientific community.

Academic Citations 📈

Dr. Chang has an impressive publication record, with recent articles in high-impact journals such as Nanotechnology, Synthetic Metals, and Materials Science in Semiconductor Processing. His work is frequently cited by fellow researchers in the field of optoelectronics, particularly his studies on perovskite materials and their optical properties. These citations underscore the significance and influence of his research in both academia and industry.

Research Skills 🧑‍🔬

Dr. Chang possesses an extensive skill set in semiconductor physics, optical physics experiments, and theoretical computations. His research involves complex techniques such as material synthesis, thin film fabrication, and optical characterization. He has a deep understanding of light-matter interactions and their application to next-generation devices like solar cells and plasmonic devices. Additionally, his ability to bridge experimental techniques with theoretical models allows him to tackle complex challenges in material design and optoelectronic applications.

Teaching Experience đŸ«

In his roles as a Professor and Associate Professor, Dr. Chang has mentored numerous graduate and postgraduate students in their research pursuits. His teaching approach is centered around encouraging critical thinking, innovation, and hands-on experimentation. His experience in guiding students and fostering academic growth aligns with his belief in the importance of collaboration and mentorship within academic settings. He also plays an active role in career development, helping students transition into the professional world with a strong foundation in research and industry-related skills.

Awards and Honors 🏆

Throughout his career, Dr. Chang has been the recipient of several prestigious awards and honors, recognizing his contributions to the fields of optical physics, semiconductor research, and perovskite optoelectronics. His ongoing recognition as a leader in nanotechnology and materials science reflects his consistent pursuit of excellence in both academic research and scientific innovation.

Legacy and Future Contributions 🔼

Dr. Chang’s work is poised to leave a lasting impact on the scientific community, particularly in the field of renewable energy and optoelectronics. As the principal investigator of major research projects, he is advancing the efficiency and sustainability of perovskite-based technologies, paving the way for affordable and efficient solar energy solutions. Dr. Chang’s future contributions to nanomaterials and functional thin films will likely continue to inspire scientific innovation, technological advancements, and environmental sustainability for years to come.

Publications Top Notes

Long room-temperature valley lifetimes of localized excitons in MoS2 quantum dots

  • Authors: H. Wang, Y. Chen, T.Y. Pan, Y. Lee, J. Shen
    Journal: Optics Express
    Year: 2024

Structural and excitonic properties of the polycrystalline FAPbI3 thin films, and their photovoltaic responses

  • Authors: Y. Huang, I.J. Yen, C. Tseng, A. Chandel, S.H. Chang
    Journal: Nanotechnology
    Year: 2024

Observations of two-dimensional electron gases in AlGaN/GaN high-electron-mobility transistors using up-converted photoluminescence excitation

  • Authors: Y. Chen, L. Chen, C.B. Wu, Y.J. Lee, J. Shen
    Journal: Optics Express
    Year: 2024

Efficient Optical Coupling between Dielectric Strip Waveguides and a Plasmonic Trench Waveguide

  • Authors: J. Wu, A. Chandel, C. Chuang, S.H. Chang
    Journal: Photonics
    Year: 2024

Enhancing the photovoltaic responses of MAPbI3 poly-crystalline perovskite films via adjusting the properties of PEDOT:PSS hole transport material with a low-polarity solvent treatment process

  • Authors: C. Tsai, S.N. Manjunatha, M. Sharma, L.B. Chang, C. Chang
    Journal: Materials Science in Semiconductor Processing
    Year: 2024

 

Waseem Razzaq | Mathematical Physics | Member

Dr. Waseem Razzaq | Mathematical Physics | Member

PHD at COMSETS Vehari Campus, Pakistan

Waseem Razzaq, a dedicated mathematician based in Vehari, Pakistan, holds a PhD in Mathematics and specializes in applied mathematics, fractional calculus, and exact solutions of differential equations. With a strong academic background, including an MPhil and MSc in Mathematics, Razzaq has authored numerous research articles published in reputable journals. He excels in teaching and has held various positions in educational institutions. Recognized as “The Best Teacher of the Year 2011,” Razzaq is passionate about supporting humanitarian actions, enjoys sports and book reading, and actively contributes to educational resources through his YouTube channel “Math Center.”

Professional Profiles:

Education

PhD: Institution: COMSETS Vehari Campus Subject: Mathematics Session: 2022 Fall – Continue Master of Philosophy: Institution: ISP, Multan, Pakistan Subject: Mathematics Session: 2018-2020 Master of Science: Institution: BZU, Vehari campus, Pakistan Subject: Mathematics Session: 2015-017 B.Ed: Institution: AIOU Islamabad Subjects: Math, Physics Session: 2016 B.Sc: Institution: BZU, Multan, Pakistan Subjects: Math-A&B/Comp Session: 2015

Work Experience

V.Principal, Vehari Leads College Pipli Adda Vehari (Feb 2021 – Present) Lecturer (Mathematics), Aspire Groups of Colleges Machiwal campus (July 2019 – Sep 2020) Visiting Lecturer (Mathematics), The Govt. Degree College Vehari (2018) Teacher (Math & Phy), The Smart School Vehari (2016) Teacher (Mathematics), The Educator College (girls campus) Vehari (2014-2015) Teacher (Math & Phy), Allied School Vehari (2013-2014) Teacher (Mathematics), The Public School Vehari (2009-2012)

Achievement

Awarded “The Best Teacher of the Year 2011” in The Public School Vehari.

Research Interests

Applied Mathematics Fractional Calculus Exact solutions of PDEs and ODEs Optimization Numerical solutions of PDEs and ODEs

Research Focus:

Waseem Razzaq’s research focuses on the theoretical and analytical aspects of nonlinear wave equations in optical and oceanographic sciences. He specializes in deriving exact soliton solutions and wave behaviors using various mathematical techniques, including the simplest equation method and fractional calculus. Razzaq’s contributions extend to diverse fields such as nonlinear optics, ocean engineering, and modern physics, as evidenced by his publications in reputable journals. His work significantly advances our understanding of nonlinear phenomena and contributes to the development of mathematical tools for modeling complex systems in optics and oceanography.

Publications

  1. Construction of Solitons and Other Wave Solutions for Generalized Kudryashov’s Equation with Truncated M-Fractional Derivative Using Two Analytical Approaches, cited by: 1, Publication: 2024.
  2. The complex hyperbolic Schrödinger dynamical equation with a truncated M-fractional by using simplest equation method, Publication: 2024.
  3. Applications of the Simplest Equation Procedure to Some Fractional Order Differential Equations in Mathematical Physics, Publication: 2024.
  4. The kink solitary wave and numerical solutions for conformable non-linear space–time fractional differential equations, Publication: 2024.
  5. Searching the new exact wave solutions to the beta-fractional Paraxial nonlinear Schrödinger model via three different approaches, cited by: 3, Publication: 2024.
  6. New analytical wave solitons and some other wave solutions of truncated M-fractional LPD equation along parabolic law of non-linearity, cited by: 4, Publication: 2023.
  7. Solitary wave solutions of coupled nerve fibers model based on two analytical techniques, cited by: 2, Publication: 2023.
  8. Optical solitons to the beta-fractional density dependent diffusion-reaction model via three different techniques, Publication: 2023.
  9. New Three Wave and Periodic Solutions for the Nonlinear (2+ 1)-Dimensional Burgers Equations, Publication: 2023.
  10. Research Article Solitary Wave Solutions of Conformable Time Fractional Equations Using Modified Simplest Equation Method, Publication: 2022.
.

Mir Sajjad Hashemi | Lie symmetries | Member

Prof Dr. Mir Sajjad Hashemi | Lie symmetries | Member

PHD at Imam Khomeini International University, Iran

Mir Sajjad Hashemi is an accomplished Associate Professor of Applied Mathematics with an H-index of 28. He earned his Ph.D. from Imam Khomeini International University, specializing in analytical and numerical solutions of differential equations. With extensive international experience, he has held visiting professorships in Italy and Turkey. Currently a member of the American Mathematical Society, Hashemi is based at the University of Bonab, Iran. Alongside his academic roles, he serves as an editorial member for prominent journals and has been recognized with several awards, including the prestigious “325 YEARS OF FRACTIONAL CALCULUS AWARD.” His contributions extend to executive positions within the university, reflecting his commitment to education and research.

Professional Profiles:

Education

Ph.D. (2010–2013): Imam Khomeini International University, Qazvin, Applied Mathematics. M.Sc. (2003–2005): University of Tabriz, Tabriz, Applied Mathematics. B.Sc. (1999–2003): Azarbaijan University of Tarbiat Moallem, Tabriz, Pure Mathematics.

Professional Experiences

2011–2012: Visiting Professor at University of Perugia, Perugia, Italy. 2015: Visiting Professor at Cankaya University, Ankara, Turkey. 2016: Visiting Professor at Firat University, Elazig, Turkey. 2017 – Present: Member of American Mathematical Society, University of Bonab, Iran.

Executive Activities

2013-2017: Vice-Chancellor of Student Affairs, University of Bonab. 2018-2021: Vice Chancellor of Education, Post-Graduate Studies, Research and Technology, University of Bonab.

Honors

Recipient of multiple Distinguished Researcher of the Year awards at University of Bonab. “325 YEARS OF FRACTIONAL CALCULUS AWARD” from the First Online Conference on Modern Fractional Calculus and Its Applications, Biruni University, Istanbul, Turkey, December 4-6, 2020. Named among World’s Top 2% Scientists by Stanford University.

Research Focus:

Mir Sajjad Hashemi’s research primarily focuses on the convergence and applications of numerical methods in solving fractional integro-differential equations and other nonlinear partial differential equations. He has made significant contributions to the development and analysis of methods such as the homotopy analysis method and the Lie-group shooting method. His work encompasses a broad range of topics, including Lie symmetry analysis, exact solutions of fractional differential equations, numerical approximation techniques, and the study of solitary wave solutions in various physical systems. Hashemi’s research provides valuable insights into the behavior of complex nonlinear systems and their mathematical representations, contributing to advancements in applied mathematics and computational physics.

Publications 

  1. Classical and non-classical Lie symmetry analysis, conservation laws and exact solutions of the time-fractional Chen–Lee–Liu equation, cited by: 5, Publication date: 2023.
  2. New mathematical modellings of the Human Liver and Hearing Loss systems with fractional derivatives, cited by: 5, Publication date: 2023.
  3. Lie symmetries, exact solutions, and conservation laws of the nonlinear time-fractional Benjamin-Ono equation, cited by: 5, Publication date: 2022.
  4. Periodic Hunter–Saxton equation parametrized by the speed of the Galilean frame: Its new solutions, Nucci’s reduction, first integrals and Lie symmetry reduction, cited by: 5, Publication date: 2023.
  5. Non‐classical Lie symmetries for nonlinear time‐fractional Heisenberg equations, cited by: 5, Publication date: 2022.
  6. Three different integration schemes for finding soliton solutions in the (1+1)-dimensional Van der Waals gas system, cited by: 4, Publication date: 2023.
  7. On solution of Schrödinger–Hirota equation with Kerr law via Lie symmetry reduction, cited by: 4, Publication date: 2023.
  8. The (3+ 1)-dimensional Wazwaz–KdV equations: the conservation laws and exact solutions, cited by: 4, Publication date: 2023.
  9. Novel exact solutions to a coupled Schrödinger–KdV equations in the interactions of capillary–gravity waves, cited by: 4, Publication date: 2023.
  10. Analytical treatment on the nonlinear Schrödinger equation with the parabolic law, cited by: 7, Publication date: 2023.

 

.

Data Analysis Techniques

 

Introduction to Data Analysis Techniques:

Data analysis techniques are fundamental tools across various scientific disciplines, enabling researchers to extract meaningful insights and knowledge from large and complex datasets. Whether in the realms of physics, biology, finance, or social sciences, effective data analysis is crucial for making informed decisions, identifying trends, and drawing conclusions.

Statistical Analysis:

Statistical techniques involve the application of probability theory and mathematical statistics to analyze data, including hypothesis testing, regression analysis, and Bayesian inference, to uncover patterns and relationships.

Machine Learning and Predictive Modeling:

Explore the use of machine learning algorithms to build predictive models, classify data, and make data-driven predictions, with applications in fields such as image recognition, natural language processing, and recommendation systems.

Data Visualization:

Delve into data visualization techniques that enable researchers to represent data graphically, creating informative charts, graphs, and interactive visualizations to communicate findings effectively.

Big Data Analytics:

Focus on the challenges and methods for handling and analyzing large-scale datasets, including distributed computing, data preprocessing, and scalable machine learning algorithms.

Time Series Analysis:

Examine techniques for analyzing time-ordered data, such as financial data, environmental monitoring, and physiological signals, to identify trends, periodicities, and anomalies.

 

 

  Introduction of Chiral spinors and helicity amplitudes Chiral spinors and helicity amplitudes are fundamental concepts in the realm of quantum field theory and particle physics    They play a
  Introduction to Chiral Symmetry Breaking: Chiral symmetry breaking is a pivotal phenomenon in the realm of theoretical physics, particularly within the framework of quantum chromodynamics (QCD) and the study
  Introduction to Effective Field Theory and Renormalization: Effective field theory (EFT) and renormalization are foundational concepts in theoretical physics, particularly in the realm of quantum field theory. They provide
  Introduction to Experimental Methods: Experimental methods are the backbone of scientific investigation, enabling researchers to empirically explore and validate hypotheses, theories, and concepts. These techniques encompass a wide array
  Introduction to Free Particle Wave Equations: Free particle wave equations are fundamental concepts in quantum mechanics, describing the behavior of particles that are not subject to external forces. These
  Introduction to High Energy Physics: High-energy physics, also known as particle physics, is a branch of science dedicated to the study of the most fundamental building blocks of the
  Introduction to Interactions and Fields: Interactions and fields form the foundation of modern physics, providing the framework for understanding how particles and objects interact with one another and the
  Introduction to Invariance Principles and Conservation Laws: Invariance principles and conservation laws are fundamental concepts in physics that play a pivotal role in understanding the behavior of the physical
  Introduction to Lepton and Quark Scattering and Conservation Laws: Lepton and quark scattering processes are fundamental phenomena in particle physics, allowing us to probe the structure and interactions of
  Introduction to Particle Physics and Cosmology: Particle physics and cosmology are two closely intertwined fields of scientific inquiry that seek to unravel the mysteries of the universe at both