Ajit Bhat | Nuclear Physics | Best Researcher Award

Mr. Ajit Bhat | Nuclear Physics | Best Researcher Award

R&D Mechanical Engineer at Oak Ridge National Lab | United States

Ajit Bhat is an accomplished R&D Mechanical Engineer with specialized expertise in aerospace engineering, mechanical systems design, and fusion energy technologies. Currently contributing to advanced research at Oak Ridge National Laboratory, Ajit brings a robust blend of technical proficiency, innovative thinking, and hands-on experience across national labs, industry, and academic research projects.

👨‍🎓Profile

Scopus

Orcid

🎓 Early Academic Pursuits

Ajit began his academic journey at the University at Buffalo, SUNY, where he earned a B.Sc. in Mechanical and Aerospace Engineering with Cum Laude honors. He furthered his education at the University of Michigan, Ann Arbor, completing his Master’s in Aerospace Engineering in December 2017. His studies focused on fluid dynamics, orbital mechanics, and control systems, laying the foundation for his future contributions to aerospace and energy sectors.

🧑‍💼 Professional Endeavors

Ajit’s career showcases an impressive diversity of roles in high-impact institutions. At Oak Ridge National Laboratory, he has been instrumental in supporting multiple departments with mechanical and robotics system designs, including the successful deployment of a gantry system for remote handling and the development of a 3D-printed tungsten divertor for fusion reactors. At the Institute of Energy Studies, North Dakota, he led projects in carbon capture technology, involving fluid flow analysis, structural integrity assessments, and data acquisition system troubleshooting. While at Piper Aircraft Inc., Ajit designed landing gear systems and aircraft components, managed hydraulic actuator issues, and streamlined procurement processes. His time at Lawrence Berkeley National Lab included remodelling infrared beamline structures and radiation shielding in accelerator facilities, demonstrating his ability to adapt across specialized domains.

🔬 Contributions and Research Focus

Ajit’s research contributions span several frontier domains. He has made significant strides in fusion energy systems, particularly through the design of a magnetic coupler for the ITER project and the creation of 3D-printed plasma-facing components. His expertise in computational fluid dynamics (CFD), finite element analysis (FEA), and thermal systems supports his broader focus on energy sustainability and mechanical innovation. Ajit’s background in space systems engineering is evident through his work on a NASA-funded CubeSat project, where he led the mechanical subsystem and collaborated with interdisciplinary teams to meet mission requirements.

🌍 Impact and Influence

Ajit’s professional influence is notable in sectors that demand precision engineering and innovation. His work in fusion research at ORNL supports global efforts in clean energy, while his earlier roles in aircraft design and radiation infrastructure contribute to national aerospace and nuclear facilities. His participation in legacy waste cleanup initiatives and carbon capture processes reflect his commitment to sustainability and environmental engineering.

📚 Academic Citations and Publications

Ajit has co-authored impactful publications such as “Electrostatic Lubricant Filter Design Study”, presented at the 2022 IEEE CEIDP Conference, and “Work Cell Development for Legacy Waste Cleanup in Oak Ridge”, presented at WM Symposia 2024. Additionally, he delivered a technical talk titled “Design and Analysis of an Integrated Additively Manufactured Test Article for Plasma Facing Component” at the 26th Technology of Fusion Energy Conference (TOFE), reflecting his growing presence in the academic and research community.

🧠 Research Skills

Ajit possesses advanced technical competencies in CAD software (PTC Creo, NX, AutoCAD, Inventor), simulation tools (ANSYS Fluent, Abaqus, XFLR5), and programming languages (MATLAB, C++, LabView). His hands-on capabilities with 3D printing, lathe operations, and manual machining tools complement his simulation expertise, making him a well-rounded engineer capable of bridging theory and practice in high-tech environments.

👨‍🏫 Teaching and Mentorship Experience

During his time at the University of Michigan, Ajit served as a Research Assistant, managing mechanical subsystems in a NASA CubeSat project. His role involved interdisciplinary collaboration, design validation, and project communication, which naturally required mentoring undergraduate and graduate team members. While not a formal teaching role, this experience demonstrates his ability to guide and lead technical teams in educational settings.

🏆 Awards and Honors

Ajit graduated Cum Laude from SUNY Buffalo and has been selected for key roles at some of the most prestigious national laboratories in the U.S., including ORNL and LBNL. While the current record does not include individual academic awards, his selection for critical national-level projects and technical leadership in research affirms his professional recognition and excellence.

🧭 Legacy and Future Contributions

Ajit Bhat is on a promising trajectory to leave a lasting legacy in fusion energy research, additive manufacturing, and cross-sector mechanical engineering. As global interest in sustainable technologies grows, his interdisciplinary expertise positions him as a future leader in both research innovation and technical implementation. With a strong foundation, growing publication record, and deep technical insight, Ajit’s contributions are expected to expand and influence next-generation energy and aerospace systems.

 

Khaled Ali | Experimental methods | Best Researcher Award

Dr. Khaled Ali | Experimental methods | Best Researcher Award

South Valley University| Egypt

Khaled Ali is an accomplished nuclear physicist and academic with a wealth of experience in both research and education. He obtained his PhD in Nuclear Physics from the Institute of Advanced Energy at Kyoto University, Japan in 2022. With a focus on radiation physics, nuclear imaging technologies, and health physics, Khaled has become a leading researcher in his field. He has been a Lecturer and Researcher at the Faculty of Science, South Valley University, Egypt, since 2008, where he teaches, mentors, and supervises students at various academic levels.

👨‍🎓Profile

Google Scholar

Scopus

📘 Early Academic Pursuits

Dr. Ali’s academic journey began at South Valley University, Egypt, where he earned a Bachelor’s degree in Physics (2007) with Excellent with Honor status, ranking first in his class. He continued his studies at the same institution with a Diploma in Nuclear and Radiation Physics (2010), again graduating as the top student. In 2014, he completed a Master’s degree (M.Sc.) in Radiation Physics, laying the groundwork for his later research in environmental and medical radiation physics.

👨‍🔬 Professional Endeavors

Since 2008, Dr. Ali has held a long-standing academic position at South Valley University. His responsibilities span teaching undergraduate and postgraduate physics courses, supervising MSc and PhD theses, and engaging in cutting-edge experimental research. He has also been a visiting researcher at prestigious institutions such as Florida State University (USA) and JINR Dubna (Russia), reflecting a globally recognized career trajectory.

🔬 Contributions and Research Focus

Dr. Ali’s research lies at the intersection of nuclear technology, environmental safety, and medical imaging. He has developed 3D isotope-selective CT imaging techniques using Nuclear Resonance Fluorescence (NRF) and laser Compton scattering, contributing to non-destructive detection of nuclear materials. His studies also address natural radionuclide contamination in water, particularly in Egypt, offering public health insights and policy relevance. These works have been published in top-tier journals like Scientific Reports, IEEE Transactions on Nuclear Science, and Phys. Rev. Accel. Beams.

🌍 Impact and Influence

Dr. Ali’s research has both academic and societal impact. His work on radiological health risks in groundwater and lake systems informs environmental monitoring and water safety policy in Egypt and beyond. His NRF-CT imaging innovations are relevant for homeland security, nuclear nonproliferation, and advanced medical diagnostics. He is frequently invited to present at international conferences such as IEEE NSS/MIC and IPAC, and his research has been featured at global events including COP27.

📈 Academic Citations

Dr. Ali’s scholarly contributions are supported by an extensive publication record, with at least 9 high-impact journal papers and over 16 international conference presentations. His works are widely cited in the fields of radiation detection, environmental physics, and nuclear imaging. Metrics like h-index and total citations (not provided here) would likely reflect a solid academic footprint, given the DOIs and journal impact levels.

🧪 Research Skills

Dr. Ali is highly proficient in advanced nuclear instrumentation, gamma-ray imaging, NRF methods, and neutron activation analysis. He excels in both experimental design and data interpretation, with strong collaborative work in multinational research teams. His technical proficiency spans radioisotope quantification, radiation safety modeling, and simulation-based visualization techniques.

📚 Teaching Experience

With over 15 years of academic teaching, Dr. Ali has instructed a wide range of physics courses at the undergraduate level and specialized nuclear physics modules at the postgraduate level. His role in supervising graduate theses underlines his ability to mentor emerging scientists and support research-led education.

🏆 Awards and Honors

  • Best Student Award in both BSc (2007) and Diploma (2010) programs

  • MEXT PhD Scholarship, Government of Japan (2018)

  • Scientific Research Travel Fellowships to Russia (2011) and USA (2012)

  • Multiple Best Presentation Awards at national and international conferences, including COP27 (2022) and Basic Sciences and Sustainable Development Conference (2023)

🧭 Legacy and Future Contributions

Dr. Khaled Ali is poised to leave a lasting legacy in the realm of radiation physics and nuclear imaging. His contributions not only strengthen academic understanding but also offer practical solutions to global challenges in environmental safety and non-invasive inspection technologies. Looking forward, his continued work on fused imaging systems and isotope detection is expected to influence next-generation diagnostic tools, nuclear safety systems, and public health frameworks across the globe.

Publications Top Notes

Radiological Risks in Nasser Lake Water and their Health and Environmental Implications

  • Authors: Khaled Ali, Ahmed Abu-Taleb, Abd El-Baset Abbady, Shaban Harb

  • Journal: Scientific Reports

  • Year: 2025

Generation of flat-laser Compton scattering

  • Authors: Hideaki Ohgaki, Khaled Ali, Toshiteru Kii, Heishun Zen, Takehito Hayakawa, Toshiyuki Shizuma, Masaki Fujimoto, Yoshitaka Taira

  • Journal: Physical Review Accelerators and Beams, Vol. 26, No. 9, p. 093402

  • Year: 2023

Fusion Visualization Technique to Improve a Three-Dimensional Isotope-Selective CT Image Based on Nuclear Resonance Fluorescence with a Gamma-CT Image

  • Authors: Khaled Ali, Heishun Zen, Hideaki Ohgaki, Toshiteru Kii, Takehito Hayakawa, Toshiyuki Shizuma, Masaki Fujimoto, Yoshitaka Taira, Masahiro Katoh, Hiroyuki Toyokawa

  • Journal: Applied Sciences, Vol. 11, Article 11866

  • Year: 2021

Three-Dimensional Nondestructive Isotope-Selective Tomographic Imaging of 208Pb Distribution via Nuclear Resonance Fluorescence

  • Authors: Khaled Ali, Hideaki Ohgaki, Heishun Zen, Toshiteru Kii, Takehito Hayakawa, Toshiyuki Shizuma, Hiroyuki Toyokawa, Yoshitaka Taira, Masaki Fujimoto, Masahiro Katoh

  • Journal: Applied Sciences, Vol. 11, No. 8, p. 3415

  • Year: 2021

Natural radionuclides in groundwater from Qena governorate, Egypt

  • Authors: Khaled Salahel Din, Khaled Ali, Shaban Harb, Abdel Baset Abbady

  • Journal: Environmental Forensics, Vol. 22, No. 1–2, pp. 48–55

  • Year: 2020

 

 

WAEL CHOUK | High energy physics | Young Scientist Award

Dr. WAEL CHOUK | High energy physics | Young Scientist Award

Post-Doc at Faculty of Sciences of Bizerte | Tunisia

Dr. Wael Chouk is a dedicated Tunisian physicist specializing in materials physics, particularly in the field of dielectric and superconducting materials. With a PhD earned from the Faculty of Sciences of Bizerte, University of Carthage, he has demonstrated a consistent track record of academic excellence, international research experience, and pedagogical commitment. His profile reflects a unique blend of technical expertise, research passion, and community involvement.

👨‍🎓Profile

Scopus

📘 Early Academic Pursuits

Dr. Chouk began his academic journey with a preparatory cycle in engineering (Math-Physics) from 2012 to 2015 at the Preparatory Institute for Engineering Studies, Nabeul. He then pursued a Fundamental Physics degree (2015–2017) and a Master’s in Physics (2017–2020), graduating with honors. His early research centered on materials structure and properties, laying the foundation for his future in high-impact experimental physics.

🧑‍🏫 Professional Endeavors

Wael’s career is marked by consistent involvement in academic teaching and research supervision. As a part-time lecturer at the Faculty of Sciences of Bizerte (2021–2022), he taught practical physics and later co-supervised Master’s research projects in 2023 and 2024. His teaching was not just instructional but also developmental, helping students build critical skills in dielectric materials and experimental analysis.

🔬 Contributions and Research Focus

His PhD work (2021–2024) explores the superconducting-supercapacitance transition in the complex ceramic YBa₂₋ₓCaₓCuβOδ, synthesized using the sol-gel method. His research involves advanced characterization techniques such as XRD, SEM, TEM, XPS, PPMS, and VSM, highlighting his expertise in materials synthesis and structural/magnetic analysis. His contributions to the field include two co-authored scientific papers on phase transitions and intrinsic permittivity in ceramic compounds.

🌍 Impact and Influence

Dr. Chouk has enhanced his research impact through international internships a two-month stay at BAU University in Turkey and a three-month program at ICMM in Madrid, part of CSIC. He has also presented at prestigious events like SMS’2024 and AdAMFM 2022, and showcased his work at the Innovation Fair by the ANPR, where his stand on electro-ceramics for high-energy-density capacitors demonstrated both academic relevance and real-world application.

📊 Academic Citations and Publications

Dr. Wael Chouk has authored notable publications including “Study of phase transition behavior and high dielectric properties in YBa₂₋ₓCaₓCu₃Oδ ceramics” and “Novel high intrinsic permittivity in new perovskite ceramic GdCa₂Cu₃Oδ”. These studies significantly contribute to the scientific understanding of ceramic-based high-performance materials, with impactful applications in electronics, energy storage, and superconductivity. His research enhances the academic literature and reflects a growing influence in the field of materials physics.

🧪 Research Skills

Dr. Wael Chouk demonstrates strong experimental and analytical skills, especially in material synthesis (sol-gel, ceramic fabrication) and advanced characterization techniques such as XRD, TEM, SEM, XPS, and EPR. He is also proficient in simulation and analysis tools including MATLAB, Origin, and Gaussian. His expertise in laboratory instrumentation and data interpretation equips him to contribute effectively to cross-disciplinary research and lead complex experimental projects, reflecting a robust and versatile research capability.

🧑‍🏫 Teaching Experience

His years as a part-time teacher and student supervisor reveal a solid commitment to academic mentorship. He has taught practical physics to undergraduate students and supported Master’s candidates in achieving their academic goals, especially in materials physics and dielectric behavior analysis.

🏅 Awards and Honors

While formal award titles are not specified, Dr. Wael Chouk’s participation in international conferences, prestigious research internships, and representation at innovation fairs reflect peer recognition and academic credibility. He holds valuable certifications in ISO 9001, ISO 50001, X-ray diffraction, project management, stress management, public speaking, and first aid. These accomplishments highlight his professional competence, leadership potential, and strong alignment with high research standards and institutional trust.

🌱 Legacy and Future Contributions

Dr. Wael Chouk is poised to leave a lasting impact on the field of applied materials physics. His future contributions are likely to lie at the intersection of ceramic materials, energy storage technologies, and magnetic-electrical coupling. With a strong foundation in both academic teaching and experimental research, he is a promising candidate for collaborative international projects, postdoctoral fellowships, and innovative research leadership.

Publications Top Notes

Study of phase transition behavior and high dielectric properties in YBa₂₋ₓCaₓCu₃Oδ ceramics

  • Authors: Wael Chouk, Khouloud Moualhi, Abdelhak Othmani, Mouldi Zouaoui
    Journal: Materials Chemistry and Physics
    Year: 2023

Novel high intrinsic permittivity in new perovskite ceramic GdCa₂Cu₃Oδ

  • Authors: Khouloud Moualhi, Wael Chouk, Youssef Moualhi, Abdelhak Othmani, Mouldi Zouaoui
    Journal: Materials chemistry and physics
    Year: 2024

Multifunctional chitosan/montmorillonite/TiO₂ nanocomposites: Correlating microstructure with dielectric and photocatalytic properties

  • Authors: Lahbib M., Mejri C., Bejaoui M., Chadha C., Oueslati A., Oueslati W.
    Journal: Journal of the Indian Chemical Society
    Year: 2025

Conduction mechanism investigation in YCa₂Cu₃Oδ colossal permittivity ceramics

  • Authors: Wael Chouk, Mohamed Annabi, Mouldi Zouaoui
    Journal: Results in Physics
    Year:2025

 

 

Dieudonné NGA ONGODO | High energy physics | Best Researcher Award

Assist. Prof. Dr. Dieudonné NGA ONGODO | High energy physics | Best Researcher Award

University of Yaoundé I | Cameroon

Dr. Dieudonné NGA ONGODO is a Cameroonian nuclear physicist and Senior Lecturer at the University of Yaoundé I, Faculty of Science, Department of Physics. With over a decade of professional and academic engagement, Dr. Nga Ongodo stands out as a prominent scholar, researcher, and educator, whose work spans nuclear instrumentation, quantum mechanics, and radiation protection. His contributions are firmly rooted in both fundamental physics and applied technologies, making him a vital figure in the African and international scientific communities.

👨‍🎓Profile

Scopus 

ORCID

🎓 Early Academic Pursuits

Dr. Nga Ongodo’s academic foundation was laid with a Baccalaureate in Mathematics and Physics from Lycée d’Obala (2004–2005). He then enrolled at the University of Yaoundé I, completing his Undergraduate studies in Physics (2005–2010), followed by a Master’s Degree in Physics (2011–2013), and later earning a PhD in Nuclear Physics in 2020. His academic trajectory reflects a strong grounding in core and advanced physics disciplines, preparing him for a research-intensive career.

🧑‍🏫 Professional Endeavors

Over more than a decade, Dr. Nga Ongodo has built a distinguished academic career. Since May 2023, he serves as a Senior Lecturer at the University of Yaoundé I, having previously worked as an Assistant Lecturer (2021–2023) and Part-time Teacher (2014–2021) in the same department. Beyond academia, he also lectures at Institut Universitaire la Vision and previously at Institut Universitaire Sup Prépa, further demonstrating his commitment to educational development. Additionally, he plays a pivotal role in public contract regulation as a recognized expert for both the Regulatory Agency of Public Contracts (ARMP) and the Ministry of Public Contracts.

🧪 Contributions and Research Focus

Dr. Nga Ongodo is a dynamic and innovative researcher whose work spans several cutting-edge domains in physics. His expertise includes nuclear instrumentation, FPGA systems, digital signal and pulse processing (DSP, DPP), and radiation dosimetry. He has also contributed to the use of artificial neural networks in analyzing mass spectra, and explores quantum mechanics and SU(3) symmetry through advanced mathematical models. By integrating fractional calculus, Bohr Hamiltonian formalism, and quark models, he provides deep insight into atomic nuclei and particle interactions. His research bridges theory and application, advancing nuclear physics both locally and globally.

🌍 Impact and Influence

Dr. Nga Ongodo’s scientific influence transcends national borders. He has participated in prominent international workshops and seminars, including the African School of Fundamental Physics (Rwanda, 2016) and IAEA-AFRA training sessions across Cameroon and Ethiopia. His groundbreaking publications are featured in top-tier journals such as the European Physical Journal, Modern Physics Letters, and the International Journal of Modern Physics, attesting to the global relevance and visibility of his work.

📈 Academic Citations

With 13 peer-reviewed articles published between 2019 and 2025, Dr. Nga Ongodo’s work has received increasing academic attention. He has co-authored papers on topics including heavy pentaquark masses, Bohr Hamiltonian models, and charmonium resonances using both classical physics and AI techniques. His collaborations with other leading African physicists highlight his role as a central figure in nuclear modeling and quantum structure analysis.

🛠️ Research Skills

Dr. Nga Ongodo’s research expertise is deeply rooted in a diverse and robust technical skill set that empowers both his investigative pursuits and pedagogical approach. He possesses advanced mastery in nuclear and numerical electronics, as well as specialized experience in detector electronics and FPGA (Field Programmable Gate Array) systems, which are vital for real-time data acquisition and signal processing in nuclear experiments. His strong foundation in mathematical modeling, particularly through sophisticated frameworks such as the Nikiforov–Uvarov and Heun methods, allows him to derive analytical solutions for complex quantum systems.

👨‍🏫 Teaching Experience

A passionate and student-centered educator, Dr. Nga Ongodo has taught an extensive range of subjects including Quantum Physics, Electromagnetism, Fluid Mechanics, Thermodynamics, and Radiation Protection. He is well-versed in both theoretical instruction and practical laboratory supervision. His active engagement in pedagogical development seminars, such as the 2022 Competency-Based Teaching Workshop, showcases his dedication to educational innovation and student success.

🏅 Awards and Honors

While formal awards are not explicitly listed, Dr. Nga Ongodo’s appointments and invited participation in elite research events, including those organized by C.E.T.I.C and the IAEA, serve as implicit recognition of his expertise and leadership. His invitation to speak at the 2025 Radiological Protection Workshop in Cameroon underscores his role as a national thought leader in nuclear safety and public health.

🚀 Legacy and Future Contributions

Looking ahead, Dr. Nga Ongodo is set to play an even more significant role in African scientific development, particularly in areas of radiation protection, data-driven nuclear modeling, and sustainable electronics for physics research. His recent work involving Artificial Neural Networks, topological quantum mechanics, and quantum gravity analogues points to a future of interdisciplinary research that bridges AI, quantum systems, and high-energy physics. His legacy will not only be defined by the depth of his research, but also by his transformational impact on Cameroon’s scientific infrastructure, his mentorship of emerging scholars, and his efforts to elevate African research onto the global stage.

Publications Top Notes

Effect of spin-spin interaction and fractional order on heavy pentaquark masses under topological defect space-times

  • Authors: D. Nga Ongodo, A. A. Atangana Likéné, J. M. Ema’a Ema’a, P. Ele Abiama, G. H. Ben-Bolie
    Journal: The European Physical Journal C
    Year: 2025

Hyperbolic tangent form of sextic potential in Bohr Hamiltonian: Analytical approach via extended Nikiforov–Uvarov and Heun equations

  • Authors: D. Nga Ongodo, A. Atangana Likéné, A. Zarma, J. M. Ema’a Ema’a, P. Ele Abiama, G. H. Ben-Bolie
    Journal: International Journal of Modern Physics E
    Year: 2025

Electric quadrupole transitions of triaxial nuclei via the Bohr Hamiltonian within the screened Kratzer–Hellmann potential

  • Authors: D. Nga Ongodo, A. A. Atangana Likéné, A. Zarma, S. Haman Adama, J. M. Ema’a Ema’a, G. H. Ben-Bolie
    Journal: The European Physical Journal Plus
    Year: 2025

Non-compact extra dimensions and flavor dependence of cc̄ and bb̄ mesons masses in a hot QCD medium with lattice, LO and NLO parametrizations of the Debye mass

  • Authors: A. A. Atangana Likéné, L. B. Ungem, D. C. Mbah, D. Nga Ongodo, R. Houzibe, F. B. Djeuyi Ndafeun
    Journal: Modern Physics Letters A
    Year: 2025

Quantum chromodynamics Lagrangian density and SU(3) gauge symmetry: A fractional approach

  • Authors: A. A. Atangana Likéné, D. Nga Ongodo, P. Mah Tsila, A. Atangana, G. H. Ben-Bolie
    Journal: Modern Physics Letters A
    Year: 2024

Yueling Yang | High energy physics | Best Researcher Award

Prof. Yueling Yang | High energy physics | Best Researcher Award

Professor at Henan Normal University | China

Yueling Yang is a Professor of Physics at Henan Normal University, specializing in theoretical particle physics. With extensive expertise in weak decays, quantum chromodynamics (QCD), and the phenomenology of B mesons, she has established herself as a prominent researcher in the field. Over the years, she has progressed from an Assistant Professor to a Professor, teaching and conducting research at one of China’s leading institutions in the realm of theoretical physics.

👨‍🎓Profile

Scopus

ORCID

📚Early Academic Pursuits

Yueling Yang’s academic journey began at Yanbei Normal University, where she obtained her Bachelor of Science in Physics (2000). She pursued her Master of Science in Theoretical Physics and later earned her Ph.D. in Theoretical Physics from Henan Normal University in 2014. Her graduate education laid a solid foundation for her future research endeavors, shaping her interests in particle physics and QCD phenomena.

👩‍🏫Professional Endeavors

Yang’s professional career spans over two decades, with extensive experience at Henan Normal University since 2003. After serving as an Assistant Professor at Yuncheng University, she returned to Henan Normal University in 2006. Over time, she was promoted to Lecturer, then Associate Professor, and finally, Professor. She currently holds the position of Professor of Physics at the Institute of Particle and Nuclear Physics, making her a key figure in academic leadership and research excellence.

🔬Contributions and Research Focus

Yueling Yang’s research primarily focuses on theoretical particle physics, specifically the study of weak decays of B mesons and heavy-flavored mesons. She has contributed to the understanding of nonfactorizable corrections in weak decays and the application of QCD factorization methods to nonleptonic decays. Her contributions also extend to the phenomenology of particle decays, an area central to understanding the standard model and searching for new physics beyond it.

🌍Impact and Influence

Yueling Yang’s work has had a substantial impact on the field of theoretical physics. Her research not only advances fundamental theoretical concepts but also bridges the gap between theoretical predictions and experimental possibilities, helping lay the groundwork for potential future experimental investigations in particle physics. Her publications, including 61 refereed journal articles, demonstrate her ongoing contribution to the academic community, and her work is often cited by leading researchers in the field.

📚 Academic Cites

Yueling Yang’s research has been widely cited in academic journals such as Eur. Phys. J. C, Phys. Rev. D, and Chin. Phys. C, demonstrating the scholarly reach and relevance of his contributions. His recent work on QED corrections and factorization approaches continues to gain traction among peers in the theoretical physics community.

🧪 Research Skills

Prof. Yang excels in theoretical modeling, perturbative QCD, and computational analysis for particle physics processes. His methodical approach to applying QCD factorization and examining nonperturbative effects enables nuanced predictions of weak decay channels. These skills have been critical in acquiring competitive funding from agencies like the National Natural Science Foundation of China.

📖Teaching Experience

As a renowned educator, Yueling Yang has played a crucial role in shaping the academic development of many students. She has received multiple teaching awards, including the “Top 10 Distinguished Teachers” and the “Outstanding Teachers” awards from Henan Normal University. Her commitment to excellence in teaching is also reflected in her work as an Excellent Master’s Thesis Supervisor, an honor she will continue to hold into 2024.

🏅 Awards and Honors

Prof. Yang has received 6 major honorary titles, including:

  • 🏆 Excellent Master’s Thesis Supervisor of Henan Province (2024)

  • 🥈 Second Class Prize of the Henan Natural Science Award (2023)

  • 🌟 Outstanding Teacher and Example Lesson recognitions from Henan Normal University (2018, 2021)

  • 🎓 Top 10 Distinguished Teachers (2015)

These accolades reflect his all-around excellence in both education and research.

🧬 Legacy and Future Contributions

Looking ahead, Prof. Yueling Yang continues to expand his research on new physics effects in heavy meson decays and aims to bridge theory with upcoming experimental data from international particle collider facilities. His legacy is being shaped not only through his scientific contributions but also by the next generation of physicists he mentors. With new research grants and international collaborations underway, Prof. Yang is poised to make even deeper contributions to the understanding of fundamental particles and forces.

Publications Top Notes

The QED nonfactorizable correction to the semileptonic charmed three-body B decays

  • Authors: Yueling Yang, Liting Wang, Jiazhi Li, Qin Chang, Junfeng Sun
    Journal: European Physical Journal C
    Year: 2024

CEPC Technical Design Report: Accelerator

  • Authors: Waleed Abdallah, Tiago Carlos Adorno de Freitas, Konstantin G. Afanaciev, Tianlu Chen, Wei Chen
    Journal: Radiation Detection Technology and Methods
    Year: 2024

STCF conceptual design report (Volume 1): Physics & detector

  • Authors: M. N. Achasov, X. C. Ai, L. P. An, Baolin Hou, T. J. Hou
    Journal: Frontiers of Physics
    Year: 2024

Possibility of experimental study on nonleptonic weak decays

  • Authors: Yueling Yang, Liting Wang, Jinshu Huang, Qin Chang, Junfeng Sun
    Journal: Chinese Physics C
    Year: 2023

Feasibility of searching for the Cabibbo-favored D∗ → K ¯ π+, K ¯ ∗π+, K ¯ ρ+ decays

  • Authors: Yueling Yang, Kang Li, Zhenglin Li, Qin Chang, Junfeng Sun
    Journal: Physical Review D
    Year: 2022

 

Vien Vo Van | High-Energy Physics | Best Researcher Award

Assoc. Prof. Dr. Vien Vo Van | High-Energy Physics | Best Researcher Award

Lecturer at Tay Nguyen University | Vietnam

Dr. Vo Van Vien is a Senior Lecturer at Tay Nguyen University, specializing in Theoretical Physics with an emphasis on Neutrino Physics and Standard Model Extensions. He has an impressive academic background with a Bachelor’s degree from Vinh University, a Master’s from Ha Noi National University of Education, and a Doctorate from the Institute of Physics, Vietnam. His research primarily focuses on high-energy physics and particle phenomenology.

👨‍🎓Profile

Google scholar

Scopus

ORCID

Early Academic Pursuits 📚

Dr. Vien’s academic journey began with a Bachelor’s degree in Theoretical Physics from Vinh University (1999-2003), followed by a Master’s degree in Theoretical Physics and Mathematical Physics from Ha Noi National University of Education (2006-2008). He then pursued a PhD at the Institute of Physics (2009-2014), where his research deepened his expertise in neutrino physics and discrete symmetry models.

Professional Endeavors 💼

Dr. Vien has been a Senior Lecturer at Tay Nguyen University since 2004, where he continues to teach and mentor the next generation of physicists. His academic position has allowed him to lead several high-impact research projects in particle physics, neutrino mass mixing, and flavor symmetries. Notably, he has been the Principal Investigator for multiple funded projects including studies on lepton and quark mixings in extended Standard Models.

Contributions and Research Focus 🔬

Dr. Vien’s research contributions have been pivotal in extending the Standard Model, especially in neutrino physics, particle mass mixing, and discrete symmetries. His projects have explored a range of models like B-L models, flavor symmetries (e.g., A4, S4, Z4), and the muon anomaly. He has also contributed significantly to understanding neutrino oscillation phenomenology and the implications for dark matter in various extended models.

Impact and Influence 🌍

Dr. Vien’s work has significantly impacted the field of particle physics and neutrino phenomenology. His research on neutrino mass, mixing, and symmetry breaking models has been widely cited and recognized in global academic circles. His collaborations with prominent researchers and his leadership in international research projects underscore his influence in advancing high-energy physics.

📑 Academic Cites

Through his cutting-edge research, Dr. Vien has garnered significant recognition within the scientific community. His publications and citations have had a noticeable impact on the development of high-energy physics and mathematical models used in modern particle physics. His research has been cited by peers, especially those exploring theoretical extensions of the Standard Model and the neutrino sector.

Research Skills 🛠️

Dr. Vien has exceptional skills in Theoretical Physics, particularly in neutrino phenomenology, standard model extensions, and discrete symmetries. His expertise in mathematical models is complemented by proficiency in high-energy particle simulations and advanced theoretical methods, ensuring his research is at the cutting edge of particle physics.

Teaching Experience 🧑‍🏫

As a Senior Lecturer at Tay Nguyen University, Dr. Vien has mentored and inspired numerous students in theoretical physics and mathematical physics. He is known for his innovative teaching methods, combining advanced theoretical concepts with practical examples to help students understand complex phenomena in high-energy physics. His dedication to education ensures that his students are well-prepared to pursue careers in both academia and industry.

Awards and Honors 🏅

Dr. Vien has received several awards and accolades for his academic excellence and research leadership, including:

  • National Foundation for Science and Technology Development grants for his research on Fermion mass and mixing.

  • Tay Nguyen University Principal Investigator awards for his work in extending the Standard Model and exploring new physics.

  • Recognition in peer-reviewed journals for his groundbreaking research in neutrino physics and dark matter.

Legacy and Future Contributions 🌠

Dr. Vo Van Vien’s legacy lies in his substantial contributions to particle physics and his dedication to educating future generations of physicists. His ongoing research promises to further unravel the complexities of neutrino physics, dark matter, and the Standard Model extensions. With a vision of pushing the boundaries of high-energy physics, Dr. Vien is poised to make lasting contributions to theoretical physics that could have a profound impact on how we understand the universe.

Publications Top Notes

Realistic fermion mass and mixing in U(1)L model with A4 flavor symmetry for Majorana neutrino

  • Authors: V.V. Vien, Vo Van
    Journal: Indian Journal of Physics
    Year: 2025

Lepton masses and mixings with broken μ−τ symmetry in a B – L extended 3HDM based on (Z2×Z4)⋊Z2 (I) symmetry

  • Authors: V.V. Vien, Vo Van
    Journal: Chinese Journal of Physics
    Year: 2025

The μ−τ reflection symmetry breaking in a B−L model with T7×Z8×Z2 symmetry

  • Authors: V.V. Vien, Vo Van
    Journal: Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics
    Year: 2024

A4×Z2×Z4 flavor symmetry model for neutrino oscillation phenomenology

  • Authors: V.V. Vien, Vo Van
    Journal: Revista Mexicana de Fisica
    Year: 2024

Fermion masses and mixings and g − 2 muon anomaly in a Q6 flavored 2HDM

  • Authors: V.V. Vien, Vo Van, H.N. Long, A.E. Cárcamo Hernández, J. Marchant González
    Journal: Nuclear Physics, Section B
    Year: 2024

 

 

 

Song He | High energy physics | Best Researcher Award

Mr. Song He | High energy physics | Best Researcher Award

Ph.D. student at Huazhong University of Science and Technology | China

Song He is currently a Ph.D. student at Huazhong University of Science and Technology (HUST), specializing in novel radiation detectors and imaging techniques. He has contributed extensively to high-impact journals in the fields of material science and electronics, with innovative research in scintillator development. His work has led to groundbreaking discoveries in enhancing X-ray imaging and fast neutron imaging resolution.

👨‍🎓Profile

Scopus 

ORCID

Early Academic Pursuits 🎓

Song He’s academic journey began with a Bachelor of Engineering in Materials Science and Engineering from China University of Mining and Technology (2015-2019). He continued with a Master of Engineering in Materials and Physics from the same university (2019-2022). Currently, he is pursuing a Ph.D. in Electronic Science and Technology at HUST since 2022. His early education laid a strong foundation for his innovative approach to radiation detection and imaging technology.

Professional Endeavors 💼

Throughout his career, Song He has primarily focused on developing novel radiation detectors and imaging technologies. His work emphasizes improving the performance of scintillators for better X-ray and neutron imaging. He has filed several patents related to his inventions, demonstrating his commitment to transformative research in radiation detection. Despite limited professional collaborations at this stage, his independent contributions have been highly impactful in the scientific community.

Contributions and Research Focus 🔬

Song He’s research primarily revolves around novel radiation detectors and scintillator technologies. In particular, he has developed a new class of scintillators that overcome traditional limitations by using hot exciton molecules (TPE-4Br) and conjugated polymers (PVT) to enhance performance. His contributions have led to breakthroughs in X-ray imaging and fast neutron imaging resolution, significantly advancing the field of radiation detection.

Impact and Influence 🌍

Song He’s work is paving the way for high-resolution imaging technologies that can have a significant impact in fields such as medical diagnostics, nuclear physics, and security imaging. His innovative approaches are influencing both academic research and practical applications. His recent paper in Advanced Functional Materials (DOI: 10.1002/adfm.202503688) received recognition for offering a new solution to long-standing challenges in the radiation detection field.

Academic Citations 📑

Although Song He’s citation index is not formally listed, his work is published in top-tier journals like Advanced Functional Materials, Inorganic Chemistry, Advanced Materials, and The Journal of Physical Chemistry C. The high impact of his research is evident in the citations of his publications, showing their relevance and influence in the scientific community.

Research Skills 🧠

Song He demonstrates exceptional skills in materials science, physics, and electronic technology. His ability to synthesize innovative materials and develop advanced radiation detectors showcases his technical expertise. Additionally, he has practical skills in scintillator synthesis, polymer chemistry, and in-situ polymerization. His experimental design and analytical techniques allow for high-precision imaging, which is crucial for the future of radiation detection.

Awards and Honors 🏅

Currently, Song He has not reported receiving formal awards or honors. However, the significance of his innovative research and published work in high-impact journals positions him as a rising star in his field. His patent applications and scientific contributions hint at a promising future where such recognitions are likely.

Legacy and Future Contributions 🔮

With his cutting-edge research in radiation detectors and imaging technologies, Song He is poised to make long-lasting contributions to both academic and industry sectors. His future work holds the potential for further advancements in medical imaging, nuclear research, and security applications, with his innovative materials providing solutions to longstanding challenges. As his career progresses, Song He is expected to become a significant figure in radiation detection technologies, with lasting impact on both science and society.

Publications Top Notes

High‐Performing Direct X‐Ray Detection Made of One‐Dimensional Perovskite‐Like (TMHD)SbBr₅ Single Crystal With Anisotropic Response

  • Authors: Guangya Zheng, Haodi Wu, Song He, Hanchen Li, Zhiwu Dong, Tong Jin, Jincong Pang, Rachid Masrour, Zhiping Zheng, Guangda Niu et al.
    Journal: Small
    Year: 2025

Hot Exciton‐Based Plastic Scintillator Engineered for Efficient Fast Neutron Detection and Imaging

  • Authors: Song He, Pengying Wan, Hanchen Li, Zizhen Bao, Xinjie Sui, Guangya Zheng, Hang Yin, Jincong Pang, Tong Jin, Shunsheng Yuan et al.
    Journal: Advanced Functional Materials
    Year: 2025

Close‐to‐Equilibrium Crystallization for Large‐Scale and High‐Quality Perovskite Single Crystals

  • Authors: Hang Yin, Mingquan Liao, Yuanpeng Shi, Zhiqiang Liu, Hanchen Li, Song He, Zhiping Zheng, Ling Xu, Jiang Tang, Guangda Niu
    Journal: Advanced Materials
    Year: 2025

BiSBr, an Anisotropic One-Dimensional Chalcohalide Used for Radiographic Detection

  • Authors: Yunmeng Liang, Pang Jincong, Zhang Qingli, He Song, Xu Ling, Luo Wei, Zhiping Zheng, Guangda Niu
    Journal: The Journal of Physical Chemistry C
    Year: 2024

Remarkable Improvement of Thermoelectric Performance in Ga and Te Cointroduced Cu₃SnS₄

  • Authors: Song He, 勇 罗, Liangliang Xu, Yue Wang, Zhongkang Han, Xie Li, Jiaolin Cui
    Journal: Inorganic Chemistry
    Year: 2021

 

 

Sanae ZRIOUEL | Computational Particle Physics | Women Researcher Award

Prof. Dr. Sanae ZRIOUEL | Computational Particle Physics | Women Researcher Award

Cadi Ayyad university | Morocco

Professor Dr. Sanae Zriouel is an esteemed Associate Professor of Physics at the Faculty of Sciences and Technology, Cadi Ayyad University in Marrakech, Morocco. With a deep passion for Mathematical Physics and cutting-edge research in nanomaterials, Dr. Zriouel has made significant contributions in various areas of condensed matter physics. Her academic journey spans multiple prestigious institutions in Morocco, and she has established herself as a key figure in the academic and scientific communities.

👨‍🎓Profile

Google scholar

Scopus

Early Academic Pursuits 📚

Dr. Zriouel’s journey began with a Bachelor’s degree in Physical Science from Ibn Tofail University, Morocco, followed by a Master’s degree in Mathematical Physics at Mohammed V University, Morocco. Her academic prowess was evident from early on, as she earned the highest distinctions in her Master’s and later in her PhD in Mathematical Physics from the same institution. She furthered her education with an Engineer’s degree in Electro-mechanics from ENSMR, Rabat, Morocco.

Professional Endeavors 🌍

Dr. Zriouel’s career in academia includes various teaching and research roles. She is currently an Associate Professor at Cadi Ayyad University, where she has been since 2022. Prior to this, she held positions as an Assistant Professor at Sultan Moulay Slimane University, Beni Mellal, and worked as a Dr. Researcher at Mohammed V University, where she developed a profound interest in nanomaterials and theoretical physics. Her roles are not limited to academia; she has been actively involved in multiple administrative responsibilities, serving as an elected member of university councils and commissions that contribute to the growth and development of scientific research and academic programs.

Contributions and Research Focus 🔬

Dr. Zriouel’s research interests include Graphene and related materials, the physics of 2D nanostructures, topological insulators, and chalcopyrite semiconductors. She has worked extensively on quantum dots, ab-initio calculations, and Monte Carlo simulations. Her work on spintronic properties, magnetocaloric effects, and the phase transitions of new materials has been instrumental in advancing our understanding of the physical properties of materials at the nano-scale. She has authored over 10 impactful scientific papers, contributing significant knowledge to materials science and theoretical physics.

Impact and Influence 🌟

Dr. Zriouel has had a far-reaching impact on both research and education. Her work has influenced various collaborations with institutions such as the Institut Néel, CNRS, Yildiz Technical University, and Abdus Salam International Centre for Theoretical Physics. Additionally, she has received recognition as a scientific visitor to prestigious institutions across the globe, including in Turkey, Italy, and France. Her leadership roles, including coordinating projects like the Extended African Network for Advanced 2D Materials, demonstrate her commitment to scientific collaboration and her efforts to foster an international exchange of ideas.

Academic Cites 📑

Dr. Zriouel’s research papers have been widely cited in the scientific community. Her work on half-metallic ferromagnetic properties, phase transitions in graphene, and DFT-based materials simulations has paved the way for significant advancements in spintronics and quantum materials. Notable publications include her contributions to Computational Condensed Matter and Modern Physics Letters. Her research continues to be cited globally, influencing the fields of nanotechnology, magnetism, and advanced materials.

Research Skills 🧠

Dr. Zriouel possesses a remarkable set of research skills that span theoretical physics and computational simulations. She is proficient in C++, Fortran, MATLAB, and other programming languages used for numerical simulations and ab-initio calculations. Her expertise includes tools like Quantum Espresso, LAMMPS, Wien2k, and SPRKKR, which she uses to explore the properties of advanced graphene-based materials, quantum dots, and other nanomaterials.

Teaching Experience 🎓

Dr. Zriouel is a dedicated educator, teaching a wide array of courses in physics at both the undergraduate and graduate levels. She teaches courses such as Quantum Mechanics, Electromagnetism, and Thermodynamics. Over the years, she has supervised more than 30 students, including Bachelor’s, Master’s, and PhD candidates. Her mentorship extends beyond coursework, as she is involved in guiding students in their research projects and helping them navigate the world of theoretical physics and computational modeling.

Awards and Honors 🏆

Dr. Zriouel has been recognized for her academic excellence with several prestigious awards. Notable honors include being awarded Full Membership of the Organization for Women in Science for the Developing World (OWSD) in 2020, and receiving the Award of Excellence from the National Center of Scientific Research of Morocco in 2014. In addition, she was the Valedictorian of both her Engineering program and her Physics graduate program. These accolades underline her exceptional academic achievements and her dedication to the advancement of science.

Legacy and Future Contributions 🔮

Dr. Zriouel’s legacy lies not only in her groundbreaking research but also in the impact she has had on the next generation of scientists. She has inspired and mentored numerous students, guiding them toward their own successful academic and research careers. Her contributions to the field of nanomaterials and quantum physics are set to influence future developments in green energy, quantum computing, and material science.

Publications Top Notes

In-depth study of double perovskite Sr₂NiTaO₆: Structural, electronic, thermoelectric, and spintronic properties for sustainable and high-performance applications

  • Authors: JU Ahsan, MR Rather, K Sultan, S Zriouel, E Hlil
    Journal: Computational Condensed Matter
    Year: 2025

Investigating thermodynamic and magnetic behavior of graphullerene-like nanostructure using Monte Carlo techniques

  • Authors: S Zriouel, A Mhirech, B Kabouchi, L Bahmad, Z Fadil, FM Husain
    Journal: Philosophical Magazine
    Year: 2025

Magnetic properties and magnetocaloric effects of the graphullerene-like 4-(Mg₄C) nanostructure: A Monte Carlo study

  • Authors: N Saber, S Zriouel, A Mhirech, B Kabouchi, L Bahmad, Z Fadil
    Journal: Modern Physics Letters B
    Year: 2024

Phase transitions and critical dielectric phenomena of janus transition metal oxides

  • Authors: S Zriouel
    Journal: Materials Science and Engineering: B
    Year: 2021

Effect of p–d hybridization on half metallic properties of some diluted II–IV–V₂ chalcopyrites for spintronic applications

  • Authors: S Zriouel, B Taychour, B Drissi
    Journal: Physica Scripta
    Year: 2020

 

 

Valeriu Savu | High energy physics | Best Researcher Award

Dr. Valeriu Savu | High energy physics | Best Researcher Award

INOE2000 | Romania

Valeriu Savu is a highly accomplished Technological Development Engineer with an extensive career spanning over 35 years. Currently working at the National Institute of Research and Development for Optoelectronics (INOE2000) in Măgurele, Romania, Savu has demonstrated significant expertise in research and development of electronic modules and optical equipment. His work primarily revolves around lasers, optical fibers, and nanotechnology, and his contributions have been instrumental in advancing applications within telecommunications and military systems.

👨‍🎓Profile

Google scholar

Scopus

ORCID

Early Academic Pursuits 🎓

Savu’s academic journey began at the Polytechnic Institute of Bucharest, where he obtained a Bachelor’s degree in Electronics and Telecommunications in 1986. Later, he pursued a Master’s degree in Nanostructures and Unconventional Engineering Processes at the Polytechnic University of Bucharest (2012-2014). This was followed by the completion of his PhD in Engineering Sciences in 2007-2014 with a thesis on radio pulse selection and processing. His doctoral work focused on cosmic ray detection, emphasizing advanced methodologies for high-precision data processing in complex environments like saline settings.

Professional Endeavors 💼

Savu’s professional career began in 1990 with the Research Design Institute of Electromechanics ICPEM, where he worked on military electronics systems. From 2000 to 2005, he served as an Engineer at Elettra Communications S.A., contributing to the telecommunications sector with an emphasis on testing and verification of military-grade equipment. Since 2005, Savu has been at INOE2000, leading the Department of Engineering Design and Technology, where he focuses on cutting-edge optical devices and laser systems. His experience spans across the creation of advanced lasers, fiber optics, and sensor technologies for both commercial and military applications.

Contributions and Research Focus 🔬

Valeriu Savu has made notable contributions to several fields, including laser technology, optical fibers, and military electronics. He is an expert in the design, testing, and characterization of laser systems, photovoltaics, and nanostructured materials. One of his major research focuses includes Cherenkov radiation detection and the application of nanotechnology for optical sensing. Savu has been involved in the development of innovative sensors, including UV sensors for organic materials and high-voltage power supplies used in medical laser systems.

Impact and Influence 🌍

Savu’s work has significantly advanced the field of optoelectronics and has been applied in medical, military, and telecommunications sectors. He has also patented several devices, including laser protection systems and cosmic radiation detectors for specialized environments like salt mines. His innovative solutions continue to influence scientific research and engineering practices globally.

Academic Cites 📚

Savu’s scholarly work has earned recognition within the academic community, with numerous scientific articles published in prominent journals. His research has appeared in the Romanian Journal of Physics, Romanian Journal of Biophysics, and other prestigious publications. He has contributed to international conferences and his research papers are frequently cited by peers. Notable academic publications include his studies on the Nd:YAG laser for microsurgical ophthalmology and breast tissue investigation using diffuse optical tomography.

Research Skills 🧑‍💻

Valeriu Savu is highly skilled in experimental research, device testing, and the design of optical systems. He has expertise in advanced signal processing, laser characterization, and system integration. Savu’s proficiency with software tools such as OrCAD, FabMaster, NI Multisim, and OriginLab has made him a highly versatile researcher, capable of modeling complex systems and optimizing experimental designs. His experience spans across lab-based investigations, field tests, and cross-disciplinary applications of advanced technologies.

Teaching Experience 🍏

While Savu’s career has been predominantly research-driven, his extensive academic background and technical expertise have made him a valuable contributor to teaching and training in the field of optoelectronics. He has actively mentored students at various stages of their careers, guiding them through engineering problems and sharing his knowledge of cutting-edge technologies. His role as a PhD advisor and involvement in academic projects has contributed to the development of future scientists and engineers in the optoelectronics field.

Awards and Honors 🏆

Throughout his career, Savu has received various certificates and awards recognizing his contributions to both military and civilian applications. His innovative work has been acknowledged by organizations and research institutions, and he has earned several certificates of innovation for his unique designs and systems. Savu’s patents are a testament to his creative and practical contributions to optical technology and laser applications.

Legacy and Future Contributions 🔮

Savu’s extensive body of work leaves a lasting legacy in the field of optoelectronics, particularly in laser applications, telecommunications, and military technology. His ongoing work in cosmic radiation detectors and laser safety will likely influence future technological advancements in various sectors. As he continues to develop new systems and devices, his future contributions are expected to further shape the landscape of optical technology and engineering research.

Patents and Innovations 💡

Valeriu Savu’s patents reflect his ingenuity and forward-thinking approach to technology. Some of his recent applications include systems for automated discharge protection in laser pumps and power supply disconnect systems. His patents focus on enhancing the safety and efficiency of electronic systems, laser devices, and telecommunications infrastructure, with an emphasis on providing innovative solutions for user protection and optimal performance in real-world applications.

Publications Top Notes

Power Dissipation Reduction System for Adjustable Power Supplies
  • Authors: V Savu, MI Rusu, D Savastru, D Manea
    Journal: Energies
    Year: 2025

Analysis of a high-power laser thermal phenomena induced onto a composite made UAV/drone in flight
  • Authors: D Savastru, V Savu, MI Rusu, M Tautan, A Stanciu
    Journal: Journal of Optoelectronics and Advanced Materials
    Year: 2024

Sampling the travel distance of a vehicle through an unconventional method for data acquisition
  • Authors: MI Rusu, V Savu, D Savastru, CH Gandescu, A Stan, DM Cotorobai
    Journal: Journal of Optoelectronics and Advanced Materials
    Year: 2023

Grating Optic Fiber Sensors Detection of Smart Polymer Composite Delamination
  • Authors: D Savastru, D Savastru, MI Rusu, M Tautan, V Savu, II Lancranjan
    Journal: Optics, Photonics and Lasers
    Year: 2023

Ellipsometric characterization of tungsten oxide thin films, before and after He plasma exposure
  • Authors: MI Rusu, Y Addab, C Martin, C Pardanaud, V Savu, II Lancranjan, …
    Journal: Optoelectronics and Advanced Materials-Rapid Communications
    Year: 2023

 

Ayan Kumar Makar | Nuclear Physics | Best Researcher Award

Mr. Ayan Kumar Makar | Nuclear Physics | Best Researcher Award

Plasma Science Society of India | India

Ayan Kumar Makar is a dedicated researcher and life member of the Plasma Science Society of India (LM-1979). He specializes in nuclear fusion, having worked extensively in various nuclear facilitation centers in India. With a strong academic background and a passion for fusion research, he is currently pursuing his PhD at the Centre of Plasma Physics – Institute for Plasma Research. Alongside his research, he holds an MBA from the Arun Jaitley National Institute of Financial Management and an M.Sc. in Applied Physics from the Central University of Jharkhand.

👨‍🎓Profile

Scopus

ORCID

Early Academic Pursuits 🎓

Ayan Kumar Makar began his academic journey with a focus on applied physics at the Central University of Jharkhand, where he earned his M.Sc.. His foundation in physics was solidified during his time at Vivekananda Mission High School (Class XII) and Budge Budge St. Paul’s Day School (Class X). His early academic experiences laid the groundwork for his deep interest in nuclear fusion and plasma physics, driving him to pursue advanced studies and research.

Professional Endeavors 🏢

Currently, Makar serves as a Research Fellow at the Centre of Plasma Physics under the Institute for Plasma Research. He has contributed significantly to the Pulsed Plasma Accelerator Laboratory, engaging in cutting-edge research. His professional journey is distinguished by his association with various nuclear research facilities in India, showcasing his expertise in nuclear fusion and plasma dynamics. His role at the Institute for Plasma Research has positioned him at the forefront of fusion research in India.

Contributions and Research Focus 🔬

Makar’s research spans multiple critical areas, including:

  • Heavy-ion collisions and their effects on nuclear reactions.
  • The study of plasma astrophysics, focusing on the stability of triple star systems.
  • Fusion plasma stability and the occurrence of dust in Tokamak reactors.
  • The dynamics of energetic particles in magnetically confined fusion plasmas.
  • Plasma centrifugation methods for nuclear waste separation.

These contributions, reflected in his published works in leading journals, have made a significant impact in nuclear physics and fusion technology.

Impact and Influence 🌍

Makar’s research has had substantial influence within the plasma science community, especially in the areas of fusion plasma stability and nuclear waste management. His work on the audit of dust in Tokamaks and the energetic particles in fusion plasmas has provided new insights that could shape future fusion reactors. Moreover, his exploration of the plasma centrifugation method for nuclear waste separation offers a potential breakthrough in solving one of the major challenges in nuclear energy.

Research Skills 🧪

Makar’s research skills include advanced techniques in plasma diagnostics, nuclear fusion technologies, and energetic particle analysis. His ability to design and conduct experiments in magnetically confined plasma systems and to analyze heavy-ion collision data makes him a skilled experimental physicist. He has also demonstrated proficiency in computational modeling for fusion plasma behavior and has expertise in developing plasma separation techniques for nuclear waste management.

Legacy and Future Contributions 🌟

Ayan Kumar Makar’s legacy will likely be defined by his contributions to fusion plasma stability, nuclear waste management, and his continued research in plasma astrophysics. His groundbreaking work in the field of fusion reactors will likely influence future fusion energy generation methods. Additionally, his exploration of plasma techniques for waste management has the potential to revolutionize the way we approach nuclear waste in the coming decades.

Publications Top Notes

  • An Overview of Heavy-Ion Collisions

    • Author: Ayan Kumar Makar
    • Journal: Journal of Nuclear Engineering & Technology
    • Year: 2019
  • Basis of Plasma Astrophysics in Stability of the Triple Star System

    • Author: Ayan Kumar Makar
    • Journal: Results in Physics
    • Year: 2020
  • An Audit of Occurrence of Dust in Tokamak and Stability of Fusion Plasma

    • Author: Ayan Kumar Makar
    • Journal: The Japan Society of Plasma Science and Nuclear Fusion Research
    • Year: 2020
  • An Investigation of Energetic Particles in the Magnetically Confined Fusion Plasma

    • Author: Ayan Kumar Makar
    • Journal: Turkish Journal of Nuclear Sciences (The Turkish Energy, Nuclear, and Mineral Research Agency)
    • Year: 2024
  • Plasma Centrifugation Method for Separation of the Nuclear Waste

    • Author: Ayan Kumar Makar
    • Journal: Radiation Effects and Defects in Solids
    • Year: 2024