Bibhushan Shakya | High energy physics | Best Researcher Award

Dr. Bibhushan Shakya | High energy physics | Best Researcher Award

Staff Scientist at DESY | Germany

Dr. Bibhushan Shakya is a theoretical physicist specializing in particle physics and cosmology, currently serving as a Junior Staff Scientist at DESY, Hamburg. His research spans dark matter, gravitational waves, and early universe phenomena. With a Ph.D. from Cornell University, and professional stints at CERN, University of Michigan, and UCSC, he has emerged as a globally respected researcher. He has co-authored over 40 publications, supervised multiple graduate theses, and served in advisory and organizational roles within major international physics communities, including Snowmass and BCVSPIN. A native of Nepal, he actively contributes to science outreach across South Asia.

👨‍🎓Profile

Google scholar

Scopus

🎓 Early Academic Pursuits

Dr. Shakya’s academic journey began at Stanford University, where he earned three undergraduate degrees with distinction in Physics (Theoretical Concentration), Mathematics, and Philosophy. His passion for the fundamentals of the universe led him to Cornell University for doctoral studies under the mentorship of Prof. Maxim Perelstein. There, he specialized in theoretical particle physics, completing a Ph.D. thesis on dark matter phenomenology during a transformative period in experimental cosmology. His early academic years reflect a rare combination of depth in theoretical physics and breadth in interdisciplinary thought, laying the groundwork for his future contributions to cosmology and high-energy physics.

đź§Ş Professional Endeavors

Dr. Shakya has held prestigious research positions globally. After completing his Ph.D., he undertook postdoctoral fellowships at the University of Michigan, University of Cincinnati, and UC Santa Cruz, forming collaborative bridges across top U.S. institutions. He served as a Senior Fellow at CERN, Geneva, contributing to LISA cosmology initiatives, before joining DESY in 2021. His roles involve not just research but strategic leadership, including organizing seminars, leading selection committees, and mentoring Ph.D. students. He is recognized as a scientific community builder, contributing to international collaboration platforms like Snowmass 2022 and BCVSPIN in South Asia.

🔬 Contributions and Research Focus

Dr. Shakya’s research focuses on early-universe cosmology, dark matter, and gravitational wave signals from first-order phase transitions. His work addresses phenomena at the intersection of cosmology and high-energy physics, often exploring nonthermal origins of dark matter, tachyonic fields, and leptogenesis via bubble collisions. His publications in JCAP, JHEP, PRD, and PRL underscore both depth and originality. Notably, he collaborates with prominent physicists like Giudice, Kamionkowski, and Pomarol, positioning him at the forefront of phenomenological cosmology. His recent work with student co-authors further highlights his commitment to mentored discovery and academic development.

🌍 Impact and Influence

Dr. Shakya’s impact is global and multi-dimensional. Through publications, student mentorship, and international collaborations, he has significantly advanced the understanding of the early universe. As Chair of BCVSPIN, he champions particle physics in developing South Asian regions, fostering access to frontier research. His leadership role in the Snowmass 2022 Cosmic Frontier initiative helped shape the U.S. particle physics strategic roadmap. He regularly reviews for top-tier journals and major funding bodies like ERC and NSERC, reinforcing his influence on scientific standards. His lectures and outreach efforts have inspired young researchers and the general public across continents.

📚 Academic Cites and Publications

Dr. Shakya has authored over 40 peer-reviewed publications on arXiv, InspireHEP, and in leading journals like JCAP, JHEP, PRD, and PLB. His work is widely cited, with growing influence in cosmological phase transition physics, gravitational wave phenomenology, and non-thermal dark matter scenarios. Many of his papers involve cross-disciplinary ideas at the intersection of particle physics and cosmology, often co-authored with international experts and students. Some of his highly recognized works include those on dark photon production from cosmic strings, leptogenesis, and bubble collision dynamics. His research citations reflect a strong and growing academic footprint.

đź§  Research Skills and Expertise

Dr. Shakya exhibits exceptional analytical skills in quantum field theory, early-universe modeling, and beyond Standard Model physics. His ability to translate highly technical theory into observable cosmological predictions demonstrates deep understanding and creativity. He is proficient in phenomenological modeling, analytical methods, and scientific computation, making his work relevant to experimental data from CMB, LISA, and gravitational wave observatories. His collaborations across theory and experiment exemplify a rare blend of vision and rigor. He is also known for clear scientific communication, essential for both mentoring and outreach. These skills position him as a leading contributor to modern theoretical physics.

🧑‍🏫 Teaching and Mentorship

Dr. Shakya has contributed extensively to teaching and mentoring, both formally and informally. At University of Hamburg, he delivered guest lectures on supersymmetry and collider physics. He regularly teaches at international summer and winter schools (e.g., BCVSPIN, Hamburg Summer School) on topics like dark matter phenomenology and gravitational waves. He has supervised multiple Bachelor’s, Master’s, and Ph.D. students, many of whom have co-authored papers and moved on to prestigious research positions. His mentorship style encourages intellectual independence and scientific curiosity, making him an asset to any academic institution committed to excellence and training the next generation.

🏅 Awards and Honors

While Dr. Shakya has not yet been publicly recognized with individual awards, his appointment as Junior Staff Scientist at DESY, one of the world’s premier particle physics labs, underscores institutional recognition of his excellence. He has served as a referee for elite physics journals, a grant reviewer for the ERC and NSERC, and a strategic leader in international collaborations all clear acknowledgments of his scientific standing. His inclusion in roles like Snowmass 2022 liaison and chairing BCVSPIN reflects peer trust and leadership. These achievements serve as strong indicators of his eligibility for Best Researcher Award recognition.

đź”® Legacy and Future Contributions

Dr. Shakya’s legacy is already taking shape through his publications, mentorship, outreach, and scientific leadership in South Asia. In the future, he is well-positioned to become a principal investigator, lead independent grant-funded projects, and shape the field through interdisciplinary research. His ongoing involvement in gravitational wave cosmology, especially related to LISA, aligns with the next frontier in observational physics. By continuing to connect young scientists, global institutions, and frontier physics, he will play a pivotal role in both advancing science and making it more inclusive. His long-term influence will be felt across academia, policy, and outreach.

Publications Top Notes

đź“„ Particle Production from Phase Transition Bubbles
  • Authors: Henda Mansour, Bibhushan Shakya

  • Journal: Physical Review D

  • Year: 2025

đź“„ Aspects of Particle Production from Bubble Dynamics at a First Order Phase Transition
  • Author: Bibhushan Shakya

  • Journal: Physical Review D

  • Year: 2025

đź“„ Nonthermal Heavy Dark Matter from a First-Order Phase Transition
  • Authors: G. Giudice, H.M. Lee, A. Pomarol, B. Shakya

  • Journal: Journal of High Energy Physics (JHEP)

  • Year: 2024

đź“„ White Paper on Light Sterile Neutrino Searches and Related Phenomenology
  • Authors: Multiple authors (including Bibhushan Shakya)

  • Journal: Journal of Physics G: Nuclear and Particle Physics

  • Year: 2024

đź“„ Bouncing Dark Matter
  • Authors: L. Puetter, J.T. Ruderman, E. Salvioni, B. Shakya

  • Journal: Physical Review D

  • Year: 2024

 

Marilyn Bishop | Theoretical Advances | Best Researcher Award

Dr. Marilyn Bishop | Theoretical Advances | Best Researcher Award

Associate Professor at Virginia Commonwealth University | United States

Marilyn F. Bishop is a tenured Associate Professor of Physics at Virginia Commonwealth University since 1986. She earned her Ph.D. in Physics from the University of California, Irvine in 1976. With a strong foundation in mathematics and physics, she has developed a multifaceted academic career blending theoretical physics with biophysical research. Bishop’s extensive work spans decades, contributing to both scientific understanding and educational advancements, making her a respected figure in physics education and research communities.

👨‍🎓Profile

Scopus

ORCID

🎓 Early Academic Pursuits

Bishop’s academic journey began with dual Bachelor’s degrees in Physics (1971) and Mathematics (1972) from UC Irvine, followed by a Master’s (1973) and Ph.D. in Physics (1976) from the same institution. She started as a Research Assistant at UC Irvine, honing her skills in theoretical physics. Early postdoctoral work at Purdue University and a visiting scientist role at Technische Universität München reflect her deep engagement with surface physics and condensed matter topics, establishing a strong foundation for her future research and teaching career.

đź’Ľ Professional Endeavors

Since 1986, Marilyn Bishop has been a key faculty member at VCU, earning tenure in 1990. Her earlier roles include Assistant Professor at Drexel University and consulting for Purdue University’s Physics Department. She has also been a Fellow at the Center for the Study of Biological Complexity, integrating physics with biological applications. Her professional work balances academic research, collaborative projects, and consulting, emphasizing both theoretical and computational physics, alongside mentoring students and contributing to interdisciplinary scientific communities.

🔬 Contributions and Research Focus

Bishop’s research emphasizes surface polaritons, spatially dispersive materials, and light scattering phenomena, particularly relating to biophysical systems like sickle hemoglobin polymerization. She has published extensively on surface exciton polaritons, Raman scattering, and spin susceptibility in electron gases. Her interdisciplinary work bridges physics and biology, supported by NIH grants focused on computational modeling of cardiopulmonary physiology. Her innovative use of photonic band structure methods to study biological tissues, such as the eye’s cornea, marks a notable contribution to biophysics.

🌟 Impact and Influence

Marilyn Bishop’s impact is seen through her numerous publications, presentations, and invited talks at major physics conferences like the APS March Meetings. She has helped shape understanding in condensed matter physics and biophysics, fostering collaboration between physics and biological sciences. Her research has influenced studies on electron interactions, spin susceptibility, and optical properties of materials, inspiring new computational approaches. She is a mentor to students and colleagues, advancing physics education and encouraging interdisciplinary exploration.

đź“– Academic Cites

Her scholarly work has been cited widely in condensed matter physics and biophysics, particularly her studies on surface polaritons and electron gas spin susceptibility. Papers published in prestigious journals like Physical Review B and Physical Review Letters demonstrate her research rigor and relevance. Participation in workshops such as the NSF’s Materials Theory and her role in presenting at over 50 conferences have further solidified her standing in the scientific community, influencing ongoing research in theoretical and applied physics.

đź§  Research Skills

Marilyn Bishop possesses advanced skills in theoretical modeling, computational physics, and light scattering techniques. She developed Mathematica programs for physics visualization and data analysis, pioneering online homework systems in physics education. Her expertise extends to Monte Carlo simulations, photonic band structure calculations, and modeling complex biological systems. Her research methodology combines rigorous mathematical frameworks with computational tools to explore physical phenomena at both micro and macro scales, enhancing interdisciplinary research capabilities.

👩‍🏫 Teaching Experience

Bishop has a rich teaching portfolio, delivering courses from introductory physics labs to advanced graduate seminars in quantum mechanics, electromagnetism, and theoretical mechanics. She created new courses like Physics of Sound and Music and integrated Mathematica visualization tools into the curriculum. Known for developing online homework and detailed instructional materials, Bishop has mentored numerous students and collaborated with colleagues to enhance physics pedagogy at VCU, combining research insights with effective teaching strategies.

🏆 Awards and Honors

Her accolades include the Drexel University Research Scholar Award, membership in Sigma Xi, and the VCU SEED Award (2022-2023) for innovative research proposals. She also earned recognition early in her career with the First Place in the Writer’s Division of the Advertiser-Press Awards (1969). Bishop has secured multiple NIH grants supporting research and education, as well as industry funding, underscoring her research’s impact and her commitment to scientific excellence and mentorship.

đź”® Legacy and Future Contributions

Marilyn F. Bishop’s legacy lies in her interdisciplinary research bridging physics and biology, innovative teaching methods, and mentorship. Her ongoing work on sickle-cell hemoglobin structure and computational biophysics continues to push boundaries. As a tenured professor and research fellow, she is poised to influence future generations through continued scholarship, course development, and collaborative projects. Her integration of computational tools and physical theory sets a strong foundation for future scientific and educational advancements.

Publications Top Notes

Entropies of the Classical Dimer Model

  • Authors: John C. Baker, Marilyn F. Bishop, Tom McMullen
    Journal: Entropy
    Year: 2025

An α-chain modification rivals the effect of fetal hemoglobin in retarding the rate of sickle cell fiber formation

  • Authors: E.H. Worth, M.K. Fugate, K.C. Grasty, P.J. Loll, Marilyn F. Bishop, F.A. Ferrone
    Journal: Scientific Reports
    Year: 2023

Entropy of Charge Inversion in DNA including One-Loop Fluctuations

  • Authors: M.D. Sievert, Marilyn F. Bishop, Tom McMullen
    Journal: Entropy
    Year: 2023

Superlinear increase of photoluminescence with excitation intensity in Zn-doped GaN

  • Authors: M.A. Reshchikov, A.J. Olsen, Marilyn F. Bishop, Tom McMullen
    Journal: Physical Review B – Condensed Matter and Materials Physics
    Year: 2013

The Sickle-Cell Fiber Revisited

  • Authors: Marilyn F. Bishop, Frank A. Ferrone
    Journal: Biomolecules
    Year: 2023