Yang Tan | Interactions and fields | Best Researcher Award

Prof. Dr. Yang Tan | Interactions and fields | Best Researcher Award

Shandong University | China

Professor Yang Tan is a distinguished academic leader and researcher in the field of integrated photonics, specializing in microcavity lasers, crystalline films, and optical signal amplification. Born in March 1984, he has risen through the ranks of Shandong University to become a Professor at the School of Physics. His impressive career includes significant contributions to photonics and laser technologies, having published more than 60 peer-reviewed papers in top-tier journals such as Advanced Functional Materials, ACS Nano, and Optics Letters. His ongoing research focuses on advancing ultrafast lasers, micro-nano optical field manipulation, and single crystal thin films.

👨‍🎓Profile

Google scholar

Orcid

Early Academic Pursuits 🎓

Professor Tan began his academic journey in 2006, pursuing a PhD in Physics at Shandong University, where he honed his skills in optics and material sciences. He earned his doctorate in 2011 and subsequently advanced to postdoctoral research at the University of Calgary in Canada, where he deepened his expertise in laser technologies and optical materials. These early academic experiences laid the foundation for his groundbreaking research in integrated photonics and microcavity lasers.

Professional Endeavors 💼

After completing his postdoctoral studies, Professor Tan returned to Shandong University as a Lecturer in 2012, eventually progressing to Associate Professor in 2015, and later Professor in 2018. His career at Shandong University has been marked by his leadership in research and teaching, overseeing numerous National Natural Science Foundation projects and contributing significantly to the development of innovative optical technologies. He has also served as a PhD supervisor, mentoring the next generation of physicists and engineers.

Contributions and Research Focus 🔬

Professor Tan’s research focus lies at the intersection of integrated photonics, laser physics, and material science. His innovative work explores the manipulation of micro-nano optical fields, the development of single crystal thin films, and the interaction between energetic ions and solids. His research on microcavity lasers has led to significant breakthroughs, such as the development of mid-infrared laser emissions, enhanced thermal stability of microdisk lasers, and heterogeneous integration of on-chip lasers. These contributions have placed him at the forefront of photonics research, with direct applications in telecommunications, sensing technologies, and quantum optics.

Impact and Influence 🌍

Professor Tan’s work has had a profound impact on the fields of photonics and material sciences. His publications in high-impact journals have advanced the understanding of microcavity laser technologies, optical waveguide systems, and crystalline film integrations. His interdisciplinary approach has influenced researchers not only in optics but also in fields like nanoelectronics, quantum information, and bio-optics. His research has led to tangible technological advancements, pushing the boundaries of laser efficiency, thermal management, and nanophotonic integration.

Academic Citations 📑

With more than 60 academic papers and several highly cited works, Professor Tan’s research has earned substantial recognition within the scientific community. His papers have been cited in leading journals such as Light: Science & Applications, ACS Nano, and Nano Letters, underlining the wide influence and importance of his contributions. His research has been cited extensively for its innovation in microcavity lasers and integrated photonics, demonstrating the global impact of his work.

Research Skills 🔍

Professor Tan possesses a comprehensive set of research skills, including expertise in photonics, nanotechnology, material synthesis, and ultrafast laser technologies. His ability to merge fundamental physics with applied technologies has enabled him to address challenges in optical signal amplification, microlaser emissions, and material integration. His innovative approach to defect engineering in van der Waals heterostructures and the development of whispering-gallery mode lasers is a testament to his creative and analytical prowess.

Teaching Experience 📚

As a PhD supervisor and Professor, Professor Tan has taught a wide range of courses in optics, photonics, and material science. He is known for his engaging teaching style, which encourages critical thinking and hands-on experimentation. His mentoring extends beyond the classroom, where he has guided numerous graduate students and postdoctoral researchers, helping them develop into independent researchers and experts in their fields. His leadership in education reflects his commitment to fostering future generations of scientists.

Awards and Honors 🏆

Professor Tan’s outstanding research has been recognized by several prestigious awards. In 2022, he received the National Excellent Young Scientists Fund, acknowledging his significant contributions to integrated photonics. Additionally, his achievements have earned him the Shandong Provincial Natural Science Award (Second Prize) twice. These honors reflect the impact of his work on both the scientific community and society at large.

Legacy and Future Contributions 🔮

Professor Yang Tan’s legacy is built on his pioneering work in the development of microcavity lasers and integrated photonic systems, which continue to influence the evolution of photonics and nanotechnology. Looking ahead, Professor Tan aims to expand his research into quantum photonics and biomedical applications, which will likely have far-reaching effects in the fields of quantum communication, biomedical imaging, and sensing. His continued exploration of novel materials and laser technologies promises to shape the future of photonics and related industries, making him a key figure in the ongoing technological revolution.

Publications Top Notes

Hopping transfer optimizes avalanche multiplication in molybdenum disulfide

  • Authors: Xiaofan Cai, Ruichang Chen, Yushui Tian, Xu Gao, Meili Yuan, Haixia Hu, Hang Yin, Yuanyuan Qu, Yang Tan, Feng Chen
    Journal: Materials Today Nano
    Year: 2025

Human-friendly semitransparent organic solar cells achieving high performance

  • Authors: Zonghao Wu, Beibei Shi, Jiangsheng Yu, Mengzhen Sha, Jiangkai Sun, Dongcheng Jiang, Xin Liu, Wenxiao Wu, Yang Tan, Huiyuan Li et al.
    Journal: Energy & Environmental Science
    Year: 2024

Enhancing thermal stability of Nd:GGG WGM microdisk lasers via silica integration

  • Authors: Huiqi Li, Zhaocong Wang, Lei Wang, Yang Tan, Feng Chen
    Journal: Nanophotonics
    Year: 2024

Free-space laser emission from Nd:YAG elliptical microdisks

  • Authors: Huiqi Li, Zhaocong Wang, Qingming Lu, Lei Wang, Yang Tan, Feng Chen
    Journal: Optics Letters
    Year: 2024

Selective 1.3 μm Laser Emission via Coupled Microlaser for Laser Resonance Tuning

  • Authors: Huiqi Li, Zhaocong Wang, Lei Wang, Yang Tan, Feng Chen
    Journal: ACS Photonics
    Year: 2024

 

 

Ronabson Cardoso Fernandes| Particle physics and cosmology| Best Researcher Award

Dr. Ronabson Cardoso Fernandes| Particle physics and cosmology| Best Researcher Award

Professor at UNINTER, Brazil

Ronabson Cardoso Fernandes is a distinguished researcher in the field of nuclear physics, recognized for his contributions to particle physics and cosmology. He has an extensive academic background, with numerous publications in prestigious journals. His research focuses on understanding fundamental interactions and the nature of the universe, making significant strides in theoretical and experimental physics.

Profile:

Education:

Ronabson Cardoso Fernandes holds a PhD in Climate Sciences from the Federal University of Rio Grande do Norte (2017), a Master’s in Meteorology from the Federal University of Alagoas (2010), and a Bachelor’s degree in Meteorology (2007) from the same institution. He further expanded his expertise with a graduation in Mathematics in 2019 and completed a Postdoctoral Fellowship in Climatology and Computational Mathematics at the Federal University of Mato Grosso do Sul (2022). His educational journey includes numerous short courses, enhancing his skills in entrepreneurship, digital marketing, and financial management.

Professional experience:

Dr. Fernandes has extensive teaching experience, having served as a professor at several institutions, including UFRN and the Federal University of Alagoas. His roles have involved teaching courses in climatology, meteorology, calculus, and physics. He has also worked as a mathematics teacher in elementary education. Beyond academia, he is a consultant in higher education and has participated in various research and extension projects focused on climate dynamics and environmental education. His dedication to both teaching and community engagement reflects his commitment to integrating scientific knowledge with practical applications.

Research focus:

Dr. Fernandes’s research focuses on the interaction between climate forcings and precipitation patterns, particularly in the North and Northeast regions of Brazil. He explores the impact of atmospheric phenomena on weather extremes and environmental dynamics, aiming to improve forecasting models. His work involves assessing the influence of galactic cosmic rays on rainfall and studying socio-environmental impacts of climate change, particularly coastal erosion. Additionally, he is engaged in developing computational models for environmental simulations and promoting sustainable practices through community-based projects, highlighting the intersection of scientific research and real-world applications.

Awards and Honors:

Throughout his academic career, Ronabson Cardoso Fernandes has received multiple scholarships and research grants, highlighting his contributions to the field of meteorology and climate sciences. He has been recognized for his work by state research support foundations, such as FAPERN and FAPEAL, which funded his graduate studies and projects. His commitment to interdisciplinary research and community outreach has also earned him accolades, fostering collaboration between academia and society to address pressing environmental issues. These honors reflect his dedication to advancing knowledge and promoting sustainability in Brazil.

Publication Top Notes:

Influence of Galactic Cosmic Ray Flux on Extreme Rainfall Events in Greece and Libya

  • Authors: Fernandes, R.C., Wanderley, H.S., Carvalho, A.L., Frigo, E.
  • Publication Year: 2024
  • Citations: 0

Relationship Between Extreme Rainfall Occurrences and Galactic Cosmic Rays over Natal/RN, Brazil: A Case Study

  • Authors: Fernandes, R.C., Wanderley, H.S., De Carvalho, A.L., Frigo, E.
  • Publication Year: 2023
  • Citations: 2

Thermal Change in the City of Rio de Janeiro and the Deviation Caused During an Intense El Niño Event

  • Authors: Wanderley, H.S., Fernandes, R.C., De Carvalho, A.L.
  • Publication Year: 2019
  • Citations: 6

Data Imputation Analysis for Cosmic Rays Time Series

  • Authors: Fernandes, R.C., Lucio, P.S., Fernandez, J.H.
  • Publication Year: 2017
  • Citations: 3

 

 

 

Shri Krishna | High energy physics | Best Researcher Award

Dr. Shri Krishna | High energy physics | Best Researcher Award

Assistant Professor at Zakir Husain Delhi College, University of Delhi, India

Dr. Shri Krishna is a distinguished researcher and academic in theoretical high-energy physics, currently serving as an Assistant Professor at Zakir Husain Delhi College, University of Delhi. He earned his Ph.D. in Theoretical High Energy Physics from Banaras Hindu University (BHU) in 2015 under the supervision of Prof. R.P. Malik. His research centers on supersymmetric quantum mechanics and BRST symmetry within the framework of higher p-form gauge theories. Dr. Krishna’s academic journey also includes post-doctoral research at the Indian Institute of Science Education and Research (IISER) Mohali, where he worked with Prof. C.S. Aulakh. With numerous scientific publications in reputable journals, his work has significantly contributed to advancing the understanding of gauge theories and quantum mechanics. He has presented his research at national and international conferences, enhancing his recognition in the scientific community.

Profile:

Education:

Dr. Shri Krishna holds a Ph.D. in Theoretical High Energy Physics from Banaras Hindu University (BHU), Varanasi, completed in 2015. His doctoral research, supervised by Prof. R.P. Malik, focused on investigating (Non-)Abelian p-form gauge theories and supersymmetric quantum mechanics. Before his Ph.D., Dr. Krishna pursued an M.Phil. in Physics at Chhatrapati Shahu Ji Maharaj University (CSJMU), Kanpur, in 2009, where he gained a strong foundation in advanced physics concepts. He also earned his M.Sc. in Physics from CSJMU in 2006, further refining his understanding of theoretical and experimental physics. Dr. Krishna’s undergraduate studies, completed in 2002 at CSJMU, focused on Physics, Mathematics, and Chemistry. His robust educational background has equipped him with the knowledge and expertise to contribute meaningfully to the field of high-energy theoretical physics, especially in gauge theory and supersymmetry.

Professional experience:

Dr. Shri Krishna brings a wealth of experience from both research and teaching roles. After completing his Ph.D. in 2015, he undertook post-doctoral research at IISER Mohali, working with Prof. C.S. Aulakh from September 2015 to August 2018. His post-doctoral work focused on gauge theories and supersymmetry, contributing to the field with several impactful publications. Following this, Dr. Krishna transitioned into academia as an Assistant Professor (Ad-hoc) at Zakir Husain Delhi College and Miranda House, University of Delhi, where he has been teaching since August 2018. His teaching portfolio includes Quantum Mechanics, Electronics, Wave & Optics, and Elements of Modern Physics, among other subjects. His dual experience in advanced research and teaching has allowed him to bridge the gap between theoretical physics and pedagogical practice, offering students insights from cutting-edge research while guiding them through complex physics concepts.

Research focus:

Dr. Shri Krishna’s research focuses on higher p-form (p = 2, 3, 4) gauge theories within the framework of BRST and super field formulations. His work delves into the intricacies of supersymmetric quantum mechanics, particularly exploring N = 2, 4 systems and their novel symmetries. He has made significant contributions to understanding (non-)Abelian 2-form and 3-form gauge theories, which play a pivotal role in field theory and quantum mechanics. A key aspect of his research is developing theoretical models that unify aspects of gauge invariance, supersymmetry, and Hodge theory, aiming to offer deeper insights into the foundational principles of high-energy physics. Dr. Krishna continues to push the boundaries of these complex systems through his work on the BRST approach and super field methods, which hold promise for advancing theoretical models in high-energy particle physics.

Awards and Honors:

Dr. Shri Krishna has received several recognitions for his contributions to theoretical high-energy physics. During his academic career, he was awarded research fellowships at prestigious institutions, including his Ph.D. studies under the supervision of Prof. R.P. Malik at Banaras Hindu University (BHU). His research on BRST symmetry and gauge theories has been widely recognized, resulting in multiple publications in high-impact journals such as Annals of Physics and Eur. Phys. J. C. Additionally, Dr. Krishna has been invited to present his work at numerous national and international conferences, highlighting his research in areas like N = 2, 4 supersymmetric quantum mechanics and p-form gauge theories. These accolades reflect his dedication to advancing theoretical physics and his growing reputation within the academic and scientific communities.

Publication Top Notes:

  • A quantum mechanical example for Hodge theory
    S. Krishna, R. P. Malik
    Annals of Physics, 2024, 464, 169657.
    Citations: 1
  • A massive field-theoretic model for Hodge theory
    S. Krishna, R. Kumar, R. P. Malik
    Annals of Physics, 2020, 414, 168087.
    Citations: 12
  • Effective sextic superpotential and B – L violation in NMSGUT
    C. S. Aulakh, R. L. Awasthi, S. Krishna
    Pramana – Journal of Physics, 2017, 89(4), 51.
    Citations: 2
  • Augmented superfield approach to gauge-invariant massive 2-form theory
    R. Kumar, S. Krishna
    European Physical Journal C, 2017, 77(6), 387.
    Citations: 7
  • N = 4 supersymmetric quantum mechanical model: Novel symmetries
    S. Krishna
    International Journal of Modern Physics A, 2017, 32(11), 1750055.
    Citations: 1
  • Novel symmetries in an interacting N = 2 supersymmetric quantum mechanical model
    S. Krishna, D. Shukla, R. P. Malik
    International Journal of Modern Physics A, 2016, 31(19), 1650113.
    Citations: 8
  • N = 2 SUSY symmetries for a moving charged particle under influence of a magnetic field: Supervariable approach
    S. Krishna, R. P. Malik
    Annals of Physics, 2015, 355, pp. 204–216.
    Citations: 15
  • A free N = 2 supersymmetric system: Novel symmetries
    S. Krishna, R. P. Malik
    EPL, 2015, 109(3), 31001.
    Citations: 11
  • Augmented superfield approach to nilpotent symmetries of the modified version of 2D Proca theory
    A. Shukla, S. Krishna, R. P. Malik
    Advances in High Energy Physics, 2015, 2015, 258536.
    Citations: 9
  • Nilpotent and absolutely anticommuting symmetries in the Freedman-Townsend model: Augmented superfield formalism
    A. Shukla, S. Krishna, R. P. Malik
    International Journal of Modern Physics A, 2014, 29(31), 1450183.
    Citations: 5

Conclusion:

Dr. Shri Krishna is an accomplished researcher with a strong foundation in theoretical high-energy physics. His focus on supersymmetric quantum mechanics and gauge theories positions him as a strong candidate for the Best Researcher Award. With additional outreach and interdisciplinary collaborations, he could further elevate his already impressive academic standing.