Shri Krishna | High energy physics | Best Researcher Award

Dr. Shri Krishna | High energy physics | Best Researcher Award

Assistant Professor at Zakir Husain Delhi College, University of Delhi, India

Dr. Shri Krishna is a distinguished researcher and academic in theoretical high-energy physics, currently serving as an Assistant Professor at Zakir Husain Delhi College, University of Delhi. He earned his Ph.D. in Theoretical High Energy Physics from Banaras Hindu University (BHU) in 2015 under the supervision of Prof. R.P. Malik. His research centers on supersymmetric quantum mechanics and BRST symmetry within the framework of higher p-form gauge theories. Dr. Krishna’s academic journey also includes post-doctoral research at the Indian Institute of Science Education and Research (IISER) Mohali, where he worked with Prof. C.S. Aulakh. With numerous scientific publications in reputable journals, his work has significantly contributed to advancing the understanding of gauge theories and quantum mechanics. He has presented his research at national and international conferences, enhancing his recognition in the scientific community.

Profile:

Education:

Dr. Shri Krishna holds a Ph.D. in Theoretical High Energy Physics from Banaras Hindu University (BHU), Varanasi, completed in 2015. His doctoral research, supervised by Prof. R.P. Malik, focused on investigating (Non-)Abelian p-form gauge theories and supersymmetric quantum mechanics. Before his Ph.D., Dr. Krishna pursued an M.Phil. in Physics at Chhatrapati Shahu Ji Maharaj University (CSJMU), Kanpur, in 2009, where he gained a strong foundation in advanced physics concepts. He also earned his M.Sc. in Physics from CSJMU in 2006, further refining his understanding of theoretical and experimental physics. Dr. Krishna’s undergraduate studies, completed in 2002 at CSJMU, focused on Physics, Mathematics, and Chemistry. His robust educational background has equipped him with the knowledge and expertise to contribute meaningfully to the field of high-energy theoretical physics, especially in gauge theory and supersymmetry.

Professional experience:

Dr. Shri Krishna brings a wealth of experience from both research and teaching roles. After completing his Ph.D. in 2015, he undertook post-doctoral research at IISER Mohali, working with Prof. C.S. Aulakh from September 2015 to August 2018. His post-doctoral work focused on gauge theories and supersymmetry, contributing to the field with several impactful publications. Following this, Dr. Krishna transitioned into academia as an Assistant Professor (Ad-hoc) at Zakir Husain Delhi College and Miranda House, University of Delhi, where he has been teaching since August 2018. His teaching portfolio includes Quantum Mechanics, Electronics, Wave & Optics, and Elements of Modern Physics, among other subjects. His dual experience in advanced research and teaching has allowed him to bridge the gap between theoretical physics and pedagogical practice, offering students insights from cutting-edge research while guiding them through complex physics concepts.

Research focus:

Dr. Shri Krishna’s research focuses on higher p-form (p = 2, 3, 4) gauge theories within the framework of BRST and super field formulations. His work delves into the intricacies of supersymmetric quantum mechanics, particularly exploring N = 2, 4 systems and their novel symmetries. He has made significant contributions to understanding (non-)Abelian 2-form and 3-form gauge theories, which play a pivotal role in field theory and quantum mechanics. A key aspect of his research is developing theoretical models that unify aspects of gauge invariance, supersymmetry, and Hodge theory, aiming to offer deeper insights into the foundational principles of high-energy physics. Dr. Krishna continues to push the boundaries of these complex systems through his work on the BRST approach and super field methods, which hold promise for advancing theoretical models in high-energy particle physics.

Awards and Honors:

Dr. Shri Krishna has received several recognitions for his contributions to theoretical high-energy physics. During his academic career, he was awarded research fellowships at prestigious institutions, including his Ph.D. studies under the supervision of Prof. R.P. Malik at Banaras Hindu University (BHU). His research on BRST symmetry and gauge theories has been widely recognized, resulting in multiple publications in high-impact journals such as Annals of Physics and Eur. Phys. J. C. Additionally, Dr. Krishna has been invited to present his work at numerous national and international conferences, highlighting his research in areas like N = 2, 4 supersymmetric quantum mechanics and p-form gauge theories. These accolades reflect his dedication to advancing theoretical physics and his growing reputation within the academic and scientific communities.

Publication Top Notes:

  • A quantum mechanical example for Hodge theory
    S. Krishna, R. P. Malik
    Annals of Physics, 2024, 464, 169657.
    Citations: 1
  • A massive field-theoretic model for Hodge theory
    S. Krishna, R. Kumar, R. P. Malik
    Annals of Physics, 2020, 414, 168087.
    Citations: 12
  • Effective sextic superpotential and B – L violation in NMSGUT
    C. S. Aulakh, R. L. Awasthi, S. Krishna
    Pramana – Journal of Physics, 2017, 89(4), 51.
    Citations: 2
  • Augmented superfield approach to gauge-invariant massive 2-form theory
    R. Kumar, S. Krishna
    European Physical Journal C, 2017, 77(6), 387.
    Citations: 7
  • N = 4 supersymmetric quantum mechanical model: Novel symmetries
    S. Krishna
    International Journal of Modern Physics A, 2017, 32(11), 1750055.
    Citations: 1
  • Novel symmetries in an interacting N = 2 supersymmetric quantum mechanical model
    S. Krishna, D. Shukla, R. P. Malik
    International Journal of Modern Physics A, 2016, 31(19), 1650113.
    Citations: 8
  • N = 2 SUSY symmetries for a moving charged particle under influence of a magnetic field: Supervariable approach
    S. Krishna, R. P. Malik
    Annals of Physics, 2015, 355, pp. 204–216.
    Citations: 15
  • A free N = 2 supersymmetric system: Novel symmetries
    S. Krishna, R. P. Malik
    EPL, 2015, 109(3), 31001.
    Citations: 11
  • Augmented superfield approach to nilpotent symmetries of the modified version of 2D Proca theory
    A. Shukla, S. Krishna, R. P. Malik
    Advances in High Energy Physics, 2015, 2015, 258536.
    Citations: 9
  • Nilpotent and absolutely anticommuting symmetries in the Freedman-Townsend model: Augmented superfield formalism
    A. Shukla, S. Krishna, R. P. Malik
    International Journal of Modern Physics A, 2014, 29(31), 1450183.
    Citations: 5

Conclusion:

Dr. Shri Krishna is an accomplished researcher with a strong foundation in theoretical high-energy physics. His focus on supersymmetric quantum mechanics and gauge theories positions him as a strong candidate for the Best Researcher Award. With additional outreach and interdisciplinary collaborations, he could further elevate his already impressive academic standing.

 

Thierry Clotaire SANJONG DAGANG | High energy physics | Emerging Researcher in Physics Award

Dr. Thierry Clotaire SANJONG DAGANG | High energy physics | Emerging Researcher in Physics Award

Lecturer at Institut Universitaire de Technologie FOTSO Victor de Bandjoun/ Universite de Dschang , Cameroon

Sanjong Dagang Thierry Clotaire, born on June 16, 1986, in Melong, Cameroon, is an accomplished academic and researcher in the field of electrical engineering and electronics. He earned his Ph.D. in Physics from the University of Dschang, with a specialization in electronics. Currently, he serves as a lecturer in the Electrical Engineering Department at the IUT-FV, University of Dschang. His teaching focuses on various practical and theoretical aspects of electrical and electronic engineering. With a strong passion for research, Sanjong collaborates with the Automatic Control and Applied Computing research unit (URAIA), working on advanced automation applications in the field of electrical energy. He has co-authored numerous scientific papers in prestigious journals and conferences, contributing significantly to his field.

Profile:

Education:

Sanjong Dagang Thierry Clotaire has an impressive academic background in physics and engineering. He obtained his Doctorate/Ph.D. in Physics, specializing in electronics, from the University of Dschang in 2017. Prior to this, in 2013, he earned his Master of Science in Physics, also with a focus on electronics, from the same institution. His undergraduate education was completed at IUT-FV of Bandjoun, where he received a Bachelor of Science in Electrical Engineering in 2009, followed by a Diplôme Universitaire de Technologie in Electrical Engineering, specializing in Electrotechnics, in 2008. Sanjong’s solid academic foundation started with a Baccalauréat C from the Bilingual School of Melong in 2006. His educational journey reflects his dedication to mastering the fields of physics and electronics, equipping him with deep theoretical knowledge and practical skills.

Professional experience:

Sanjong Dagang Thierry Clotaire has built a diverse academic and professional career, primarily as a lecturer at the IUT-FV of the University of Dschang. He has been teaching courses in the Electrical Engineering Department since 2019, offering expertise in subjects such as practical physical measurements, tests and measurements, electrical machines, and basic electronics. Additionally, he contributes to the department with hands-on teaching in courses related to electrical circuits, simulation of electrical systems, and industrial electrical networks. Previously, from 2013 to 2019, he worked as a part-time lecturer at the same institution, covering practical and theoretical aspects of electrical engineering. His vast experience also includes teaching in fields such as refrigeration, mechatronics, and electrotechnics, proving his versatile knowledge across engineering disciplines. Sanjong balances his teaching responsibilities with active research in automation and signal processing.

Research focus:

Sanjong Dagang Thierry Clotaire’s research is centered on automation and signal processing, with a specific focus on applying automation to the field of electrical energy. As a member of the Automatic Control and Applied Computing research unit (URAIA), he works within the Automation and Signal Processing (ATS) team, exploring robust control strategies for energy systems. His research includes projects such as adaptive PI control for self-excited induction generators, fuzzy logic-based control for wind turbine systems, and neuro-fuzzy methods for hybrid power supplies. Sanjong’s work is aimed at optimizing energy generation and distribution through advanced control mechanisms, particularly in the context of renewable energy sources like wind turbines. His expertise in this area contributes to the ongoing development of sustainable and efficient energy solutions, making his research impactful in both theoretical and applied domains.

Awards and Honors:

Sanjong Dagang Thierry Clotaire has garnered recognition for his research in automation and signal processing, particularly in electrical energy applications. Throughout his academic journey, he has co-authored influential papers in high-impact journals, earning respect within the international scientific community. His collaborative work with researchers like Godpromesse Kenne and Fombu Andrew Muluh has contributed to groundbreaking developments in control strategies for wind turbine systems, hybrid power supplies, and energy management systems. Sanjong has also presented his research at prestigious international conferences, such as the Cameroon Physical Society’s International Conference and the ANSOLE-Cameroon National Conference for Young Scientists. His commitment to innovation and excellence has solidified his reputation as a leading researcher in his field. While formal accolades are not mentioned explicitly, his publications and research collaborations reflect a distinguished career marked by academic contributions and peer recognition.

Publication Top Notes:

  • A Simple Lyapunov Function Based Control Strategy for Coordinated Transient Stability Enhancement of Power Systems
    Muluh, F.A., Dagang, C.T.S., Pierre, P.M.J., Leroy, S.L., Godpromesse, K.
    Indonesian Journal of Electrical Engineering and Informatics, 2024, 12(2), pp. 397–408
    Citations: 0
  • Qualitative Performance Improvement of a Hybrid Power Supply at the DC Common Coupling Point Using a Neuro-Fuzzy Method
    Bissé, J.T.N., Pesdjock, M.J.P., Sanjong Dagang, C.T., Kenne, G., Sonfack, L.L.
    Scientific African, 2024, 24, e02229
    Citations: 0
  • Predictive Current Control Strategies of Grid Connected-Self Excited Induction Generator
    Sanjong Dagang, C.T., Kenné, G.
    Scientific African, 2024, 23, e02044
    Citations: 0
  • A Simple Fuzzy Logic Based DC Link Energy Management System for Hybrid Industrial Power Supply
    Mbende, E.T., Muluh, F.A., Pesdjock, M.J.P., Sanjong Dagang, C.T., Sonfack, L.L.
    Energy Reports, 2023, 10, pp. 3619–3628
    Citations: 2
  • Synergetic Control for Stand-Alone Permanent Magnet Synchronous Generator Driven by Variable Wind Turbine
    Tchoumtcha, D.B., Dagang, C.T.S., Kenne, G.
    International Journal of Dynamics and Control, 2023, 12(8), pp. 2888–2902
    Citations: 1
  • Fuzzy Logic Direct Torque/Power Control for a Self-Excited Induction Generator Driven by a Variable Wind Speed Turbine
    Dagang, C.T.S., Kenne, G., Muluh, F.A.
    International Journal of Dynamics and Control, 2021, 9(3), pp. 1210–1222
    Citations: 11
  • Effects of Symmetric and Asymmetric Nonlinearity on the Dynamics of a Third-Order Autonomous Duffing-Holmes Oscillator
    Doubla, I.S., Kengne, J., Tekam, R.B.W., Njitacke, Z.T., Dagang, C.T.S.
    Complexity, 2020, 2020, 8891816
    Citations: 7

Conclusion:

Sanjong Dagang Thierry Clotaire’s combination of academic rigor, innovative research, and extensive teaching experience makes him a strong contender for the Best Researcher Award. His work in renewable energy systems and automation is forward-looking and addresses some of the key challenges of the modern world, making him an asset in his field.