Shri Krishna | High energy physics | Best Researcher Award

Dr. Shri Krishna | High energy physics | Best Researcher Award

Assistant Professor at Zakir Husain Delhi College, University of Delhi, India

Dr. Shri Krishna is a distinguished researcher and academic in theoretical high-energy physics, currently serving as an Assistant Professor at Zakir Husain Delhi College, University of Delhi. He earned his Ph.D. in Theoretical High Energy Physics from Banaras Hindu University (BHU) in 2015 under the supervision of Prof. R.P. Malik. His research centers on supersymmetric quantum mechanics and BRST symmetry within the framework of higher p-form gauge theories. Dr. Krishna’s academic journey also includes post-doctoral research at the Indian Institute of Science Education and Research (IISER) Mohali, where he worked with Prof. C.S. Aulakh. With numerous scientific publications in reputable journals, his work has significantly contributed to advancing the understanding of gauge theories and quantum mechanics. He has presented his research at national and international conferences, enhancing his recognition in the scientific community.

Profile:

Education:

Dr. Shri Krishna holds a Ph.D. in Theoretical High Energy Physics from Banaras Hindu University (BHU), Varanasi, completed in 2015. His doctoral research, supervised by Prof. R.P. Malik, focused on investigating (Non-)Abelian p-form gauge theories and supersymmetric quantum mechanics. Before his Ph.D., Dr. Krishna pursued an M.Phil. in Physics at Chhatrapati Shahu Ji Maharaj University (CSJMU), Kanpur, in 2009, where he gained a strong foundation in advanced physics concepts. He also earned his M.Sc. in Physics from CSJMU in 2006, further refining his understanding of theoretical and experimental physics. Dr. Krishna’s undergraduate studies, completed in 2002 at CSJMU, focused on Physics, Mathematics, and Chemistry. His robust educational background has equipped him with the knowledge and expertise to contribute meaningfully to the field of high-energy theoretical physics, especially in gauge theory and supersymmetry.

Professional experience:

Dr. Shri Krishna brings a wealth of experience from both research and teaching roles. After completing his Ph.D. in 2015, he undertook post-doctoral research at IISER Mohali, working with Prof. C.S. Aulakh from September 2015 to August 2018. His post-doctoral work focused on gauge theories and supersymmetry, contributing to the field with several impactful publications. Following this, Dr. Krishna transitioned into academia as an Assistant Professor (Ad-hoc) at Zakir Husain Delhi College and Miranda House, University of Delhi, where he has been teaching since August 2018. His teaching portfolio includes Quantum Mechanics, Electronics, Wave & Optics, and Elements of Modern Physics, among other subjects. His dual experience in advanced research and teaching has allowed him to bridge the gap between theoretical physics and pedagogical practice, offering students insights from cutting-edge research while guiding them through complex physics concepts.

Research focus:

Dr. Shri Krishna’s research focuses on higher p-form (p = 2, 3, 4) gauge theories within the framework of BRST and super field formulations. His work delves into the intricacies of supersymmetric quantum mechanics, particularly exploring N = 2, 4 systems and their novel symmetries. He has made significant contributions to understanding (non-)Abelian 2-form and 3-form gauge theories, which play a pivotal role in field theory and quantum mechanics. A key aspect of his research is developing theoretical models that unify aspects of gauge invariance, supersymmetry, and Hodge theory, aiming to offer deeper insights into the foundational principles of high-energy physics. Dr. Krishna continues to push the boundaries of these complex systems through his work on the BRST approach and super field methods, which hold promise for advancing theoretical models in high-energy particle physics.

Awards and Honors:

Dr. Shri Krishna has received several recognitions for his contributions to theoretical high-energy physics. During his academic career, he was awarded research fellowships at prestigious institutions, including his Ph.D. studies under the supervision of Prof. R.P. Malik at Banaras Hindu University (BHU). His research on BRST symmetry and gauge theories has been widely recognized, resulting in multiple publications in high-impact journals such as Annals of Physics and Eur. Phys. J. C. Additionally, Dr. Krishna has been invited to present his work at numerous national and international conferences, highlighting his research in areas like N = 2, 4 supersymmetric quantum mechanics and p-form gauge theories. These accolades reflect his dedication to advancing theoretical physics and his growing reputation within the academic and scientific communities.

Publication Top Notes:

  • A quantum mechanical example for Hodge theory
    S. Krishna, R. P. Malik
    Annals of Physics, 2024, 464, 169657.
    Citations: 1
  • A massive field-theoretic model for Hodge theory
    S. Krishna, R. Kumar, R. P. Malik
    Annals of Physics, 2020, 414, 168087.
    Citations: 12
  • Effective sextic superpotential and B – L violation in NMSGUT
    C. S. Aulakh, R. L. Awasthi, S. Krishna
    Pramana – Journal of Physics, 2017, 89(4), 51.
    Citations: 2
  • Augmented superfield approach to gauge-invariant massive 2-form theory
    R. Kumar, S. Krishna
    European Physical Journal C, 2017, 77(6), 387.
    Citations: 7
  • N = 4 supersymmetric quantum mechanical model: Novel symmetries
    S. Krishna
    International Journal of Modern Physics A, 2017, 32(11), 1750055.
    Citations: 1
  • Novel symmetries in an interacting N = 2 supersymmetric quantum mechanical model
    S. Krishna, D. Shukla, R. P. Malik
    International Journal of Modern Physics A, 2016, 31(19), 1650113.
    Citations: 8
  • N = 2 SUSY symmetries for a moving charged particle under influence of a magnetic field: Supervariable approach
    S. Krishna, R. P. Malik
    Annals of Physics, 2015, 355, pp. 204–216.
    Citations: 15
  • A free N = 2 supersymmetric system: Novel symmetries
    S. Krishna, R. P. Malik
    EPL, 2015, 109(3), 31001.
    Citations: 11
  • Augmented superfield approach to nilpotent symmetries of the modified version of 2D Proca theory
    A. Shukla, S. Krishna, R. P. Malik
    Advances in High Energy Physics, 2015, 2015, 258536.
    Citations: 9
  • Nilpotent and absolutely anticommuting symmetries in the Freedman-Townsend model: Augmented superfield formalism
    A. Shukla, S. Krishna, R. P. Malik
    International Journal of Modern Physics A, 2014, 29(31), 1450183.
    Citations: 5

Conclusion:

Dr. Shri Krishna is an accomplished researcher with a strong foundation in theoretical high-energy physics. His focus on supersymmetric quantum mechanics and gauge theories positions him as a strong candidate for the Best Researcher Award. With additional outreach and interdisciplinary collaborations, he could further elevate his already impressive academic standing.

 

Min Yang | High Energy physics | Best Researcher Award

Prof. Min Yang | High Energy physics | Best Researcher Award

PHD at Qingdao University of Technology, Qingdao, China

Dr. Min Yang, based at Qingdao University of Technology, Qingdao, China, is a distinguished researcher recognized as a Highly Cited Researcher for Clarivate in 2022 and listed among the World’s Top 2% Scientists in 2023. With an H-index of 45, she has authored 83 influential papers, including 39 ESI HOT/Highly Cited papers, accumulating 8205 WOS citations. As the chief expert of the Qingdao Nanolubricant Quasi Dry Manufacturing Expert Workstation, her expertise spans grinding, precision machining, biomedical material processing, and the preparation of wearable sensors. Additionally, she has authored 4 books, contributing significantly to her field. High Energy physics

Professional Profiles:

Scopus

Researchgate

Education

phd, Qingdao University of Technology, Qingdao, China

Accolades

Min Yang is a Highly Cited Researcher for Clarivate in 2022 and recognized as one of the World’s Top 2% Scientists in 2023. She has made significant contributions, with 83 highly influential papers to her name, including 39 ESI HOT/Highly Cited papers. Her impressive H-index of 45 reflects the impact of her work, which has garnered a total of 8205 WOS citations. High Energy physics

Expertise

Her expertise extends to serving as the chief expert of the Qingdao Nanolubricant Quasi Dry Manufacturing Expert Workstation.

Publications

In addition to her prolific paper output, Min Yang has authored 4 books, 2 of which were published by Science Press.

Research Interest

Grinding and precision machining, Biomedical material processing, Preparation of wearable sensors

Research Focus:

Dr. Min Yang’s research focuses on various aspects of advanced manufacturing technology, particularly in the field of grinding and precision machining. Her recent work includes investigations into the grindability evaluation of ultrasonic-assisted grinding of silicon nitride ceramic using minimum quantity lubrication based SiO2 nanofluid. Additionally, she has contributed significantly to understanding material removal mechanisms and force modeling in ultrasonic vibration-assisted micro-grinding of biological bone. Dr. Yang’s expertise extends to exploring heat transfer mechanisms in cryogenic air minimum quantity lubrication grinding of titanium alloy and developing temperature field models in surface grinding. She continues to advance knowledge in these areas through her research at Qingdao University of Technology, Qingdao, China. High Energy physics

Publications

  1. Temperature field model in surface grinding: a comparative assessment, Publication: 2023.
  2. Material Removal Mechanism and Force Modeling in Ultrasonic Vibration-Assisted Micro-Grinding Biological Bone, Publication: 2023.
  3. Convective Heat Transfer Coefficient Model Under Nanofluid Minimum Quantity Lubrication Coupled with Cryogenic Air Grinding Ti–6Al–4VPublication: 2020.
  4. Nanobiolubricant grinding: a comprehensive reviewPublication: 2024.
  5. Kinematics and improved surface roughness model in milling, Publication: 2022.
  6. Graphene-based flexible wearable sensors: mechanisms, challenges, and future directions, Publication: 2023.
  7. Grindability Evaluation of Ultrasonic Assisted Grinding of Silicon Nitride Ceramic Using Minimum Quantity Lubrication Based SiO2 NanofluidPublication: 2024.
  8. Magnetic Bearing: Structure, Model and Control strategyPublication: 2023.
.