Ahmed A. Aboud | Experimental methods | Best Researcher Award

Assoc. Prof. Dr. Ahmed A. Aboud | Experimental methods | Best Researcher Award

Lecturer in department of Physics, Faculty of Sicence, BSU, Egypt

Dr. Ahmed Abdel-Nagy Aboud Moustafa is a dedicated Lecturer in the Department of Physics at the Faculty of Science, Beni-Suef University (BSU), Egypt. He holds a PhD in Physics, specializing in Surface Antireflection and Protection for Photovoltaic (PV) Systems, from Yerevan State University, Armenia, earned through a full scholarship. His academic journey has been marked by excellence and a strong commitment to advancing physics and material science.

👨‍🎓Profile

Scopus

ORCID

Early Academic Pursuits 🎓

Dr. Aboud’s academic career began with exceptional achievements. He graduated top of his class with a B.Sc. in Physics from Cairo University, Beni-Suef branch, in 2000. He continued to excel in his studies, securing a M.Sc. in Physical Physics in 2008. During his early years, Dr. Aboud’s interest was sparked by thin film deposition and its applications in materials science, which later influenced his research direction.

Professional Endeavors 💼

Dr. Aboud’s professional career includes extensive research experience in thin film deposition, nano-material preparation, and solar energy applications. He has worked on various cutting-edge projects involving spray pyrolysis, chemical vapor deposition, and aerosol-assisted techniques. His work has spanned across several international collaborations, including SolarNex Co. in Pakistan and EMONIX in the USA. His participation in various projects, such as the 10kW rooftop grid-connected PV system, showcases his contribution to sustainable energy technologies.

Contributions and Research Focus 🔬

Dr. Aboud has made substantial contributions to the field of material science and physics, particularly in thin film technologies and nanomaterials. His primary research focus lies in the preparation of high-quality thin films using cost-effective chemical-based techniques like spray pyrolysis, chemical bath deposition, and aerosol-assisted chemical vapor deposition. His work aims to enhance the performance of solar cells and develop novel nano-structured materials for energy applications.

Additionally, his research interests extend to green chemistry, where he explores eco-friendly capping agents for nanomaterial synthesis and the development of dual metal sulfide precursors for solar absorber applications.

Impact and Influence 🌍

Dr. Aboud’s research impact is evident through his numerous publications in renowned journals and his collaborations with international institutions. His work on doped ZnO thin films and photoelectrochemical activity is highly regarded in the field of solar energy and nano-materials. He has also contributed to functional food development, as seen in his work on fortified biscuits with iron nanoparticles. Through his research, Dr. Aboud is influencing sustainable technologies and renewable energy solutions on a global scale.

Academic Citations 📚

With numerous research papers published in prominent journals like Physica Scripta, Journal of Materials Science, and Materials Research Express, Dr. Aboud has achieved significant academic recognition. His work on Ni doping in ZnO films and Cu-doped CdS solar absorbers is widely cited by researchers in the fields of semiconductors and photovoltaics. This high citation count reflects his contributions to advancing material science and energy-efficient technologies.

Research Skills 🧪

Dr. Aboud is proficient in various research methodologies, including:

  • Thin film deposition techniques (spray pyrolysis, chemical bath deposition)
  • Nano-material preparation (chemical bath, microwave techniques, and hot injection)
  • Characterization of materials using state-of-the-art techniques such as:
    • X-ray diffraction (XRD)
    • Atomic force microscopy (AFM)
    • Scanning electron microscopy (SEM)
    • Transmission electron microscopy (TEM)
    • Optical properties, DC conductivity
    • X-ray photoelectron spectroscopy (XPS)
    • Fourier-transform infrared spectroscopy (FT-IR)

These skills have been critical in his ability to contribute to innovative solar technologies, functional food applications, and advanced material development.

Teaching Experience 🏫

As an educator, Dr. Aboud has delivered comprehensive courses to undergraduate and postgraduate students at BSU. His teaching portfolio includes General Physics, Semiconductor Devices, Modern Physics, and Thin Film Physics, among others. Dr. Aboud’s courses emphasize practical knowledge and hands-on experience, aligning with his passion for scientific discovery and education. His graduate-level courses, including Energy Harvesting and Thin Film Technology, inspire the next generation of physicists.

Awards and Honors 🏆

Throughout his career, Dr. Aboud has been recognized with multiple awards and honors. His research excellence has earned him funding from the Egyptian Academy of Science and international collaborations with institutions like Ohio State University. His academic achievements are testament to his commitment to advancing the field of material science and renewable energy technologies.

Legacy and Future Contributions 🔮

Looking forward, Dr. Aboud aims to continue his research on cost-effective thin film techniques for solar energy applications. He also plans to further develop green nanomaterials for sustainable technologies. His future projects will focus on innovating dual-metal sulfide precursors, improving photoelectrochemical systems, and enhancing energy efficiency. Dr. Aboud’s legacy will be one of dedication to science, advancing renewable energy solutions, and fostering scientific education.

Publications Top Notes

Effect of different metallic doping elements on the physical properties of iron oxide thin films

  • Authors: Ahmed A. Aboud, Zinab S. Matar, Mona Mohaseb
    Journal: Physica Scripta
    Year: 2024

Physical properties of La:ZnO thin films prepared at different thicknesses using spray pyrolysis technique

  • Authors: Norah A. Alsaiari, Abanoub A. Awad, Motaz F. Ismail, Ahmed A. Aboud
    Journal: Physica Scripta
    Year: 2024

Tailoring physical properties and electrochemical performance of polyaniline thin films via chemical bath deposition

  • Authors: Mohamed S. Gadallah, Ahmed A. Aboud, H.M. Abd El-Salam
    Journal: Optical Materials
    Year: 2024

Properties of spray pyrolysis deposited Zr-doped ZnO thin films and their UV sensing properties

  • Authors: Aeshah Alasmari, Ramy A. Abd-Elraheem, Ahmed A. Aboud, Motaz Ismail
    Journal: Physica Scripta
    Year: 2024

Investigating the influence of yttrium doping on physical properties of ZnO thin films deposited via spray pyrolysis

  • Authors: Aeshah Alasmari, Abanoub A. Awad, Ahmed A. Aboud
    Journal: Optical Materials
    Year: 2024

Mestapha Arejdal | Condensed Matter | Member

Dr. Mestapha Arejdal | Condensed Matter | Member

PHD at Mohammed V University, Rabat, Morocco

Mestapha Arejdal, PhD, is a physicist specializing in computational modeling and condensed matter physics. With teaching experience at the University of Marrakech and research tenure at Mohammed V University, Rabat, his work delves into Spintronics and magnetic refrigeration materials. His expertise lies in Monte Carlo simulations and Ab-initio methods, contributing to advancements in energy harvesting and green technologies. Arejdal’s publications in renowned journals and roles as a reviewer underscore his commitment to scientific rigor. Proficient in various programming languages and fluent in French and English, he blends theoretical prowess with practical applications, fostering innovation in physics and beyond.

Professional Profiles:

Academic Background

2014-2017: PhD in Physics, specializing in Computer Physics and Condensed Matter Modeling, Mohammed V University, Rabat, Morocco. 2012-2014: Master in Physics Informatics, Faculty of Sciences, Mohammed V University, Rabat, Morocco. 2011-2012: Licence in Energy Physics, University Ibn ZOHR, Agadir, Morocco. 2009-2011: Diploma of General University Studies in Physics, University Ibn ZOHR, Agadir, Morocco. 2008-2009: Bachelor of Experimental Sciences in Physics, High School Moulay Abdellah Ben Hassain, Agadir, Morocco

Academic Positions

2017-2019: Teacher at the private University of Marrakech. 2017-2019: Researcher at Laboratory of Condensed Matter and Interdisciplinary Sciences (LaMCScI), Faculty of Sciences, Mohammed V University, Rabat, Morocco

Area of Research Interests

Enjoys reading and traveling. Demonstrates strong teamwork, adaptability, flexibility, and autonomy.

Skills

Proficient in modeling and computer science tools such as Matlab, Scilab, Fortran, and Gaussian. Experienced in programming languages like C and C++. Fluent in French and English.

Research Focus:

Specializes in the theoretical study of magnetic properties and the magnetocaloric effect of materials, particularly in Spintronics (Dendrimer models) and magnetic refrigeration materials (MnAs/MnBi). Expertise in Monte Carlo simulations, Ab-initio methods (DFT), and mean-field approximation. Investigates nanomaterials and complex systems for potential applications in energy harvesting and green technologies.

Publications 

  1. Prediction of the magnetocaloric behaviors of the Kekulene structure for the magnetic refrigeration, cited by: 17, Publication date: 2020.
  2. Structural and optical properties of Zn1−x−yAlx SiyO wurtzite heterostructure thin film for photovoltaic applications, cited by: 2, Publication date: 2020.
  3. The theoretical study of the magneto-caloric effect in a nano-structure formed on a Dendrimer structure, cited by: 4, Publication date: 2020.
  4. Magneto-caloric effect in Pb2CoUO6 with the second-order phase transition, Publication date: 2021.
  5. The electronic, magnetic and optical properties of Ba2MUO6 compounds with (M = Ni, Co, Cd and Zn): DFT calculation, cited by: 2, Publication date: 2021.
  6. The magnetic cooling of YTiO3 compound for magnetic refrigeration, cited by: 3, Publication date: 2022.
  7. Magnetic cooling and critical exponents at near room temperature: The SrCoO3 perovskite,Publication date: 2022.
  8. Effect of Thickness Size on Magnetic Behavior of Layered Ising Nanocube Fe/Co/Fe: a Monte Carlo Simulation, Publication date: 2022.
  9. Effects of size for an assembly of core-shell nanoparticles with the cubic structure: Monte Carlo simulations, Publication date: 2022.
  10. Theoretical aspects of magnetic, magnetocaloric, and critical exponents: Nanomaterial model, Publication date: 2023.

 

.

Christian Kenfack Sadem | Condensed Matter Physics | Member

Assoc Prof Dr. Christian Kenfack Sadem | Condensed Matter Physics | Member

PHD at University of Abomey Calavi, Benin

Christian Kenfack Sadem, an Associate Professor born on July 26, 1983, in Buea, Cameroon, holds Ph.D.s in Physical Oceanography and Condensed Matter Physics. With a diverse teaching background, including roles as a lecturer and visiting lecturer across Cameroon, he currently serves as an Associate Professor at the University of Dschang. Kenfack’s expertise spans research, teaching, and supervision of junior researchers, focusing on condensed matter physics and exciton-polaron dynamics. Recognized for his teaching excellence, he inspires students to pursue research careers. Kenfack is also skilled in data management and scientific software, contributing significantly to climate modeling.

Professional Profiles:

Education

Ph.D. in Physical Oceanography and Applications, University of Abomey Calavi, Benin, May 2021 Ph.D. in Condensed Matter Physics, University of Dschang, Cameroon, November 2011 Masters in Physical Oceanography and Applications, University of Abomey Calavi, Benin, November 2010 M.Sc. in Condensed Matter Physics, University of Dschang, Cameroon, June 2008 B.Sc. in General Physics, University of Ngaoundere, Cameroon, September 2005

Employment History

Associate Professor: University of Dschang, Cameroon (2019 – Present) Lecturer and Visiting Lecturer: Various institutions in Cameroon (2012 – 2019) Visiting Lecturer: National Polytechnic Bambui, Cameroon (2008 – 2009) Visiting Lecturer: Intitut Privé Polyvalent la Reforme, Cameroon (2007 – 2008)

Teaching Activities

Taught a range of courses including Statistical Physics, Group Theory, General Physics, Electromagnetism, and more

Prizes, Awards, Fellowships

Received various scholarships and fellowships including the Mwalimu Nyerere African Union Scholarship and the DAAD fellowship. Conducted groundbreaking research in the field of condensed matter physics, particularly in the areas of exciton-polaron dynamics and optical properties of transition metal dichalcogenides

Research Focus:

Christian Kenfack Sadem has contributed significantly to various scientific publications, including “Mobility and Decoherence of Bipolaron in Transition Metal Dichalcogenides Pseudodot Quantum Qubit” published in the Iranian Journal of Science. Additionally, he has co-authored articles such as “Enhancement of the group delay in quadratic coupling optomechanical systems subjected to an external force” in Chinese Physics B and “First principle investigation of electronic and optical properties of graphene/h-BN bilayers using Tran-Blaha-modified Becke-Johnson potential” in Optical and Quantum Electronics. His research covers a wide range of topics, including exciton-polaron dynamics, optical properties of graphene, and magnetic barrier effects on transition metal dichalcogenides.

Publications 

  1. Deformation and size effects on electronic properties of toroidal quantum dot in the presence of an off-center donor atom, cited by: 5, Publication date: 2022.
  2. The intensity and direction of the electric field effects on off-center shallow-donor impurity binding energy in wedge-shaped cylindrical quantum dots, cited by: 18, Publication date: 2022.
  3. Magnetic barrier and temperature effects on optical and dynamic properties of exciton-polaron in monolayers transition metal dichalcogenidescited by: 1, Publication date: 2022.
  4. Impacts of an initial axial force and surface effects on the dynamic characteristics of a bioliquid-filled microtubule in cytosol, Publication date: 2022.
  5. A Ginzburg-Landau approach to field theories for single, isolated zero-dimensional superconductors, Publication date: 2022.
  6. Magnetic barrier and electric field effects on exciton-polaron relaxation and transport properties in transition metal dichalcogenide monolayers, Publication date: 2023.
  7. First principle investigation of electronic and optical properties of graphene/h-BN bilayers using Tran-Blaha-modified Becke-Johnson potential, Publication date: 2023.
  8. Enhancement of the group delay in quadratic coupling optomechanical systems subjected to an external force, Publication date: 2023.
  9. Mobility and Decoherence of Bipolaron in Transition Metal Dichalcogenides Pseudodot Quantum QubitPublication date: 2024.

 

.